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Q U A N T U M A F F I N E A L G E B R A S A N D D E F O R M A T I O N S O F T H E 
V I R A S O R O A N D W - A L G E B R A S 

E D W A R D F R E N K E L A N D N I K O L A I R E S H E T I K H I N 

May 1995 

1. I N T R O D U C T I O N . 

1.1. In this paper we generalize some results concerning affine K a c - M o o d y algebras 
at the critical level to the corresponding quantized universal enveloping algebras. 
Here is the short description of these results for the affine algebras. 

(i) Let U(g)CT be a complet ion of the universal enveloping algebra of an affine 
algebra g at the critical level — hv (the precise definition is given in § 2) . This 
algebra possesses a large center which has a natural Poisson structure. 
B . Feigin and E. Frenkel have shown that Z(g) is isomorphic to the classical 
W-a lgeb ra W ( g L ) associated to the simple Lie algebra g L , which is Langlands 
dual to g [1]. 

(ii) The W-a lgeb ra W ( g L ) consists of functionals on a certain Poisson manifold 
C(gL) obtained by the Drinfeld-Sokolov hamiltonian reduction [2] from a hy
perplane in the dual space to the affine algebra gL. Elements of C(g L ) , called 
g L - o p e r s in [3], can be considered as connections on a certain G L - b u n d l e over 
the circle with some extra structure. To a g L - o p e r one can attach a g -module , 
on which the center acts according to the corresponding character. These g-
modules can be considered as analogues of admissible representations of a 
simple group over a local non-archimedian field. They can be used in carrying 
out the geometric Langlands correspondence proposed by A . Beilinson and 
V . Drinfeld [3]. 

(iii) The Wakimoto realization of g [4, 5, 1, 6] provides a map from U(g)CT to 
the tensor product of a certain Heisenberg algebra and a commutat ive al
gebra ? i (g) . The restriction of this map to Z(g) gives us a homomorphism 
Z(g) —» ?ί(β), which is an analogue of the Harish-Chandra homomorphism. 
The corresponding map W ( g L ) —> T~t(g) is nothing but the Miura transforma
tion, which has been defined for an arbitrary g by V . Drinfeld and V . Sokolov 

[2]· 
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(1.1) d2

t-q{t) = {dt-\X{t)){dt + \x(t)). 

This gives us a homomorphism of Poisson algebras W^sfe) —> ?i (s l2)-
In [7, 8] these results were used to give a new interpretation of the Bethe ansatz 

in the Gaudin models of statistical mechanics. This allowed to gain new insights on 
completeness of Bethe ansatz, and to relate Bethe ansatz to the geometric Langlands 
correspondence. 

1.2. There are many indications that these results can be generalized to the center 
of a complet ion Uh(g)cr of the quantum affine algebra Uq(g) at the critical level. A n 
explicit construction of central elements of a quantum affine algebra at the critical 
level has been given by N. Reshetikhin and M . Semenov-Tian-Shansky [9]. Later, 
J. Ding and P. Etingof [10] showed that those elements generate all singular vectors 
of imaginary weight in Verma modules over C// l(g) c r. This makes us to believe that the 
center of f / / l (g) c r is generated, in an appropriate sense, by the elements constructed 
m [9]. 

The center Zh(g) of C/^(fl) c r possesses a natural Poisson structure, which is a q-
deformation of the Poisson structure on Z(g). A natural question is to describe Zh(o) 
and its spectrum. 

In this paper we do this explicitly for t4(5Î2)cr by using its Wakimoto realization. 

Our results for Uh(sÎ2)CT c a n be summarized as follows. 

(i) T h e center Zhfek) of t4(sÎ2)cr contains the Fourier coefficients of a power 
series i{z) given in [9] in terms of the Reshetikhin-Semenov-Tian-Shansky (RS) 
realization of [ /^(st^cr- W e rewrite i(z) in terms of the Drinfeld realization 
[11], using the explicit isomorphism between the two realizations established 
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( iv) The algebra T~C(g) consists of functionals on a hyperplane Τ in the dual space 
to the homogeneous Heisenberg subalgebra f) of g. The algebra is the 

classical limit of a complet ion of £/(!)), and hence it is a Heisenberg-Poisson 
algebra. The Miura transformation W ( g L ) —> 7i(g) is a homomorphism of 
Poisson algebras. 

For example, the center of / 7 ( s [ 2 ) c r is generated by the Sugawara operators, and 
C (5Î 2 ) is isomorphic to a hyperplane C in the dual space to the Virasoro algebra. Thus, 
the center of U(5Î2)CT is isomorphic to the Poisson algebra W ^ t ) of functionals on 
C. The Poisson structure on C is often called the second Gelfand-Dickey structure. 
W e call W ^ t ) the classical Virasoro algebra. 

Elements of C can be considered as projective connections on the circle, i.e. dif
ferential operators of the form — q(t); these are the s ( 2 -opers . On the other hand, 
elements of Τ can be considered as connections on a rank one bundle over the circle, 
i.e. differential operators of the form dt — \x(t). The Miura transformation sends a 
connect ion dt — \x(t) to the project ive connection 
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( 1 . 3 ) {£(z)J(w)} = 

^ - « - ^ ( î ) " H ^ - ) + » s t e ) " - » s r a " -
This gives us a ç-deformation of the classical Virasoro algebra. 

Formula (1.2) shows that if we attach to A(z) a first order ç-difference operator 

T>q — A(zq), where [Vq · f](z) = f(zq2)y then to s(z) we can attach in a natural way a 

second order ç-difference operator of the form T>q + V'1 — s(z). Indeed, let Q(z) be 

a solution of the difference equation Q(zq) = A(z)Q(zq~x). Then from formula (1.2) 

we obtain 

(Vg + V;1 - s(z))Q(z) = 0. 

The latter equation written as 

( 1 . 4 ) 
Q(z<?) Qjzq-η  

S [ Z ) - Q(z) + Q(z) 

was used by R . Baxter [15] in his study of the eight vertex model . Similar formulas 
appeared in [16] as the result of computat ion of the spectrum of the transfer-matrix 
of the six vertex model , an integrable mode l of statistical mechanics associated to 
Uq(si2). In this context , the function Q(z) is a product of a 'Vacuum value" and a 
polynomial , whose zeroes are solutions of Bethe ansatz equations. 

1.3. Thus, we have interpreted formulas (1.2) and (1.4) as a hamiltonian map, 
which can be considered as a ç-analogue of the Miura transformation. In fact, the 
Miura transformation plays the same role as Baxter 's formula (1.4) in the Gaudin 
models , cf. [17, 7, 8 ] . 

The Miura transformation (1.1) is the classical limit of the free field realization 
of the Virasoro algebra. Free field realizations play an important role in conformai 
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by J. Ding and I. Frenkel [12]. This gives us a ç-analogue of the Sugawara 
formula. 

(ii) Wakimoto realizations of i/^sfe) have been given in [13] in terms of the Drin-
feld realization; we use the presentation due to H. Awata , S. Odake, and J. Shi-
raishi [14]. It gives us a homomorphism from Uh(g)Cr to the tensor product of 
a certain Heisenberg algebra and a Heisenberg-Poisson algebra ΉΗ^Ί)· Its re
striction to Zki^h) is a homomorphism of Poisson algebras Zhfeh) —* ^ ( s f e ) , 
which is a ^-deformation of the Miura transformation. 

(iii) W e find the image of ί(ζ) in Ή/^Β^) · 

( 1 . 2 ) i{z) —> s(z) = A(zq) + K{zq-XY\ 

where A(z) is a generating function of elements of ^ ( s f e ) . Using the Poisson 

structure on ^ ( s t ) w e compute the Poisson structure on Z/^sfe): 
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field theory, cf. [6]. It is quite remarkable that a (/-analogue of free field realization 
appears in the context of Β et he ansatz in statistical mechanics. 

Analogues of formula (1.2) for transfer-matrices of integrable models associated to 

other quantum affine algebras are known, cf. e.g. [18, 21] for £7 g (s i jv) , [19, 20, 22] for 

other Uq(g). Motivated by our computat ion in the case of Uq($l2) we expect that the 

formulas for the (/-deformation of the Miura transformation of the center of Uk(s)cr 
coincide with the formulas for the transfer-matrices corresponding to Uq(g). 

In particular, for g = SÎN we obtain the following picture. 

(i) In [9] the generating functions of central elements £\{z),... , £N„I(Z) of ^ ( s Î / v j c i 

corresponding to the fundamental representations have been constructed. The 

Fourier coefficients of ^ ( z ) ' s generate a central subalgebra ΖΗ{ΒΙΝ) of £4(sÎA 7)cr 7  

which is closed with respect to the Poisson structure. 

(ii) The Wak imoto realization of £4(5Îjv)cr [ 1 4 ] gives rise to a homomorph i sm of 

Poisson algebras Z^BÎN) —* Τ Α ^ ί , ν ) , where Tih(SIN) is a Heisenberg-Poisson 
algebra. This is a (/-deformation of the Miura transformation. W e find a 
formula for the image S{(z) of each generating function £{(ζ) in Ή,Κ(ΒΙΝ)- These 
formulas match formulas for the spectra of the corresponding transfer-matrices 
in integrable models associated to U^BIN) [18, 21]. 

(iii) W e explicit ly compute the Poisson brackets between 3 ; ( z ) ' s in ΉΗ($[Ν) gen
eralizing formula (1 .3) . Thus, we obtain an interesting Poisson subalgebra 
VV/^SITV) of the Heisenberg-Poisson algebra ^ ( s t j v ) , which is a (/-deformation 
of the classical W-a lgeb ra W ( s l ; v ) . 

( iv) Recall that elements of the spectrum of W(s t /v ) can be considered as TVth order 
differential operators. W e show that elements of the spectrum of W/^stjv) can 
be considered as Nth order (/-difference operators of the form 

V» - SN^zyD*-* + 3N-2(z)V?-2 - . . . - ( - l f s ^ V , + {-If. 

W e generalize (i) and (ii) to all quantum affine algebras of classical types. The 
computa t ion of Poisson brackets is straightforward, and will be given in our next 
paper [23] along with results regarding quantum affine algebras of exceptional types. 

Using our results in the same way as in [7] we can give a new interpretation of the 
Bethe ansatz in integrable models associated to quantum affine algebras. This and 
other applications will be discussed in [23]. 

The paper is organized as follows. In § 2 we recall results concerning the center of 

U{^2)CT a n d Miura transformation. In §§ 3-5 we consider the Drinfeld and the RS 

realizations of [/^(sk)*? and the isomorphism between them. In § 6 we rewrite the RS 

formula for the generating function l{z) of central elements in £4(sÎ2)er in terms of 

the Drinfeld realization. In §§ 7-9 we recall the Wakimoto realization of t /^s fe )* , and 

use it to find an explicit formula for the image of £(z) in Hh($Î2) and to compute the 

Poisson bracket on Zhfeh)- In §§ 10 and 11 we generalize these results to Uh(sÎN)cr 
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and other quantum affine algebras of classical types. 

2. T H E C E N T E R O F Ü(sl2) A T T H E C R I T I C A L L E V E L . 

2 .1 . T h e structure of the center. Let g be a finite-dimensional simple Lie algebra. 
The affine algebra g is the extension of g ® C[t, i - 1 ] by a one-dimensional center CK. 
For A G fl, η G Ζ , denote A[n] = A®tn and put 

A(z) = Σ A[n]z~n-\ 

Introduce a complet ion U(g) of U(g), the universal enveloping algebra of g: 

Ü(g) = Inn U(a)/U(a)(a ® *η<Φ]), * > 0. 

This is an associative algebra. It acts on g -modules M which satisfy the following 
property: for any χ Ε M there exists Ν G Z + such that A[n] · χ = 0 for any A G g if 
η > JV. For k G C put Ü{g)k = U(g)/(K -k), and let U(g)CT be i7(fl)-ÄV. 

The algebra U(g)k contains the local complet ion f/(g)jt,i o c introduced in [1]. The 

center of £/(g)fc,ioc has been described in [1]. It consists of the constants when k φ 
— hy

y but becomes "large" when k = —hy. Let us recall its description in the case 
g = s[ 2; in this case hy = 2. 

Let { e , /i, / } be the standard basis of $[2. Introduce the generating function of the 
Sugawara operators Sn by formula 

S(z) = Σ Snz-n~2 = \ : h(z)2 : + \ : e(z)f(z) : + \ : / ( z ) e ( z ) : 

It is well-known that 

[ 5 n , A[m]] = - ( f c + 2 ) m A [ n + m] 

for any A G g, and 

(2.1) Γ k 
[Sn, Sm] = {k + 2) (n - ra)Sn+m + - ( n 3 - n)Sn-m . 

Therefore, if Α; φ —2, the operators L n = Sn/(k + 2) generate the Virasoro algebra. 

If k — —2, the operators Sn,n G Ζ , are central elements of ^ ( s ^ - z ^ o c -
There is a natural Poisson structure on the center Z(g) of U(g)CT: for any A , J3 G 

Z ( f l ) , let Λ ' , Β ' b e their liftings to f7(ÎI2). Then we have [Α',Β'] = (Κ + hy)C + 
{Κ + hv)2(... ) . Let C be the project ion of C G Ü(sl2) to Ü(g)CT. Then the formula 
{ A , B} = C defines a Poisson bracket on which does not depend on the liftings. 

W e obtain from formula (2 .1) : 

(2.2) {Sn, Sm} = (n - m)Sn+m - ^ ( n 3 - n) i n ,_ T O . 

2 7 9 
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K,a m ] = [<,<J = 0, 

and the Heisenberg algebra W f s k ) with generators χ η , η £ Ζ , and 1 and relations 

[Χπι Χ m. [ X n , l ] = 0 . 

Introduce the generating functions 

a(Z) = Σ&ηΖ U \ χ(ζ) = Σχη̂ η-1. 
W e define an embedding φ of s( 2 into a complet ion of Γ ® ^ ' ( s k ) by the formulas: 

φ\β(ζ)] = o ( A 

φ[Η(ζ)] = - 2 : a(z)a\z) : +χ(ζ), 

φ\/(ζ)} = - : a(z)a*(z)a*(z) : + ( 1 - 2)dxa*(z) + χ(ζ)αΊζ), 

φ(Κ) = 1 - 2 . 

T h e algebra Γ has a standard Fock representation M generated by a vector υ , such 
that 

anv = 0, η > 0; a*nv = 0> η > 0. 

T h e algebra ^ ( s b ) has a family of Fock representations π μ ι Λ , μ G C, κ G C, /c 7̂  0, 
generated by a vector νβ Λ , such that 

η > 0; 

It also has an infinite-dimensional family of one-dimensional representations C x ( z ) , 
where x(z) = Ençz Χ Η ^ ~ Η - 1 £ ^ ( ( z ) ) > o n which χ η acts by multiplication by x n , and 

2 8 0 

Consider the hyperplane C in the dual space to the Virasoro algebra, which consists 
of those linear functionals on the Virasoro algebra which take value —6 on the central 
element (this corresponds to the factor —1/2 = —6/12 in the second term of formula 
(2 .2 ) ) . This hyperplane is isomorphic to the space of project ive connections on the 
formal punctured disc d2

z — q(z), where q(z) G C ( ( z ) ) , in the sense that the natural 
action of vector fields on it coincides with the coadjoint action of the Virasoro algebra 
on C. Let W ( s Î 2 ) be the Poisson algebra of local functionals on C. It is the classical 
limit of the local complet ion of the universal enveloping algebra of the Virasoro 
algebra. Therefore we call W ( 5 Î 2 ) the classical Virasoro algebra. 

In the case g = SÎ2 the result of [1] is that the center Ζ(5I2) of ^ ( 5 Î 2 ) - 2 , i o c is 
isomorphic to W ( s Î 2 ) . This isomorphism sends Sn to the local functional d2

z — q(z) —> 
f q(z)zn+1dz. Accord ing to formula (2 .2) , this is an isomorphism of Poisson algebras. 

2 .2 . W a k i m o t o modules and M i u r a transformation. Consider the Heisenberg 
algebra Γ with generators α η , α * , η G Ζ , and relations 
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(2.3) {Χη,Χτη} = 2nSn-m. 

The homomorphism φ defines a homomorphism φ_2 from $l2 to a complet ion of 
Γ ® Ή($ί2), which maps Κ to —2. One can check that under <^_2, the Sugawara series 
S(z) is mapped to 

(2-4) \χ(ζ)2 - \dzX{z). 

Therefore çi>_2 defines an embedding of Z{si2) into a complet ion of Ή($12), which we 
call the Miura transformation. 

The Poisson structure between central elements A , Β G Z(sl2) has been defined via 
the commutator of their liftings to U ( B Î 2 ) . The result does not depend on the choice of 
a lifting. Moreover , we will obtain the same result if we take the commutator between 
the liftings of the images Af, B1 of A , Β in the complet ion of Γ ® 7i($l2). Since the 
image of Z(B12) actually lies in the complet ion of ^ ( 5 ( 2 ) , we can take liftings lying 
in the complet ion of H \ B { 2 ) . But then the image of the Poisson bracket between 
A , Β G Z(sÎ2) in ^ ( s b ) will coincide with the Poisson bracket between A\B' G 
7i(sÎ2). Hence the Miura transformation Ζ ( 5 ( 2 ) —> Ή(5ΐ2) is a homomorphism of 
Poisson algebras. 

Therefore wre can compute the Poisson structure on Z(sl2) using formulas (2.4) 
and (2 .3) . This gives us the Poisson bracket between the Sugawara operators, which 
coincides with formula (2 .2) . 

3. T H E D R I N F E L D R E A L I Z A T I O N . 

Let Uq(sl2) be the associative algebra over the ring C[ç , with generators et-5 

and K{, A " " 1 , ζ = 0 , 1 , which satisfy the following relations [24, 25]: 

ei ei - (l + 1 + 9 Xe»- eJei - e> ei e«- ) - eJei - °> 

flfi - (? + 1 + - m?) - fiff = o, 
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1 acts by 0. Using the homomorphism φ we obtain representations of sl2 of non-
critical level in Μ ® π μ ? κ , and representations of critical level in M ® Cx(z). These 
are called Wakimoto modules . 

The algebra Ή ' (5 ΐ 2 ) can be considered as a deformation of the commutat ive algebra 
7 Î ( S Î 2 ) = / W / ( s Î 2 ) / ( 1 ) . It induces a Poisson structure on Ή($12), which is called the 
Heisenberg-Poisson structure. It is determined b y the following Poisson brackets of 
the generators: 

Kie, = qA'>ejKi, 

KiKj = KjKi, 

[eiJ3} = Sij(q-q-1)(Ki-K-i), 

Kifj = q-^'fjKi, 
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( 3 . 1 ) / ( * ) = 
(x;q4)(xq4-q4) 

(xq2;q4)2 

where 

(a; 6) = 
OO n< 

71=0 

1 - abn). 

Remark 1 . Each coefficient of f(x) is itself a series in ç , which converges for | ç | < 1 
and can be analytically continued to the whole complex plane except for some roots 
of unity. Thus, we can extend f(x) as formal power series in χ to all q except for the 
roots of unity. In what follows we will exclude roots of unity from consideration. • 

Let h G C \ { 2 7 t z Q } , ä ; G C; put q = eh. W e define an associative algebra Uh(gÎ2)k 
over C with generators E[n], F[n], n G Z , and kf [n], i = 1 , 2 ; n G Τ ^ + ' Introduce the 
generating functions 

E(z) = Ε E[n]z-«, F(z) = Σ Fln)z-\ 
OO 

n=0 

T h e defining relations in ^ ( g ^ ) ^ are 

kt[o)k-[o] = k-[o)kt[o} = i, 

kf(z)kf(w) = kf(w)kt(z), 
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where A;J , ζ, j = 0 , 1 , are the entries of the Cartan matrix of S Î 2 : A 0 o = A n = — A 0 i = 
- A 1 0 = 2. 

For any h,k e C consider the quotient Uh($Î2)k of Uq(BÎ2) by the relations q = 

eh,KoK\ = ehk. This is the Drinfeld-Jimbo realization of Uh(st2)k-
There exist two other realizations of Uh(sl2)k'- Drinfeld's realization [ 1 1 ] , and 

Reshetikhin-Semenov-Tian-Shansky (RS) realization. The equivalence between the 
Drinfeld-Jimbo and the Drinfeld realizations has been established by V . Drinfeld [ 1 1 ] , 
cf. also [ 2 6 , 2 7 , 2 8 ] . The equivalence between the Drinfeld and the RS realizations 
has been established by J. Ding and I. Frenkel [ 1 2 ] . The equivalence between the 
Drinf eld-Jimbo and the RS realization follows from these two equivalences, but it 
can also be established directly along the lines of [ 1 2 ] . 

First we consider the Drinfeld realization. It is important for us because the 
Wakimoto realization is defined in terms of this realization. 

Introduce formal power series in χ 

f(-a~k) 

k-(z)kt(w) = Jj^fkt(w)k-(z), 
f/w k+2\ 



Q U A N T U M A L G E B R A S A N D W - A L G E B R A S 

f(w k-2\ 

[E(z),F(w)} = 

(q - j j f 1 ) (δ (™qk) k^wq^Kiwqî)-1 - δ ( V*) k}{wq-*)k*{v>q-t, 

where 

δ(χ) = Σ xm. 

These relations are understood as relations between formal powers series (cf. Re
mark 1) . 

L e m m a 1· The Fourier coefficients of the power series kf(z)k2(zq~~2) — l are central 

elements of Uh(gl2)k-

Consider the quotient of Uh(gl2)k by the ideal generated by these elements. It has 
E[n],F[n],kf[n],n G Ζ , as generators. There is a one-to-one correspondence between 
them and Drinfeld's generators which preserves relations: Drinfeld's φ(ζ) (φ+(ζ) of 
[14]) is Κ(ζςη-ιΚ(ζ)-\ φ(ζ) (φ.(ζ) of [14]) is kt(zq*)-*k+{z)-\ ξ+(ζ) is E(z) 
and ξ (ζ) is h(q — q 1)F(z). The following Proposit ion then follows from [11], cf. 
also [26, 27, 28]. 

Proposit ion 1. The quotient ofUh(gl2)k by the ideal generated by the Fourier coef
ficients of the power series kf{z)k2{zq~2) — 1 is isomorphic to Uh(sÎ2)k-

2 8 3 

kf(z)E(w) = 

kf(z)F(w) = Zfk\ W F(w)kf(z), 
zq 2 1 — wq 

k±(z)E(w) = Z q ^ k

 W q ~ l E(w)kf(z), 
zq+2 — w 

kf(z)F(w) = *f* W F(w)k±(z), 
zq ^ — wq~l 

E(z)E(w) = ^—^E(w)E{z), 
z — wq2 

F(z)F(w) = V ^ W W . 
zql — w 

=ρ*-ι 
Zqi-2 — wq 

in A 

£ Ç + 2 — u? 

Ε ? Μ * ί ( ζ ) , 
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(4.1) R(x) = f(x) 

'1 0 0 0N 

ο 1 ~ x ο 
q — xq~l q — xq~l 

q — q~l 1 — χ 
0 - ! =T 0 

q — xq 1 q — xq 1 

0 0 0 1 
where f(x) is given by formula (3 .1) . 

T h e matrix (4.1) is the result of computat ion of the universal Ä-mat r ix of Uq($Î2) 
on the tensor product of two two-dimensional evaluation representations, cf. e.g. 
[31]. It satisfies the crossing-symmetry property: 

'R(x) -vvT q-1 0 
0
 % 

R(xqA) J q 0 
0 q-1 

which follows from the existence of an isomorphism between the two-dimensional 
evaluation module and its double dual [31]. This is related to the fact that f(x) 
satisfies the ç-difference equation 

f(xq4) = 
(1 - xq*)* 

[1 - x)(l - xq4 /(*)· 

Remark 2. Our i?-matr ix differs from that of [12] b y the factor f(x) and by replace
ment of q by q~x. It also differs from the ß - m a t r i x used in [32] by the factor which 
is a product of theta-functions. • 

Let again h G C \ { 2 7 r i Q } , k G C, q = eh. W e define an associative algebra U'h(Q{2)k 
over C with generators Z^[n], where i , j = 1,2, and η G : f Z + \ 0 , and ^ [ 0 ] , / ~ [ 0 ] , 1 < 
j < i < 2. Introduce the generating functions 

oo 

n=0 

where we put Zg[0] = /~[0] = 0 for 1 < i < j < 2. Let L ± ( ^ ) b e the 2 χ 2 matrix 

($(*)ki=I.2-
T h e defining relations in C/^(fli2)fc are: 

i m m = iûwm = h » = 1 , 2 , 

2 8 4 

4. T H E R S R E A L I Z A T I O N . 

Now we turn to the RS realization [9]. This realization originated from the Quan

tum Inverse Scattering Method , cf. [29, 30]. It is important for us because in this 

realization we can write explicit formulas for central elements [9]. 

Introduce the i?-matr ix 
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R (£) Lt(z)Lf(w) = Lt(w)Lf(z)R (l) , 

R fa") L ^ L ~ ^ = ^(w)L+(z)R (^qk) . 

( 4 . 2 ) 

( 4 . 3 ) 

Here Lf(z) and Lf (w) are elements of E n d ( C ? ) <g> End(C?) <g) U'h(gi2)k, i.e. 4 x 4 

matrices with entries from U'h(gi2)k, such that Lf(w) = ^(w) ® I<i, Lf(z) = 7 2 <S> 

The relations ( 4 . 2 ) and ( 4 . 3 ) are understood as relations between formal power 
ζ 

series in —, cf. Remark 1. 
w 

5. T H E I S O M O R P H I S M O F T W O R E A L I Z A T I O N S . 

Following [ 1 2 ] one can construct an explicit isomorphism between the algebras 

Uh(gl2)k and U'h{g[2)k. 

Consider the following decomposi t ion 

ι ο' 
e ± ( z ) \ 

kf(z) 0 ' 

0 kt(z)y 0 1 j 

(5.1) 
e±(z)kt(z) kf(z) + e^{z)kt{z)f^{z)J 

In particular, we see that l21[0] is the constant term of e+(z) = ] C m > 0 e[—m]zm and 
1ϊ2[0] is the constant term of f~(z) = J2m<o / [ — m ] ^ m , while e~(z) — J2m<o e[—m]zm 

and f+(z) — Y^m>o f[~m]zm have no constant terms. 

Proposit ion 2 ( [ 1 2 ] ) . The map φ' : E/£(flÎ2)fc ~~* Uh(gl2)k defined on generators by 

t'[k*(z)] = kf(z), 

is an isomorphism. 

L e m m a 2. The Fourier coefficients of the power series 

(5.2) l±(zq2) ( & ( ζ ) - / ^ ^ ( z ) - 1 / ^ ) ) - 1 

are central elements of U'h(gi2)k-

2 8 5 

i>'[e+(zqH2)-e-(zq-K2)] = E(z), 

t'[f+(zq-l)-f-(zql)} = F(z), 

φ'Ι^(ζ)} = kf(z), 
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6. T H E ç - A N A L O G U E S OF THE S U G A W A R A O P E R A T O R S . 

W e define a complet ion Uh(g)k of Uh(g)k as follows: 

Üh(a)k = Hm Uh(g)k/Jn, η > 0, 

where Jn is the left ideal of Uh(g)k generated by /^ [m] , ra > n. 
Let 

Liz) = L+(zq-hL-(zqh2)-\ 

It is easy to see that all Fourier coefficients of the power series 

(6.1) Î{z)=q-1L11(z) + qL22{z), 

lie in Uh(5l2)k- It follows from [9] that when k = —2 the coefficients of l{z) are central 

elements of E/^sfe)«-
W e will now express l{z) in terms of the Drinfeld realization using the isomorphism 

φ. Let us put k = —2. Using formula (5.1) we obtain: 

(6.2) 

InW = kt(zq)K(zq-1)-1 - kt(zq) (f+(zq) - f~(zq'1)) k~2(zq-1)-1e~(zq-1), 

(6.3) 

L22(z) = kt(zq)k^zq-1)-1 + e+(zq)kt(zq) (f+(zq) - / " ( z c " 1 ) ) K(zq-l)-\ 

Apply ing formula (4.45) from [12] (in which the sign of the second summand in 
the right hand side has to be reversed) we obtain 

(6.4) k-{zq-x)-le-{zq'1) = qe~(zq)k~(zq'1)-1, 

and applying formula (4.25) from [12] we obtain 

(6 .5) e+(zq)kt(zq) = q-1ht{zq)e+{zq-1). 

Substituting (6.4) into (6.2) we obtain 

(6.6) 

Ln(z) = kt(zq)K(zq-1)-1 - qkt(zq) (f+(zq) - / " ( z ç " 1 ) ) e~ (zq)^ (zq-1)'1, 
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The image of the power series (5.2) under the map φ is the series kf(zq2)kf(z) — 1, 

whose coefficients are central elements of Uh(gl2)k- According to Proposi t ion 1, the 

quotient of Uh(gl2)k by the ideal generated by these central elements is isomorphic 

to Uh(sl2)k- Hence we obtain 

Corol lary 1· φ' induces an isomorphism φ between the quotient of U'h(gl2)k by the 
Fourier coefficients of the power series l\\(zq2)(l22(z) — ifii^lf^z^lf^z)) ~~ 1 a n ^ 
Uh(5i2)k. 
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Combining formula (6.1) with (6.6) and (6.7) we obtain 

(6.8) t{z) = q-1kt(zq)k^(zq-1)-1 + qk+(zq)k^(zq-1)-1 

(6.9) + k+(zq) : E(z)F(z) : ^ < Γ Τ \ 

where 

: E(z)F(z) : = e ^ " 1 ) (f+(zq) - / " ( z ç " 1 ) ) - (f+(zq) - f^q'1)) e~{zq). 

Now we apply the isomorphism φ. W e see that φ(: Ε (ζ) F (ζ) :) is a normally 
ordered product of the power series E(z) and F(z): 

: E(z)F(z) := E_(z)F(z) + F(z)E+(z), 

where 
E.(z) = Σ E[n}z-n, E+(z) = £ E[n]z~n. 

n<0 N>0 
Thus, we obtain 

Proposit ion 3 . The Fourier coefficients of the power series 

(6.10) l(z) = q-1kt(zq)k-(zq-1)-1 + qk+(zq3)-1^ (zq) 

(6.11) + k+(zq) : E(z)F(z) : k~(zq) 

are central elements of Üh(sl2)CT. 

These are the ç-analogues of the Sugawara operators. 

7. T H E W A K I M O T O R E A L I Z A T I O N O F Uh(sl2)k-

Now we will describe a homomorphism φπ^ from Uh(sl2)k to a complet ion of a 
quantum Heisenberg algebra. The map is a ç-analogue of the map φ defined in 
§ 2. Such homomorphisms have been constructed in [13]. W e will use the A w a t a -
Odake-Shiraishi construction [14] with some modifications. 

Introduce the quantum Heisenberg algebra ΛΗ^{Β12). The generators are λ η , 6 n , c n , 
η £ Ζ , η φ 0, e x p ( ± A 0 / 2 ) , e x p ( ± ( ç - q~1)b0/2),exp(±(ç - ç _ 1 ) c 0 ) , and pb, pc. The 
relations are 

(7.1) 
R. , ι 1 K H 2 H M L _ x . a 

[Λη<> Λτη\ — V? ~ 9 J Ö N , - M 5 

[&n,&m] = [ n ] ^ n _ m , [&0,P&] = ~ q Jï 

η y ζ/ι 

2 8 7 

and substituting (6.5) into (6.3) we obtain 

(6.7) 

L22{z) = kt(zq)k-(zq-1)-1 + q-lkt(zq)e+(zq-i) (f+(zq) - /-(zq'1)) k~{zq-')-\ 
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qn — q~n 

where q = eh and [n]q = —. The generators bn and c n coincide with the 
q - q'1 

corresponding generators of [14]. The generators Xn are related to the generators an 

of [14] by the formula 

λ - q ~ q ~ \ 
qn + q~n 

(recall that we have assumed that q is not a root of uni ty) . 
W e form the generating functions: 

λ οο \ 

T h e series Λ ± ( ζ ) is related to the series a±(z) from [14] by the formula 

Λ ± ( * ) Λ ± ( * ς

± 2 ) = e a ^ z q ± 1 l 

T h e other series are the same as in [14]. 
T h e relations between these series, in the sense of formal power series (cf. Re

mark 1) , are the following (cf. [14]): 

A+(z)A-H = ^ ^ A . H A + ( z ) , 

e 6 + ( z ) . eb(w) : = z-wq ^ j ( w ) ^ ^ + ( ^ 
zq — w ' 

(7.2) 

(7.3) . e6(z) . E 6 _ H _ ^ - ^ g g t - H . E6(*) . = q z - w q ; e f ) _ H + 6 ( z ) 

zq — w zq — w 

(7.4) e 6 + ( Z ) e 6 _ H = ( ^ - w ) 2

 C 6 - M C 6 ^ ( Z ^ 
( 2 — wq2)(z — wq~2) ' 

2 8 8 

[ c n , c m ] = —[n]26n-mj [ c 0 , Pc] = ~ί 
η H la 

Μ ^ ) = ±(ί-9"1)(| + Σ^ τ η) ! 

Κ )̂ = - Σ Γ Γ Ζ " + <1 οΐ bologz + pb, 

c ± ( ^ ) = ± ( ? - ç - i ) ( | + ê ^ n , j 

φ ) = -

Α±(ζ) = exp 

2ft 
Co log Ζ + Pc -
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- Λ _ ( * 9 - * ) Λ - ( * ί - * " 2 ) : e M ^ ) + W ( ^ ' ) :, 

Remark 3. Under the homomorph ism defined in § 2.2, the affine algebra 5(2 embeds 
into a complet ion of the Heisenberg algebra Γ ® Ή'(5{2) generated by α η , α * and χη. 
The power series a(z) and a*(z) form the so-called ^ 7 - s y s t e m while the power series 
χ(ζ) is called a free scalar field. The /?7-system can be represented via exponentials 
of a pair of free scalar fields. The homomorphism φ then gives rise to a homomor
phism φ' from sl2 to a complet ion of the Heisenberg algebra generated by the Fourier 
coefficients of these two scalar fields and χ(ζ). 

The power series b(z) and c(z) are ç-analogues of the scalar bosonic fields repre
senting the βη system when q = 1. Thus, the homomorphism φ^ is a (/-deformation 
of φ' rather than φ. • 

W h e n k φ —2, the homomorph ism φ^ provides representations of Uh(sl2)k in the 
Fock representation of the Heisenberg algebra .4^*, cf. [14]. These representations 
have one parameter - the action of λ 0 on the highest weight vector, cf. [14]. W h e n 
k = — 2, the generators Xn commute among themselves and generate a commutat ive 
algebra ^ ( s f o ) . Therefore representations of [/^(sfejcr can be realized via φ^ in a 
smaller space: the tensor product of the Fock representation of the subalgebra of 
Ah-2 generated by 6 n , c n , n £ Ζ , and a one-dimensional representation of 7"^(5(2). 
For the action of t/j^sfe)«- to be well-defined on this space, the action of A(z) should 
be given by a Laurent power series X(z) (for example, this is the case if λ η , η > 0, act 
by 0 ) . The corresponding representations W\(z) are the ç-analogues of the Wakimoto 
modules over U{^{2)cx from § 2.2. 
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(z — w)2 ' 

We define the complet ion Ah,k(sh) of Ah,k{sh) a s follows: 

Ähtk(sl2) = Km Ahtk/In, n>0, 

where In is the left ideal of Ah^i^h) generated by all polynomials in A m , 6 m , c m , m > 0, 
of degrees greater than or equal to η (we put deg Xm = deg 6 m = d e g c m = m ) . 

The next proposit ion follows from [14]. 

Proposit ion 4 . There is a homomorphism, φ^ from Uh(sl2)k to A^kish), which is 
defined on generators as follows: 

,̂IFC[Ä;r(̂ )] = A + ( ^ ) - 1 e - 6 + ^ ) . 

^ [ F ( z ) ] = A + ( ^ ) A + ( ^ + 2 ) : 

4>h,k[E(z)] = - : e M * ) - ( H c ) ( Z 9 ) . + . e 6 _ ( 2 ) - ( 6 + c ) ( z g - ^ ) : > 

s 6 + l * 9 * + 2 ) + (6+c)(*9*+ 1) 



E D W A R D FRENKEL A N D NIKOLAI RESHETIKHIN 

(8 .1 ) : E { z ) F ( z ) : = i EMmdwr £M£M 
JcR w — ζ J cr w — Ζ 

where Cr and CR are circles around the origin or radii R > \w\ and r < respec
tively. 

Using the Wak imoto realization of t4 ( s l 2 ) C r and formulas ( 7 . 2 ) - ( 7 . 4 ) , we find in 
the region |tü| > | z | , > q2\z\, \w\ > q~2\z\: 

E(w)F(z) = - W ^ _ 1 A + ( ^ - 1 ) A + ( z g ) e ( b + c H ^ - 1 ) ~ ( ^ ) ( ^ ) e ^ ^ ^ ( - ) 
wq — zq 1 

_ ^ - ^ Λ _ ! _ ) E 6 . ( » ) + 6 _ ( « , ) E ( 6 + C ) ( E C ) - ( 6 + c ) ( W i - » ) 

wq'1 — zq 

+ ç - 1 A _ ( z ç - 1 ) A _ ( z Q ) e 6 - ( z ) e ( ! , + c ) ( z î ) - ( & + c ) ( w î ) e 6 + ( t u ) 

+ ç A + ( ^ - 1 ) A + ( ^ ) e 6 - ^ e ( 6 + c ) ^ - 1 ) - ( 6 + c ) ^ " 1 ) e 6 + W . 

W e obtain the same formula for F(z)E(w) in the region |ιο| < | z | , |tü| < g 2 | z | , |it;| < 

ç~" 2 | z | . W e can therefore rewrite (8.1) as the integral of the this expression over the 

contour on the w plane surrounding the points z, zq2, zq~2. 

Evaluating the residues, we find that 

( 8 . 2 ) : E(z)F(z) := - ^ A + ^ ç - ^ A + ^ e M ^ H M * ) 

( 8 . 3 ) _ qh_(zq-l)tï_{zq)eh-^+b-M 

( 8 - 4 ) + q-1A_(zq-1)A_(zq)eb-Meb+M 

( 8 - 5 ) + qA+(zq~l)A+(zq)eb-^eb^z\ 

Using this formula we obtain 

kt(zq) : E{z)F{z) : k^zq) = - q - ^ { z q ^ ) - ^ e q - x ) e ^ ) ^ { ^ ) 

- qA_(zq)A+(zq)-1eb-(z*2)e-
b+W 

+ q-1A4zq)A+(zq)-1  

+ ç A _ ( ^ - 1 ) - i A + ( ^ " 1 ) . 

On the other hand, we have 

k+{zq)k^(zq-1)-1 = A _ ( ^ - 1 ) - 1 A + ( z ç - 1 ) e - 6 - W e i , + ^ " 2 ) 

290 

8. D E F O R M A T I O N OF THE M l U R A T R A N S F O R M A T I O N . 

In this section we will apply φ™ = φκ,-2 to the generating function of central 
elements £(z) given by (6 .10) . For brevity, in what follows we will use the same 
notation for elements of Uh($Î2)cr a n d their images in ^ / ^ ( s ^ ) -

The normally ordered product : E(z)F(z) : can be written as 
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and 

* Î ( V ) - 1 * T W = 

Substituting these formulas into (6.10) we obtain a formula expressing the image of 

£(z) in 7 ^ ( 5 ( 2 ) in terms of A±(z). 

T h e o r e m 1. Under the homomorphism φ™, 

(8.6) £(z) —>s(z) = A(zq) + A(zq-1)-\ 

where 

(8.7) A(z) = q-1A4z)A+(z)-\ 

This is a ç-deformation of the Miura transformation (2 .4) . 

Remark 4. There is a simpler way to obtain formula (8 .6 ) . Consider the action of 
s(z) = Φκ[£{ζ)} on the module introduced at the end of § 7. In the limit q —> 1 

this module becomes a Wakimoto module over sl2. Wakimoto modules are irreducible 
for generic values of parameters. Therefore the same is true for the modules W\(zy 
Hence any central element of Uk{5{2)CT

 a c t s o n ^x(z) by a constant. In particular, 
£{z) acts by multiplication by a Laurent power series s (ζ). W e can compute s(z) by 
taking the matrix element of £(z) between the generating vector of and its dual 
using formulas (6 .1) , (5.1) and the maps φ, φ™. Explicit computat ion shows that this 
matrix element is equal to X(zq) + X(zq~1)~1. This implies that s(z) lies in Hh{sk) 
and gives us formula (8.6) for s(z). • 

Remark 5. In [9] a generating function of central elements of Uh(g)Cr has been asso
ciated to an arbitrary finite-dimensional representation of Uq(g). Thus, in the case of 
Uh(si2)CT we have a generating function £(n\z) of central elements associated to the 
representation of Uq(5Î2) of dimension η + 1 for each positive integer n. In particular, 
£{z) — £(x\z). These generating functions satisfy the following relation: 

£^(zq2n)£^(z) = £{n+1)(z) + 6η-λ\ζ), η > 0, 

Using this relation and formula (8.6) it is easy to find recursively: 

6n\z) = A{zq)A{zq3)A{zq5)... A{zq2n~1) 

+ A ^ ç - 1 ) - 1 A ( z 9

3 ) A ( ^ 5 ) . . . A{zq2n-X) 

+ Aizq-^Aizqy'Aizq5) . . . A ( z ? 2 n " 1 ) 

+ A{zq^1)~1A{zq)-1A{zq3)-1 . . . A(zq2n~1) 

+ . . . 

+ A ( ^ - 1 ) - 1 A ( ^ ) - 1 A ( z g 3 ) - 1 . . . A ( ^ 2 n ~ 3 ) - 1 

(compare with [33]) 
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\-(zq)A+(zq)-1eb-^e-b+M. 
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^ ( s [ 2 ) = Inn Hh,k(sl2)/In, η > 0, 

where In is the left ideal of Wh^i^h) generated by all polynomials in A m , m > 0, of 
degrees greater than or equal to n. 

T h e family Ή / ^ ^ ^ ) induces a Poisson structure on W/^sk) = Ήιζ,-ί^ί), such 
that 

( 9 . 1 ) { A „ , A m } =2h(q-q-1) 
[ 2 » ] , 

n,—m 

(recall that q — eh and that h £ 2niQ). 

W e define a Poisson bracket on the center of ^ ( s f e j c r i n the same way as in § 2 . 1 , 
as the leading term in the commutator of liftings of central elements. Formula ( 8 . 6 ) 
shows that the images of the Fourier coefficients of l{z) under the homomorph i sm 
φ™ lie in Hhfek)- As was explained in § 2 . 2 , we can take liftings of the images of 
central elements inside the deformation Ή / ^ α ^ Β ^ ) of [2) . This shows that the 
homomorph i sm from the center to ^ ( 5 ( 2 ) is a homomorphism of Poisson algebras. 
W e can use this fact to compute the Poisson brackets between Fourier coefficients of 
s(z). 

From formulas ( 9 . 1 ) and ( 8 . 7 ) we obtain 

( 9 . 2 ) { A ( * ) , A(to)} = 2h(q - q~l) £ (̂ f ^-A(z)A(w). 
m € Z V Z J l z m J < ? 

Accord ing to formula ( 8 . 6 ) , we have: 

{s(z), s(w)} = {A(zq), A(wq)} + {A(zq), A^q'1)'1} 

+ {Aizq-1)'1, A(wq)} + { Λ ^ " 1 ) " 1 , A ^ ç " 1 ) " 1 } . 

2 9 2 

9. P O I S S O N B R A C K E T . 

W e can now compute the Poisson bracket between Fourier coefficients of s(z). They 

generate a central subalgebra of { /^ ( s^c r - Let Z /^s^) be its complet ion in ^ ( s ^ c r -

Consider the algebra Ti^ki^h) with generators λ η , η G Ζ , e x p ( ± A 0 ) and relations 

( 7 . 1 ) . Let Tih.ki^) be its complet ion defined as follows: 
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{s(z),s(w)}=2h{q-q-1) Σ (-Γ £ % A ( * ç ) A ( u , ç ) 

The last two terms give us 

-2hS (jj A(zq)A(wq-1)-1 + 2h8 (^j A(zq)A(wq-1)-1 

-2h8 (^pj Aizq-^Aiwq) + 2hS (™) A^q'1)-1 A{wq) 

-«(;?)-*P?)' 
where 

s(x) = Σ *m-
Finally, we obtain 

T h e o r e m 2 . 

(9.3) {s(z),s(w)} = 

2 % - , - ' ) 

2 9 3 

Substituting ( 9 . 2 ) into this formula, we obtain: 

- 2h(q - S " 1 ) Σ (-Y Pf-q-^H^Hwq-r1  

m e Z \ z J [2m\g 

- 2h(q - q-*) Σ (̂Γ HL^A^-lJ-lA^,) 
m € Z v z 7 L z m J g 

M C 7 . V * / 2mL 

= 2 Μ , - « - 1 ) Σ ( 7 ) " | 4 φ ) 3 Η 
m 6 Z v * J L z m Jg 

- 2Λ Σ ("Γ (1 - ç - 2 m ) A ( ^ ) A ( u ) ? - 1 ) - 1 

- 2 / 1 Σ (-Γ ( ? 2 m - I j A ^ ç - 1 ) " ^ ^ ) . 

Σ 
mez 

Hg 
[ 2 m ] , 

s(z)s(w) + 2hS I 
W w ç 2 
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where we put 

T h e elements sn generate a Poisson algebra W / ^ s k ) , which is a ^-deformation of 

the classical Virasoro algebra W(sÎ2)« This Poisson algebra is embedded into ^ ( s f o ) 

via the g-deformation of the Miura transformation (8 .6 ) . The Poisson algebra Zhfek) 

is isomorphic to W/^sfe). 

Remark 6. In the limit h —» 0 we have: 

£(z)=2 + th2 (z2S(z) + ^ + h 3 ( . . . ) 

(cf. [10]). On the other hand 

A(z) = l-h(zX{z) + l) + h2(...). 

Substituting these formulas into formula (8.6) and expanding in powers of h up to 

Λ 2 , we obtain: 

2 + 4h2z2S(z) + h2 = 2 + h2 (ζχ(ζ) + l ) 2 - 2h2zdz(zX{z)), 

which coincides with the Miura transformation (2 .4 ) . 
Now let us consider formula (9 .4) . The leading term in the expansion of the left 

hand side is 1 6 / i 4 { 5 n , Sm}. Expanding the right hand side of (9.4) in powers of h up 
to / i 4 , we obtain for the first term 

/ 1 λ 8 
8h2n6n-m + I6h4(n - m) ÎSn+m + ~Sn-m) - h4-n3Sn-m, 

and for the second term 

16 
-8h2nSn-m - h4—n36n-m. 

Taking the sum, we see that the leading term in the right hand side is I6h4 t imes the 

right hand side of formula (2 .2 ) . 

Note that we can obtain a different Poisson algebra by placing an arbitrary overall 

factor in the right hand side of formula (9 .3) . In particular, if we put the overall 

factor — c/6 in the right hand side of the formula, then in the limit h —> 0 we will 

recover the classical Virasoro algebra with central charge c. 

2 9 4 

This implies that the Poisson bracket between £(z) and t(w) is given by formula 

(1.3). 

Formula (9.3) gives us the following formula for the Poisson bracket between the 

Fourier coefficients of s(z): 

(9.4) { s n , sm} = 2hY2 q , , ^.Sn-iSm+i — 2h(q2n - q~2n)Sn m , 
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{s(z),s(w)} = ν(")φ>Η-2ί' 
The corresponding limiting Poisson algebra W(sl2) has a nice interpretation in terms 
of the algebra Ak(SL2) of functions on the Poisson-Lie group SL2 dual to SL2 (this 
algebra is the classical limit of ^ ( s ^ ) ^ cf. [9]). Namely, the limits of the coefficients 
of l{z) generate a central Poisson subalgebra of Ao(SL2) [9]. Deforming the level k 
we obtain a new Poisson structure on this subalgebra, which coincides with VV(sl2). 
W e will discuss this in more detail in [23]. • 

10. G E N E R A L I Z A T I O N T O Uq(slN). 

1 0 . 1 . A ç -de format ion of the Heisenberg-Poisson algebra. For a simple Lie 
algebra g of rank /, denote by Β = (J3ij)T,j=i,...,/ the symmetrized Cartan matrix of 
g; recall that Bij = (a^aj). Let H^kid) be the Heisenberg algebra with generators 
α,·[η], i = 1 , . . . , /; η G Ζ , and relations 

[a t-[n],a t-[m]] = - [ ( & + hy)n]q[Bijn\qSn _m. 
η 

The algebra Ti^kig) a P P e a r s in [14] in the construction of the Wakimoto realization 

of Uh(slN)k. 
The family H^kis) induces a Poisson structure on the commutat ive algebra 

T~ih,-hy(g)- The Poisson brackets between the generators of Ήκ,-κ^^) are 

(10.1) {a t - [n] ,a j [m]} = —^—r[Bijn\ qS n _m. q-q 

Let Ti/^g) be the complet ion of /W/ l )_^v(g) defined in the same way as /Ηη(Β12). 
Consider the case g = sijy. Introduce new generators λχ[η], i = 1 , . . . , Ν; η G Ζ , of 

'W/iCsijv), which are related to the generators ai[n] by the formulas 

(10.2) Xi[n] - Xi+1 [n] = qni(q - ς Γ 1 ) ^ ] , ΐ = 1 , . . . , - 1; η G Ζ , 

and which satisfy the linear relation 

(10.3) f ; 9

2 ( 1 - ' > A l [ n ] = 0. 
!=1 

2 9 5 

W e can also replace the overall factor 2h in the right hand side by (q — q~l) without 
changing the asymptotics h —» 0. After that we can consider Wh{*h) as a Poisson 
algebra over the ring of rational functions in q. • 

Remark 7. Formula (9.3) gives another asymptotics as h —» 0, if we postulate that 
s(z) does not depend on h. If we divide the right hand side of the formula by 
2h(q — ç " 1 ) , we obtain for h = 0: 
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W e find from formulas ( 1 0 . 2 ) and ( 1 0 . 3 ) the inverse change of variables: 

w ι ( - H R ? P - i H r ι 
ΛΙ[Η] = ( 9 - ? ) Σ [ N n ] q «An], 

Λ 2[η] = - rtjft^N] + (« - Γ1) Σ ^ φ ^ Μ 

*»[n] = - q N n ( q - q - i ) ^ ^ a j [ n ] . 

From these formulas and the brackets ( 1 0 . 1 ) we find 

( 1 0 . 4 ) {Λ, ·[Η], Xi[m]} = 2 % - 9-i)Î _iMïtÎîtfn|_m, 
[ i v n j g 

( 1 0 . 5 ) {λ,[η], Λ , · [ M ] } = - 2 Λ ( Ί - Ç - 1 ) ^ - ? - ^ * . - ™ , I < i-
[Nn\q 

Introduce the generating functions 

( 1 0 . 6 ) AT(Z) = q-x+^exp l - Σ *i[m]z-A 

From ( 1 0 . 4 ) and ( 1 0 . 5 ) we find: 

( 1 0 . 7 ) 

{Α,-(ζ), A,(u,)} = 2h(q - , " 1 ) Ε ( 7 Γ , *ffiWgM*)A.-H, 
( 1 0 . 8 ) 

{ Λ 4 ( ζ ) , Λ » } = -2M«-«-1) Σ ( ^ " τ ^ - Α , - ^ Α , - ί ζ ) , i 

1 0 . 2 . A ^-deformation of the W - a l g e b r a . Let us define generating functions 
SI(Z), i = 0 , . . . , iV, whose coefficients lie in ^ ( S I T V ) : 5 0 = 1, and 

( 1 0 . 9 ) *.·(*) = £ Λ Λ ( * ) Λ Α ( ζ ?

2 ) . . . A„_1(V('-2))A„(V(t-1)), 
l < J i < . . . < J i < W 

z = 1 , . . . , Ν. In particular, 
Ν 

3=1 

Φ ) = Σ Λ Λ ( ζ ) Α Λ ( ^ 2 ) , 
i < j i < J 2 < N 

2 9 6 
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etc. Formula (10.3) implies that 

sN(z) = K^K^zq2)... AN(zq2N-2) = 1. 

These formulas coincide with formulas for spectra of transfer-matrices in integrable 
models associated to Uq(sl]y) [18, 21]. Note that for 5(2 we have $1(2:) = ^ ( z ç " 1 ) , 
where s(z) is given by formula (8 .6) . 

The coefficients of the series Si(z), i = 1 , . . . , Ν — 1, generate a Poisson subalgebra 
W/^SÎ tv) of Ti/^sijv). The relations between them can be computed directly from 

formulas (10.7) and (10.8) . Introduce the functions 

(10.10) Ca{x)= £ C ^ V \ i , i = l , . . . , J V - l , 

where 

(10.11) 
Mm) [(-/V - m&x{i,j})m]q[mm{i,j}m]q  

13 ~ [Nm]q 

The relations are: 

{s,(z), Sj(w)} = 2h(q - q'^Cij I — ^ — 1 Si(z)sj{w) 

+ 2 H Σ 6 {~ΓΡ ) si-p(w)si+p(z) 
p=l \ Z H / 

*' (wq2Ü-i+p)\ 
- 2 h ^ 8 y J si-p(z)sJ+p(w), 

if i < j and i+ j < N; and 

{5ί(ζ),^·(ω)} = 2h(q - q-X)Cij \ ——\ si(z)sÀw) 

N~j ( w \ 
+ 2h Σ δ y - ^ j Si-P(w)sj+P{z) 

N~j (wq2V-i+p)\ 
-2hY^S y J si-p(z)sj+P{w), 

if i < j and i + j > N. 
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For example , in the case of s[3 we have the following relations: 

{s1(z),s1(z)} = 2h(q-q-v 

+ 2h8 (^j s2(z) - 2h8 (^pj s2(w), 

{ * ( * ) , * 2 ( u , ) } = 2h(q - q~l) Ε (—Y ^-s1(z)s2(w) 
z \ ζ j [om\q 

+ 2hë 

{s2(z),s2(w)} = 2h{q-q-1) 

+ 2h8 (^Λ sx{w) - 2h8 i^pj Sï(z). 

T h e Poisson algebra VV/^SÎTV) is a ç-deformation of the classical W ~ a l g e b r a W(SÎTV) . 

T h e asymptot ic expansion of sAz) around h — 0 has the form 

si(z)=(^)+h2CiW2(z) + . . . , 

where C{ is some coefficient, and W2(z) is the quadratic (Virasoro) generating series 

of the classical W - a l g e b r a W($In)- For each η = 2 , . . . ,7V — 1, one can find a 
combinat ion of $ i (z) ' s having expansion of the form M + hnWn(z) + . . . , where M is 
a constant and Wn(z) is a multiple of an nth order generating series of W(SIJV ) . T h e 
Poisson structure on W(SÎn) can be recovered from that on W ^ ( s l ^ ) . 

Remark 8. If we replace 2h by (q — q~x) in the formulas above, we will obtain a 
Poisson algebra over the ring of rational functions in q. • 

Remark 9. As in the case of s [ 2 (cf. Remark 7 ) , the Poisson algebra WhίAT) has 
another limit as h —» 0, which can be interpreted in terms ofjthe central sub algebra 
of the algebra of functions on the Poisson-Lie group dual to SLn [23]. • 

10 .3 · T h e center of £4(sijv) at the critical level. Following [9], cf. also [31, 
10], for any finite-dimensional representation W of C/g(fl), one can construct matri
ces Lw(z) = (^^(^))t,j=I,...,DIMW consisting of generating functions of elements of 
^/I(^( iv)cr- It is shown in [9] that the Fourier coefficients of the power series 

(10.12) £W(z) = txwq^L^L^zq-^Y1 

are central elements of Uh(slN)cr-

2 9 8 

•Σ 
'W 

, Z 

2m]q[m]q 

[3m\q 

w 

zq: 
-2hS 

wq4 

z 

Σ 
R W 

κ z 

m 2 m L m L 

[3m] , 
2(z)s2(w) 
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- Hz)) 

where [Dqf](z) = f(zq2) and we put QQ(Z) = QN(Z) = 1. Then QN-I(Z) satisfies the 

ç-difference equation 

(V? - ^ - i ( ^ ) P f - X + sN-2(z)V?-* - . . . - {-l)NsxVq + ( - l ) i V ) Q i V _ 1 ( 2 ç - 2 ) = 0. 

2 9 9 

In particular, for g = sljv, let £i(z) = £Wu;* (z) be the generating function of central 

elements of t4(sÎ7v)Cr corresponding to the ith fundamental representation WWi of 

Uq(slN)- Note that for g — sl2 we have (Λ(ζ) = ^(zq'1), where £(z) is given by (6 .1) . 

The next to leading term in the /^-expansion of £i(z) is a multiple of the Sugawara 
series of U(SIN)CTI cf. [10]. Higher Sugawara elements of U(SIN)CT can be obtained 
from higher order terms of the expansions of ^ ( ^ ) ' s . 

Let Z^(stiv) be the complet ion of the central subalgebra of ÎÂ(sÎjv)cr generated by 

the coefficients of the series £\(z),... ,£N_I(Z). Using the Wakimoto realization of 

Uh{sÎN)cr [14], we obtain a homomorphism of Poisson algebras Z^(sijv) —» ΉΗ{$ΙΝ)Ι 

which we call the ç-deformation of the Miura transformation. 

Using the method of Remark 4 we can find the image of £\{z) in Ή,Η^Ν) by 
computing the matrix element of £\{z) between the generating vector of a Wakimoto 
module over ^(stwOcr a n d its dual. But for that we only need the diagonal part of 
the "Gauss decomposi t ion" of L^[z) [12] and a formula expressing the corresponding 
diagonal elements kf(z),i — 1 , . . . , TV, in terms of A{(z),i = 1 , . . . ,7V — 1. This 
formula can be obtained from [14] and (10.6) . Explicit computat ion shows that the 
image of £\{z) in W/i(sijv) is equal to S\{z). 

The generating functions £{{z\i — 2 , . . . , iV — 1, corresponding to other funda
mental representations can be expressed in terms of £\{z) by the fusion procedure, cf. 
[34], [35] and references therein. Using this procedure, we can show that the image 
of £i(z) in W/^sljv) is equal to Si(z) given by formula (10.9) for all i = 1 , . . . , Ν — 1. 
Thus, we obtain that ΖΗ(ΒΙΝ) is isomorphic to W/I(S[JV) as a Poisson algebra. W e will 
discuss this isomorphism in more detail in [23]. 

In conclusion of this section, recall that elements of the spectrum of W ( S [ J V ) C A N 

be considered as TVth order differential operators, cf. [2]. The classical Miura trans
formation corresponds to splitting of such an operator into a product of first order 
operators. 

The spectrum of W Ä ( S I J V ) and the ç-deformation of the Miura transformation can 
be interpreted in a similar fashion. Namely, elements of the spectrum of ΉΗ^ΙΝ) can 
be considered as first order ç-difference operators, and elements of the spectrum of 
ZH{^N) c a n be considered as jVth order ç-difference operators. 

Indeed, let Qi(z), z = l , . . . , 7 V — l , b e solutions of the ç-difference equations 

t = l , . . . ,JV, 
Qi(z) 

Qi-Âzq-2) 
= 0, 
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1 1 . G E N E R A L I Z A T I O N T O O T H E R Q U A N T U M A F F I N E A L G E B R A S . 

Let us first adopt notation we used in the case of SIN to the general case. W e pass 
to another set of generators of ^ ( s t j v ) , vA71]^ = 1> · · · , Ν — 1; η £ Z , such that 

Xi[n] = q(t-1)nyt[n] - qiny^[n}, i = l,...,N, 

and yo[n] = yjv[ra] — 0 . Using formulas ( 1 0 . 4 ) and ( 1 0 . 5 ) we find the following Poisson 
brackets: 

( 1 1 . 1 ) {ViHyAm}} = 2h(q - q-l)C\f8n,_m, 

where c\™^ is given by ( 1 0 . 1 1 ) , 

( 1 1 . 2 ) {yi[n], aÀm]} = 2h[n]q6n-màij. 

Thus, the generators yi[n] are "dual" to the generators α,{[η]. In fact, it is easy to see 
that 

( 1 1 . 3 ) B(m)C(m) = [mpN_lf 

where = {C\f)itj=Xt...,N-X and = ([£ο·™],)^=Ι,...,λγ-Ι, ( ^ · ) ΐ ο · = 1 , . . . , Ν _ ι be
ing the Cartan matrix of st/v. 

Introduce generating functions 

Yi(z) = q-W-V exp 

W e have: 

Ai(z) = Yiizq-^Yi-^zq-y1, ι = 1 , . . . ,7V, 

where we put Yo(z) = Yn(z) = 1- Note that Y%{z) can be written as Qiizq^^/Qi^zq*'1) 
in terms of Qi(z) introduced at the end of last section. 

From formula ( 1 1 . 1 ) we find the Poisson brackets between Yi(z) and Yj(w): 

{Yt(z), Y}(w)} = 2h(q - q-')C%3 (^) Yi{z)Yj(w)t 

where Cij(x) is given by formula ( 1 0 . 1 0 ) . 

3 0 0 

Thus, elements of the spectrum of Wfr(s[/v) can be considered as ç-difference op
erators of the form 

V% - SAT-X^F- 1 + 3N-2{z)V»-2 - . . . - {-l)NsxVq + ( - 1 ) " . 

- Σ Vi[m]'-m 
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Yt(z) = 9-*<"*> «φ [ - Σ yi[m]z-A , 
\ mes / 

where ω,· is the ith fundamental weight of Q. Then we have: 

(11.4) {Yt(z), Y3{w)} = 2 % - ç - 1 ) ^ - ( ^ ) tf(*)l$M, 

where 

Cij(x) — 

and the matrix (C^^ij-i^.j is defined by formula (11.3) (with TV — 1 replaced by / ) 
with respect to the symmetrized Cartan matrix Β of g. 

Remark 10. It is interesting that the functions Cij(x) appear in the Thermodynamic 
Bet he Ansatz equations [36, 21] . • 

For each dominant integral highest weight λ of g there exists an irreducible finite-
dimensional representation W\ of Uq(g) which satisfies the following property. Its 
restriction to the subalgebra Uq(g) is completely reducible, the irreducible represen
tation of Uq(g) with highest weight λ has multiplicity one, and all other irreducible 
components of W\ have highest weights μ < λ. 

Let £i(z),i — 1 , . . . , / , be the generating functions of central elements of Uh(g)Cr 
corresponding to WUi. Let Zh(g) be the central subalgebra of t 4 ( g ) c r generated by 
the coefficients οΐ£{(ζ), i = 1 , . . . , /. Recall from §§ 1,2 that the Miura transformation 
is the homomorph i sm of Poisson algebras from the center of U(β) to the Heisenberg-
Poisson algebra Ή ( β ) . 

Conjecture 1. (a) Zh(g) is closed with respect to the Poisson structure on the 
center of Uh(g)CT. 

(b ) There exists a homomorphism of Poisson algebras Zh(g) —> Ήκ(θ)} which is a 
deformation of the Miura transformation. 

( c ) The formulas for the images S{(z) of the generating functions £i(z) from Zh(g) 
in 7i/i(ß) coincide with the formulas for spectra of the corresponding transfer-
matrices in integrable models associated to Uq(g). 

Formulas for spectra of transfer-matrices in integrable models associated to Uq(g) 
have been given in [19, 20, 21, 22] (although in different normalizations). W e will 
now describe s t-(z)'s for all quantum affine algebras of classical types via the series 
Yi(z), i = 1 , . . . , I (we put l o ( ^ ) = 1)· The Poisson brackets between ^ ( z j ' s given by 
(11.4) uniquely determine the Poisson brackets between S t ( z ) ' s . 
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W e now define analogous generating functions Yi(z),i = 1 , . . . , /, for an arbitrary 
simple Lie algebra g. Namely, let j/ t-[n], i = 1 , . . . , /; η G Ζ , be the elements of Hh(g) 
uniquely defined by the Poisson bracket (11.2) . W e put 

-nez 

(m) m 
ij X 
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1 1 . 1 . T h e series g = Introduce 

Ai(z) = Yiizq-^Yi-^zq-*)-1, ι = 1, . . . , η + 1. 

Let 

Si(z) = 
l<h<...<ji<n+l 

Σ Λ * Ι ( * ) Λ Α ( * « 2 ) i — 1,... , η. 

1 1 . 2 . T h e series g = Introduce 

Λ,·(*) = Yiizq-^Yi^zq-*)-1, ζ = 1 , . . . , η - 1, 

Λ η ( ζ ) - i ;N- w + 3 / 2 )y n (^- n + 1 / 2 ) ï;- i(^- n )- 1 , 
Λ Η + 1 ( * ) = Yn{zq-»+*'2)Yn(zq-»-W)-\ 

An+2(z) = L i ^ R ^ 2 ) - 1 ^ ^ 2 ) - 1 , 

A2n_i+2(z) = Y ^ z q - ^ + ^ z q - 2 ^ ) - 1 i = 1 , . . . , » _ 1. 
Let 

Σ Λ , · 1 ( « ) Λ Λ ( ζ 9

2 ) . . . Λ ί - ί ( ζ 9

2 < - 2 ) , t = l , . . . , n - l , 
{ i i , . - J i } € 5 

where S is the set of {ju... , such that ja < j a + 1 or j a = = η + Ι , α = 
1 , . . . , t - L 

T h e formula for s n ( z ) , which corresponds to the spinor representation of is 
more complicated: 

where 

bx(z\k) = l, k = 2,...,n; 

b.x{z\l) = Yn^{zq-n)-lYn{zq-n+ll\ 

b.x{z\k) = Yn-k(zq~n+k~1)~1Yn+i-k(zq~n+k), k = 2,...,n. 

1 1 . 3 . T h e series g = C^K Introduce 

Ai{z) = Yx{zq-^l2)Yi.1{zq-il2)-\ * = l , . . . , n - l , 

Λ»(*) = ^ ( ^ - ( " - ^ / ^ ^ ^ ( z ç - " / 2 ) - 1 , 

Λ η + 1 ( 2 ) = Κ η - ! ^ " ^ ) / 3 ^ ^ - ^ 2 ) - 1 . 

A 2 n . i + l ( z ) = r1_a(^-(2"- i+2)/2)y i(^-(2"- i+3)/2)-1, » = 1,... , η - 1. 
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Sn(z) = Σ 
σι, . . . ,σ η =±1 

δσι(ζ|η)όσ2(ν_σΊ«-1) . * σ . ( ^ η - 1 - * 1 - - * - 1 | ΐ ) , 

61(«|i) = y„(^- n- 1/ 2)- 1 , 
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where S is the set of {ji,... , j , } , such that 1 < ji < . . . < ji < 2n and if j a = Z , ^ = 
2n + 1 — / for some 7 = 1 , . . . , n, then / < η + a — 

1 1 . 4 . T h e se r i e s g = D*£\ Introduce 

Ai(z) = Yiizq-^Yi^zq-*)-1, i = 1 , . . . , η - 2, 

An^(z) = Υ η ( ζ ς - η + 2 ) Υ η ^ - η + 2 ) Υ η ^ - η + 1 ) - \ 

An(z) = Yn_1(zq-n+2)Yn(zq-n)-\ 

An+1(z) = Ynizq-^Y^zq-»)-1, 

Λ „ + 2 ( Ζ ) = r n _ 2 ( z 9 - " + 1 ) K _ 1 ( ^ - " ) - 1 r r i ( ^ - " ) - 1 , 

Let 

* ( * ) = Σ Λ Λ ( Ζ ) Λ , 2 ( ^ 2 ) . . . Λ „ ( ^ - 2 ) , 
-ΟΊ,-JJes 

Î = 1,... , η — 2, 

where 5 is the set of . . . , ji}, such that j a < j a + i or j a = ja+i + 1 = η + 1, α = 
l,...,t-l. 

T h e formulas for sn-i(z) and sn(z), which correspond to the spinor representations 
of Dn

x\ are more complicated. In these formulas the subscript e means n, if e — +, 
and η — 1, if e = —. Thus, s + ( z ) = sn(z),s-(z) = sn-i(z). Now let 

s€(z) = 
σι,... , σ η _ ι = ± 1 

Σ W O O * « ' " " ' I " - 1 ) . · · C T " - ' ( z < , " - 2 - " - - ° - * | 2 ) , 

where 

6 î W 2 ) = y c ( z Ç - w ) - 1 , 

6 î (* l*) = l , * = 3 , . . . , η; 

6 1 ^ 1 2 ) = κ - 2 ( ^ - Η + 1 ) - 1 ^ ( Ζ ^ + 2 ) , 
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