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I) Introduction. 
In a classical article [W88], E. Witten proposed a Euclidean field theory scheme which 

should allow one to compute cohomology classes of orbit spaces using field theory methods. 

The example treated in that article is that of the Donaldson invariants [DK90]. Whereas the 

corresponding classical action was found thanks to N = 2 supersymmetry arguments, it was 

progressively realized that equivariant cohomology could be thought of as the proper mathe­

matical background at the root of Such constructions [W88, BS88, B92, OSB89, BS91, K93]. 

While equivariant cohomology is more than twenty years old [C50, GHV73, AB84, 

MQ86, BGV91, K93] relatively little is known about the corresponding field theory models in 

which both ultraviolet and infrared problems arise. Here, we shall have in mind a perturbative 

local field theory approach which is probably suitable since it is conjectured that the 

semiclassical approximation is exact. This sheds no light on the infrared problem, and in 

particular, the question of integration over moduli. These notes will focus on algebraic aspects 

needed to constrain the above mentioned field theories. Two models will be studied to some 

extent: "topological" Yang-Mills in four dimensions ( Y M ^ ) , pure topological gravity in two 

dimensions ( G r ^ ) . These are the examples for which equivariant cohomology is needed. 

Topological a-models [WBS88] barely need such refinements unless they are coupled to 

G r i ^ . In all models, on the other hand, field theory is the ideal set up to perform "fiber" 

integration. 

These notes will be divided into three parts: 

Section II will be devoted to a description of equivariant cohomology with emphasis on 

the points needed in the following sections. 

Section III is devoted to Y M ^ . 

Section IV is devoted to Gr f p . 

The point of view taken here will be as algebraic as possible since it is the first step to control 

the perturbative renormalization problems to be solved next. 

II) Equivariant cohomology [K93]. 
Let M be a smooth manifold and Q*(5Vf) the exterior algebra of differential forms on 

iV/" endowed with the differential d^. A Lie group § is assumed to be acting on 5Vfand its Lie 

algebra will be denoted LieS. For any XeLie§ there is a vector field ^ represen t ing the infini­

tesimal action of X on 5V£ This vector field X>M is usually called the fundamental vector field 

associated with X. We shall denote i^(X) = i^X^) and lM(K) = lM(X^) = [i^X), d ^ ] + the 
contraction (or inner derivative) and Lie derivative acting on Q*(ft{). Let us recall that iM(X) 

takes n-forms into (n-l)-forms while lM(X) acts on forms without changing their degrees. 
Elements of £f(5Vf) which are annihilated by both iM(X) and l^X), for any A,eLie§, are the 
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so-called basic elements of Q*(fM) for the action of 9. The basic cohomology of 5Vf, for the 
action of 9, is accordingly defined [C50]. 

We now consider the Weil algebra ^ o f LieS. It is generated by the "connection" co 

and its curvature Q.: 

Q = d,lvco+~[co,co] (2.1) 

where d ^ i s the differential of W. Of course, one has the Bianchi identity : 

d^,Q+[(ftQ] = 0 (2.2) 

There is an action i^X), l^iX) for Xe Lie§ : 

z^A,)co = A, , / ^ ) c o = - [X , co] (2.3a) 

1 ^ ) ^ = 0 , / ^ ) Q = - [ A . , Q ] (2.3b) 

For instance, co may be a connection on a principal 8-bundle n and Q its curvature. In that 

case i<n(k) and l^X) are generated by the action of § on n , and Wwill be referred to as *WU. 

We now consider the graded algebra equipped with the differential 

d ^ + d ^ s o that (Q*(5VO® W, d ^ + d^) turns into a graded differential algebra. Finally, the 
operations ic^+i^ and 1<M+1<# are defined on (iT(fM)®W, d ^ + d ^ ) . The so-called 
equivariant cochains are the elements of iT(fM)®W that are annihilated by (/^+ A,) 
and l^QC) for any LieS, and the equivariant cohomology, for the action of 8, is 

accordingly defined. This is what is called the Weil scheme for equivariant cohomology. 

Equivariant cohomology can be alternatively described in the so-called intermediate 
scheme, which was introduced in [K93J and which will be repeatedly used in the sequel. It is 
obtained from the Weil scheme via of the following algebra isomorphism : 

x -> exp{-/^(co)}x (2.4) 

for any XG Q*(fM)® *W. This isomorphism changes the original differential and operations on 
® W by conjugation 3: 

d a f + &<w D = dw + d ^ + IM(co)- iM-(O) (2.5a) 

OW + ^ X * ) -» V(X) = e - ^ ( w ) ( i ^ + v)(A .)c^ ( < D ) (2.5b) 

+ ~> + e"^ ( ( 0 ) ( / r w - 4 - / ^ X ^ ( ( d ) (2.5c) 

3These equations can be easily obtained by introducing the family of isomorphisms x —> exp{-t- /^(d))}x, 

0 < t < 1, and solving the differential equations for the transformed differential and operations, recalling that 
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Finally, the so-called Cartan model is obtained from the intermediate scheme by 
putting 0 3 - 0 so that D ^ J ^ Q vanishes when restricted to invariant cochains. This is the most 

popular model, although many calculations are better automatized in the intermediate scheme. 

Another item which will be repeatedly used is "Cartan's theorem 3" [C50] : let us 

assume that (0*(5V£), d^, iM, admits a ^-connection, that is to say a Lie§-valued 1-form G 

on 5Vfsuch that i^X)Q = X and liM(X)Q = - [X , Oj for any Xe Lie§, with curvature 0 . Then any 

equivariant cohomology class of Q*(fy()®W with representative P(co,Q) gives rise 

canonically to a basic cohomology class of 0*(5Vf) with representative P(9,0). This can be 

easily proven by using the homotopy which allows to prove the triviality of the cohomology of 

the Weil algebra [MSZ85]. It follows from the construction that the cohomology class of 

P(9,0) does not depend on 9 (see Appendix B). 

One convenient way to produce equivariant cohomology classes is as follows 
[BGV91] : we consider an H-bundle £P(5I<£H) on which there exists an action of § which lifts 

the action of § on 5Vf. In general, the Lie group H has nothing to do with the Lie group §. As 

before, £P(fW,H) is endowed with a differential <tF, a contraction i9 and a Lie derivative l9. 

Next, let F be a 9-invariant H-connection on £P(5W,H): 

l9(k)Y = 0 for any Xs LieS (2.6) 

The pull-back f of T on ® W ® LieH is a 1-form on 9(<Mjl) and a 0-form in W. It 

follows that 4 : 

i^X)f - 0 (2.7) 

for any Xe Lie§. 

In Q*(£P(f/V£H))® the equivariant curvature of f is defined by : 

RS( f , ( f tQ)=Df+ | [ f , f ] (2.8) 

where D = d<w + d^ + /<p(o))-ij>(Q). Then, if IH is a symmetric invariant polynomial on LieH, 

we consider the H-characteristic class 7^ i n t(f,a>,:Q) = 7 H (R^ t (f ,co,f l)) . It is defined on ?M 

and fulfills : 

{d,w + - + lM (co) - i94 ( Q ) ) / ^ i n t (f, co, Si) = 0 (2.9a) 

^a)/gint(r,oi>Q) = 0 (2.9b) 

(k{ + lw)(X)I$te(t®,n)= 0 (2.9c) 

4This construction may be extended by choosing for 'W a Wu for some n as above, and have r depending 
parametrically on points of n. Equation (2.6) has then to be replaced by : ( / n + l9)(\)r = 0 whereas (2.7) still 
holds. 
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In the Weil scheme, the equivariant curvature is defined by : 

R $ ( f > , Q ) = (dy + dw)(f+ ¿p(co)f)+i[(f + ¿p(ío)f), (f + 4p(o»f)1 (2.10) 
L H 

We may similarly consider / ^ w ( r , c o , Q ) = / H ( R ^ ( f , ^ Q ) ) = exp{-¿p(0))}/ H(Rtat(f ,0í ,O)) 

which fulfills : 

(<W + d^)/Sw(r,íú )Q) = 0 (2.1 la) 

(/^ + i^)(X)/£w(f,G*Q)=0 (2.11b) 

(/«• + /^ ) (X ) /S w ( f , (o ,Q) = 0 (2.1 lc) 

Finally, if íVÍ admits a ^-connection 6 with curvature 0, we can apply "Cartan's theorem 

3", and substitute 6 and 0 instead of (oand Q, in / ^ w ( f , c o , Q ) 5 , so that: 

<W/Kw(f,e,0) = O (2.12a) 

W№Sw(r,e ,0) = O (2.12b) 

W ( ^ H ! w ( f , e , 0 ) = O (2.12c) 

By standard arguments, these cohomology classes do not depend either on F or on 0. In the 
following £P(iV£H) will be a family of H-bundles over a finite dimensional manifold £ and 5Vf 

will be itself an infinite dimensional fibered manifold with fiber £ and base, a space of fields 
defined on Z. In this set up, the generators of the Weil algebra can be also realized as fields on 
I . 

As we shall see in the sequel, this rather modest equipment proves quite useful to 
understand many features of the cohomological theories. The interesting aspects lie in the 
interconnection between various equivariant cohomologies, schematically, one attached to 
fields and one attached to observables as just described. 

One final remark is in order : the above constructions only involve Lie algebras. In 
practice, this may not be enough and global group properties may have to be checked. 

Ill) Topological Yang-Mills (YM%P) [W88, BS88]. 

At the geometric level as well as at the field theory level, one has to distinguish the 

fields and the observables. 

5 One may wonder why one does not use such a connection right from the beginning. The reader may convince 
himself that doing so would spoil the main algebraic properties of the whole construction, e.g. D 2 = 0, with D 
the differential of equation (2.5a). 
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In Y M ^ , the idea is to produce cohomology classes of (1/8 where d is a suitably de­

fined space of connections a on some principal G~bundle P(£,G) over a four-dimensional 

space-time manifold E and § is a suitably defined gauge group (group of vertical 

automorphisms of P(I,G)) [DK90], The differential and operations are respectively denoted by 
d s , /v and / £ for L, d P , z P and / P for P(X,G) and 8, 3 and <£ for ( i 

To produce the structure equations of the model, we follow section II. Here, iVf = (i 

and W is realized by a ^-connection co and its curvature O on another copy Ct of ( t The 

differential and operations on (& are denoted by 8, 3 and £ . The fields will be chosen as a, 

8a, co and Q. 

The structure equations then read : 

s t o P a = + £(©)* = v F + £ t o p ( S ) f l = ^ - D f l 8 S (3.1a) 

s t o p x F = - £ t o p (H)a + £ t o p (ffi)¥s - D a Q + (3.1b) 

s t o p S - Q - ^ f o S ) ] (3.1c) 

s t o p Q=[Q i a] (3.1d) 

where : 

s t o p = 8 + 8 + £(©)-4(:Q) , ^ = 8 f l 5 ^ i n t (3.2) 

in the intermediate scheme, whereas : 

s t o p = 8 + S , *F = 8 a - £ ( S ) a = & i - £ t o p ( S ) t f = V I ' W (3.3) 

in the Weil scheme, and <£ t o p = £ + io in both schemes6. One can check that : 

^ i n t - e x p { - ^ ( c 6 ) } ^ w (3.4) 

^ t o p(X,)5=A, , 5 t o p (? t ) (o ther ) -0 (3.5) 

for any Xe LieS, with 3top (X) = 3 (X) in the intermediate scheme and 4 t o p (X.) = d(X) + 3(X) in 

the Weil scheme. 

Now choose f*f= ft x L, ^ ( f ^ H ) = f?((i x Z,G) = ft x P(E,G) and f = a : for any point 

a of d we consider the principal bundle P(£,G) equipped with the connection a. This is a family 

d of G-connections such that d(a,p) ~ a(p) for any (fl,p)eCtx P(E,G), which defines a G-

connection on {?(CixL,G). We extend a to Ct x f f (QxI ,G) . As a zero-form on (L and a 

LieG-valued 1-form on P(I,G), a is a LieG valued I-form on £P(&x E,G). 

6 To get equation (3.1b) in the Weil scheme, one can either use (3.4) together with (2.5c) or directly compute it 

by using : £(B)£(ffi)a = £(£(0)ff i )a = -£([ffi,ffi])a = IS,** (ffi)£(ffi)fl. 
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From Appendix A, the fundamental vector field X associated with the action of Xe LieS 

on ^P(ftx £,G) takes the following expression at (a,p)e$(tix E,G): 

g 
X~ lp(Xp)a^-~—~А,реа (3.6a) 

oa^ 

where XP is the fundamental vector field on P(E,G) associated with X (for the natural left-
action of 9 on P(Z,G)) and e a the fundamental vector field associated with a basis of LieG 

indexed by a. Noting that a does not really depend on ( t , the actions of LieS on a reads : 

(? + д + iP)(X)a = fJ(X)a - i?(X)d - -X 

(E + £ + /р)(А,)<3 = £ ( / р ( Х Р ) а ц —)a - / P ( X P )a (3.6b) 
oa^ 

~ lp(Xp)d- lP(Xp)d = Q 
Л. A. 

where A, is a LieG-valued function on (t x P(£,G) defined by : X (a,p) = A(p) for any element 

(a,p) of ( i x P(£,G). From equations (3.6b), one sees that a is LieS-invariant. 
In the intermediate scheme, the equivariant curvature of a is : 

1 ^ ( З Д Й ) = 0 5 + | [ а , а ] (3.7) 

with : 

D = 5 + (8+dp) + ( £ + / P )(ш) - (в + / P )(Q) (3.8) 

Taking into account the Lie8-invariance of a , we get: 

Б ^ ( й Д & ) = F(a)+ 8fl + iP(Q)fl - F(a) + { F i n t + Q (3.9) 

where F(tf) = d P a + ^ [ # , a ] . Notice the similarity of equation (3.9) with equation (3.2) up to 

the symbol л . Moreover, using the 8-invariance of a, one can verify the §-basicity condition : 

? № ^ ( д , с о , Й ) = 0 , (Е + £+1Р)(Х)¥^(аЛ&)^0 (3.10) 

holding for any Xe LieS. 

In order to go to the Weil scheme, we transform a as follows : 

a -> e ^ + / p ^ ( S ) a = a + (0 + / Р ) ( Ш = д - /р(й)д - a + 2) (3.11) 

The corresponding equivariant curvature is : 

F$ (я, со, Щ = ( 8 + 8 + d P )(d ~ iP (ш)а) + ~ [(a - / Р ), (a - / Р (ш)я)] (3 Л 2) 

or equivalendy: 
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F $ (a, (h,a) = i(u ) + (ba+ Daco) + Q=F(a)+%+Q (3.13) 

By construction : F\y (a,(Q,Q) = exp{(if + / p)(co)}F^ (a,co,£i) and consequently : 

(.? + 4 + /p)a)F$(a,S,Q) = 0 
V 1 (3.14) 
(£ + £ + / P ) ( X ) F $ (fl,5 ,n) = 0 

Now, for any symmetric invariant polynomial IG on LieG, / g w ( a , ^ Q ) = J G ( l $ ( a , & Q ) ) 

fulfills: 

(8 + 8+d P)/gw(a,GJ,&)=0 (3.15a) 

( ? + 5 + /P)(X,)/gw(fl,ca,5) = 0 (3.15b) 

( £ + £ + / p ) ( X ) / g w ( a , o k G ) = () (3.15c) 

for any A,e Lie§. 

Last but not least, we apply "Cartan's theorem 3" to Ioy^(d,(h,Q). Let co be a §-

connection on (J and £1 its curvature. It does define a ^-connection on fW=(t ,xS. 

Accordingly, we just replace co and Q. respectively by coand Q, in I ^ w ( a , 5 ) , Q ) . Then : 

(8+d P )/g w (a,co,^) = (6+d I;)/5w(a,co,Q) = 0 (3.16a) 

(d+iP)(X)I^(a,a,Q)-(Uk)(X)I^w(a,(^Q.) = 0 (3.16b) 

(£ + /p)(A.)/5w(d,(^ft) = (£ + /2:)a)/gw(a,<o,Q) = 0 (3.16c) 

for any Lie§. Recall that: 

F $ (a, co, fi) = F(a)+(oa + D a co)+Q = F(a )+4» w + 6 (3.17) 

with : cb= - j'p(o))a and (p = /P(£2)a. 

In fact, 7^ w (a ,co ,Q) fulfills a horizontality property stronger than (3.16b), namely : 

^)/5w(fl,co,Q) = 0=/pa)/3Vv(^co,Q) = /Ea)/5w(a,co,0) (3.18) 

and is defined on ii x I . Now, let us decompose i^ W (<3,co,Q) according to : 

Q . 
/2w(fl><*0)=L'2n .k (3.19) 

k=0 
where i^n-k l s a f o r m °f degree 2n - k on I and of degree k on ft such that: 
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d ^ 2 n - k + 8 / 2 n ~ k + l = 0 

W i l r W L k ' O (3.20) 

Then, the integration over a cycle y 2 n _ k on £ yields a k-form on ( t : 

ek= J / 2

k

n . k (3.2i) 
Y 2 n - k 

From the descent equations (3.20), we deduce : 

8 0 " = - Jds/2

kn+Li-0 (3.22) 

Y 2 n - k 

and because of the detailed horizontality condition expressed in equation (3.18): 

Ú(X)0k= J í ( X ) / J n . k = 0 (3.23) 

Y 2 n - k 

Finally : 

smok= J/s(X)/£1.k= l № ) d E / 2

k n . k = 

V Y 2 n ' k r (3.24) 

Y 2 n - k Y 2 n - k 

Hence, the k-form 0* defines a basic cohomology class7. This class does not depend on a, cb, 

Q. and *F W provided that they are related by equation (3.17), so that one may average it out 

over these fields variables, which is the formal reason why the topological YM%P field theory 

should be a tool able to construct such cohomology classes. Of course, this is so provided the 
field theory treatment (e.g. renormaiized perturbation theory which in the present case ought to 
be exact) retains enough properties of the averaging out process, which, in turn will be insured 
by the fulfillment of the proper Ward identities entailed by the requirement of s t o p , 3(k) and 

£(?i) invariance. Note that the equivalence between the structure equations (3.1-3) and those 

leading to the construction of the observables (equations (3.17)) is insured by "Cartan's 
theorem 3", which, at the cohomology level allows one to replace 5) and Q by &> and £X 

For a review of the field theory context, we refer to [OSB89] supplemented with the 
proof, provided in [K93], that the basic cohomology proposed there is isomorphic with that 
proposed in [W88] in view of the equivalence between the intermediate model and the Cartan 
model. Of course, these (ultraviolet) considerations do not touch the problem of the integration 
of the relevant cohomology classes over orbit space. 

7 An alternative much faster construction is given in Appendix C This one is identical to that used for 2d 
topological gravity. That of Appendix C takes advantage of the product structure £P(5i£G) - (I x P(S,G). 
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IV) Topological 2d gravity ( G i f ) . 
Let E be a compact Riemann surface without boundary, of genus larger than one. We 

recall that the space of complex structures on E can be canonically identify with the space £S(E) 

of Beltrami differentials on E. The origin in !jB(E) is nothing but the complex analytic structure 

defining E itself. Let us introduce more notations : 911(E) is the space of metrics on E; "©(E) is 

the group of Weyl transformations acting on 911(E) by local scaling of the metrics; the space 

9R(E) /T5(Z) of conformal classes of metrics on E is denoted by ©R(E) and is naturally 

isomorphic to £B(X); finally, 2)0(E) is the component of the group 3)(E) of diffeomorphisms of 

E connected to the identity. We recall that the Lie algebra of 2\)(E) is the opposite of the Lie 

algebra 13(E) of vector fields on £ [Mi]. 

Let { ( U a , ( z a , z a ) ) } be an atlas defining the complex analytic structure of E, and let g 

be a metric on E. With respect to this atlas, the metric element takes the form : 

d s 2 = P z A |dz a + \iz« ^dzof (4.1) 

where |n Z o % is the component in ( z a , z a ) of the Beltrami differential (i = | L i 7 a z a 3 Z a ® d z a 

parametrizing the conformal class of the metric g. Note that equation (4.1) produces an 
isomorphism between ©11(E) and SB(E). 

In topological (Euclidean) 2d gravity, one first wishes to study the Teichmuller space 
3(E) of E and later go over to the moduli space (as already explain in section II, we do not 

consider the global group properties and hence do not look at the whole group of 
diffeomorphisms). There are two ways to define J(E). In the first one, that we shall refer to as 

the "Riemannian route", one considers 911(E) as the parameter space together with the action of 
& I5(E)x£D 0 (E) 8 on i t : 

y f f ) = _ * £ L _ ( 4 . 2a ) 

In the second approach, the space of parameters is and the "gauge group" 3>o(£) so that: 

^ = i § < 4 - 2 b ) 

This will be referred to as the "Conformal route". The equivalence between the Conformal and 
Riemannian routes comes from the canonical identification of ®K(E) with 93(E). The former is 

natural from the mathematical point of view but presumably less amenable to a field theory 

treatment by virtue of the non-linearities involved. The latter, closer to field theory [BCI94], 

will be exhibited as an alternative. 

8 Where x denotes the semi-direct product. 
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In the Conformal route, the Weyl transformations are eliminated from the start by fixing 
the factor p of equation (4.1), as a function of \i and p., through the 55(E) invariant constraint: 

R(p,lMl) = - l (4.3) 

where R is the scalar curvature of the metric (4.1). (Recall this is possible because the genus of 

Z was assumed to be larger than 1). 
We take a 2>0(Z)-connection co on another copy £B(Z) of SB(Z). So, co and its curvature 

Q are vector field on Z : 

~ ~ (4.4) 
Q = Q Z 3 Z + Q z d^ 

If we denote 8, 3 and <£ the differential and operations on 3B(Z) and 5 , 3 and £ those on 

ffi(Z), the action of X = X% + A,z3zeT3(Z) on <B(Z) is : 

=F(a 7 - ^ z

z a z + ( a z | n z 7 ))azJ dz ® a 7 = (£(X)\l£Z ) dz ® a z 

l\ _ K J (4.5) 

- ( D M A z J d z ® 3 z - D ^ A ^ 

where we have introduced the type (1,0) vector field : 

A j i = A z

i a z = ( x . z + | i | x ? ) a z (4.6) 

and to emphasize the similarities with Y M ^ we have defined the operator : 

0 ^ = d m dz - (a z - | i z

7 a z + ( a z ! u z

z ) ) d z = a - fc,} (4.7) 

acting on type (1,0) vector fields. In equation (4 J ) , 3 is the usual Dolbeault operator, |i is 

considered as a 13(Z)-valued one-form on Z and { , } is the natural Lie bracket that turns 13(Z) 

into a Lie algebra9. Finally, noting that co , D U and \i are odd while Q is even, we get the 

structure equations : 

s t0P^i = v + £(S)n = v + <£top(co)^i = v - D^5p (4.8a) 

s t o P v = _ £ t o P ^ ) V L + £ t o P ( 6 J ) V = ^DpQp - { v , ^ } (4.8b) 

s t o p a ^ = fttl+|{ffiii,ffiJI} (4,8c) 

s^a^-fo^cop} (4.8d) 

where we have introduced the |Li-dependent basis : 

9 Since°G(£) is the opposite of Lie£D(I: {31 ,X } = - \ \ ,%2], where [ , ] is the Lie bracket of LieS)(I) and we 

have denoted by the same symbol an element of Lie£D(Z) and its image in T?(I) by the canonical isomorphism 

between these two spaces [Mi]. Now, compare equation (4.9) with equation (3.1). 
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S * ' ~ - ' - v (4.9) 

with: 

s t o p = 8 + 8+£(ca)-il(Q) , v = 8^ = (8^Zz) d z ® d z (4.10) 

in the intermediate scheme, whereas : 

s t o P = 8 + 8 , v = 8 n + D ^ = ( 8 ^ Z z - D ^ c o ^ ) d z ® a z (4.11) 

in the Weil scheme, and £ t o p (A.)= £(X)+£(A,) in both schemes. 
The action oH3(L) is given by : 

^ t o p ( W J l = -{v zzX?)a z (4.12) 

3 top(?L)other = 0 

with Biop(X) = in the intermediate scheme and 3top(X) = + in the Weil scheme. 
The formulae for S(k) follow from equations (4.8) and (4.12). Had we stuck to the initial 

basis, there would be complete similarity with the gauge case YM%P. The ju dependent basis, 

more appropriate to discuss holomorphic factorization [KLS91] introduces however an 

inconvenience : the second of equations (4.12). 

Now, choose M- £B(E) x E equipped with the complex structure defined by the 

complex variables |Li, Z^, where are complex coordinates on E which fulfill (locally) the 
Beltrami equation : 

( a 7 - f i z z 3 z ) z ^ = o (4.13) 

allowing to construct from E and \x a Riemann surface denoted by E^. 
For each JIG £8(L) we consider the holomorphic tangent bundle of E^. This generate the 

family T | ^ ( E ) of holomorphic tangent bundles of E, and the associated GL(1,C) principal 

bundle is denoted ^ T ^ ' j ^ E ) (^(f^H) of section II). A set of holomorphic coordinates on 

T {

(^ }

0 )(E) is given locally by \i, Z u , V Z» l, or E Z u e G L ( l , C ) on ^ ' ^ ( E ) 1 0 . 2)(E) acts 

holomorphically on these coordinates so that along an orbit of 2)(E) one gets : 

1 0 The fiber of 9T^(L) over (jh,X) is the set of all frames (i.e. bases) of T X

( 1 , 0 ) S^. Hence, with respect to the 
z 

chart (U,Z ) at xe E u , the coordinates E U(L of a frame E x are the entries of the GL(1,C) matrix transforming the 

natural frame o7 of T X

( 1 , 0 ) L^ into E x : E x = E 7 ' K 3 z . 
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n — > 

Z^(z,z) > Z Aif\ztz),^r\z,z)) (4.14) 

E Z " ( z , z ) > E^' P ((p- 1 (z ) z) ,(p- 1 (z ,z)) 

The fundamental vector field on 9T^\l.) representing XeV)(Z) is given in Appendix D. 

The Dolbeault operators on 9 T | ^ ( Z ) are accordingly given by : 

<D = d 2 z + d Z u - | - + dE Z *-i* (4.15) 

and its complex conjugate, and the total differential is : 

D = £> + !P (4.16) 

By construction, the contraction I and the Lie derivative L on £Pt|^(Z) split up : 

l(X) = l(Xh ) + I(XR) = Ih(X) + Il(X) 
~ _ _ (4.17) 

L(X) = UXh) + L ( ^ h ) = hh(X)+Lh(X) 

with: 

Lh(X) = [l h(U2>] 
h r h — 1 + ( 4 - 1 8 ) 

L h a ) = [ i h a ) , ^ j + 

so that: 

[ L h ( U 0 ] = [L H(X),©] = O (4.19) 

and the operators carrying the label h, together with £> commute (in the graded sense) with 

those carrying the label h together with (D. 
Now, for each |ieS8(Z) choose the metric ds., = p z 2 dZ^dZ L l solution of the 

constant curvature equation : 
azAlnp z^^p z^ (4.20) 

equivalent to equation (4.3). In local coordinates, the canonical GL( 1 ,C)~connection on 

( ? T j ^ ( E ) associated with p z z is : 

r = 0 1 n p 7 7 + D l n E Z ^ (4.21) 

where D In E Z ^ denotes the Maurer-Cartan form of GL(1,C). 

Using the uniqueness of the solution of equation (4.20), one deduces that: 

L(k )r=0 (4.22) 
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Now, given a 2)(£)-connection co and its curvature Ú on another copy of £B(£), the 

connection becomes in the Weil scheme : 

f = 2> In p z ^ + D In E Z ^ +1(65)© In p z z (4.23) 

and its equivariant curvature is given by : 

R $ ( f ) = ® 2 ) l n p z z + I (c5)®®lnp z z + - I ( S ) I ( S ) ® ® l n p z z 

/ 11 11 11 2 11 " (4.24) 

- I ( Q ) ^ $ l n p z ^ + D l n E Z ^ 

(details are given in Appendix E). 

There remains to replace co and Q by a 3)(£)-connection 9 on ÔB(L) x X and its 

curvature & (Cartan's theorem 3). This is obtained by pulling back on £B(L) x X a 3)(X)-

connection on ÔB(L). All in all, we may write : 

R EE R $ (f, 0,0) = R°2 + R J + Rj (4.25) 

where the lower index labels the form degree on £ and the upper index labels the form degree 
on 08(2), and : 

( 5 + d E )R = ( <J + i 2 )( X)R = ( £ + / z )(A,)R = 0 (4.26) 

Observables are extracted from 1 1 : 

r - = w H * r M w r v + s ^ i r ( * f ) (4.27) 

= o¿+ol

2n-1+o2

2n-2 

with : 

5 0 ¿ n = O 

'd^+SQ^-^O (4.28a) 

d z G 1

2 n - 1 + 8 0 2

2 n _ 2 = 0 

' ( £ + / £)(A.)0 0

2 n =(£(X)-/E(^))00

2n = 0 

< ( £ + / j . Ja)©,2"-1
 = (£(A,) - /z (>-))0 1

2 n _ 1 = 0 (4.28b) 

(£+/£ )(^)©2

2n-2 = (£(A.) - /s(X))©2

2n-2 = 0 

1 1 There is no need of making G1(1,C) invariant polynomial, because R is already invariant. 
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(̂A.)e|n-2=o 
< 3(X)6?n-1 - iL ( X ) 0 | n _ 2 - 0 (4.28c) 

Let us introduce: 

o2n~2 = j e2

2n-2 

Off'1 = j t f" 4 (4.29) 
7 

e^e^rx) 
where y (resp. x) is a one cycle (resp. 0 cycle) in X. One verifies that 0 2 n ~ 2 represents a basic 
cohomology class on £B(£) since : 

g 0 2 n - 2 = c J ( ^ ) 0 2 n - 2 = £ ( ^ ) 0 2 n - 2 = q ( 4 3 ( ) ) 

However: 

8 0 (

2 ^ " l = 0 (4.31a) 

but : 

= J fcttOGzn'2 * 0 (4.31b) 
Y 

m)© 2^ 1 = j /s(W2""1 - j k(X)d^-1 

\ 1 (4.3ic) 
= 5J i z O , ) 0 f n - 2 * O 

Y 

Hence, O 2 ^" 1 does not represent a basic cohomology class. Similarly : 

80 (

2

x

n

} = 0 while 4(A0©(

2xn) = k W 2 * " 1 * 0 (4.32) 

This is different from what happened in the Y M ^ case and is essentially due to the fact that 
2)(Z) moves points on £. 

One should realize at this point that one should make sure that whatever cohomology 

classes have been constructed are non trivial. It is known that modular invariance plays a 

crucial role in that respect [Mu, BCI94]. 

On the other hand, the choice of the metric p fulfilling the constant negative curvature 

condition (4.20) is immaterial provided it behaves properly under diffeomorphisnis, i.e. a 

change in p produces a coboundary. 
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Whereas the holomorphic fibration of $(Z) x Z over 3*(Z) is essential (the smooth 

fibration being trivial), a real approach is possible whereby the GL(1,C) bundle is reduced to 

U(l) and the canonical connection T is replaced by the unitary connection : 

r u r a t = ~ ^ l n p z 2 (4.33) 

This make the bridge with the Riemannian route chosen in [BCI94], as follows. 
The structure equations for the action of 3)(E) on 9ll(Z) read : 

s t o p g = Y+£(®)g = Y+£ t o p (®)g (4.34a) 

s t o p Y = -£ t o p (a )g+£ t o p (5 )Y (4.34b) 

s t o p 6) = Q-|[c6,66] (4.34c) 

s t o p Q = [aa] (4.34d) 

where ge 911(E), 65 a 3)0(Z)-connection on another copy 91L(Z) of 9R(Z) and £2 its curvature, 

y = 8 g in the intermediate scheme, y = 5 g - £ t o p ( c o ) g in the Weil scheme, and £ t o p = <£ + £ in 

both schemes. Of course, 8, 3 and £ are the differential and operations on 9K(Z) while 8 , 3 

and £ are those on 91L(Z). 

One may wonder why one does not write down the structure equations for the action 
of ^ ( Z ) x 2)(Z). The main reason is that there is no known Weyl invariant connection on a 
bundle over 911(E) x £ to provide non trivial cohomology classes. 

We now consider the family № \ g ] ( £ ) = 9R(Z) x P(Z, G1(2,R)) of frame bundles over Z 

indexed by ge9H(Z) 1 2. As usual, we wish to provide £PF{gj(Z) with a 3)(Z)-invariant G1(2,R)-

connection. Accordingly, we look for a Gl(2,R)-connection r that leaves g invariant. In terms 

of local coordinates : 

(8 + d s )g^ v - T\gXv - r \ g ^ = 0 (4.35) 

A solution of this compatibility equation is given by : 

r V ^ r V ^ S g v n (4-36) 

where T is the Levi-Civita connection : 

wr\=^gXv(apg^+aHgpv-avgpJdxp (4.37) 

while the general solution is obtained according to : 

1 2 It is a G1(2,R) principal bundle over 9R(E) x I whose fiber F ^ E over (g,x) is made of all the frames of T x I . 
With respect to coordinates (x k) of x, the coordinates of a frame = (E^ of F ^ I will be the entries A j

k of 
the G1(2,R) matrix A changing the natural frame ( 3 k ) associated with (x k) into : E} = Ak-dk. 
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Sg^v ^ g ^ . + a ^ j (4.38) 

a[yv] being antisymmetric13. In equation (4.36) we have chosen a ^ j = 0. 
One lifts r to get a gl(2,R)-valued one form f on £PF{gj(2) : 

f ° T = ( A - 1 f o - r^x 'A^ + (A~lf<fdg>Aa'T (4.39a) 

or in a more compact notation : 

f = A _ 1 r A + A ~%A (4.39b) 

As explained in Appendix F, the action of 3)(E) extends to £PF(gj(£), and the 

fundamental vector field associated with A.€^C(2) reads : 

f 8 ft "1 
h = (/s(X)g^ v)- Xada - 0 p X c ) A ^ ( 4 . 4 0 ) 

It follows that: 

r ^ >k t ( 4 - 4 1 ) 

DefL {2 J ± 

and: 

/ g , (A , ) f s / g , ( ^ ) f=0 (4.42) 

where A,p = g p o A,0 and is the covariant derivative associated with L C T . Hence, f is the 
£D(E)-invariant Gl(2,R)-connection on iPF{gj(E) we are looking for, and its curvature reads : 

R(f) = d f f f + - [ f , f ] = A 1 (5+dL)r+-[r,r] A 
2 V I J (4.43) 

= A~ ]R(r)A 

with : 

R( D = ( 5 + d E / w r+ ± g- !5g y | [ w r+ ^ g - 1 ^ r+ j g-̂ g j 

^ R ^ D f - i g - ^ U ^ r - U g - ^ g 

LC referring to the Levi-Civita part of the connection. 

1 3 We wish to thank M. Dubois Violette for communicating the above construction of i". 
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Let 0) be a "IXrj-valued connection on another copy 911(E) of 9K(X), and Q its 

curvature. In the intermediate scheme, the equivariant curvature of F (the pull-back of f on 
9£(Z) x ^ g j ( Z ) ) is given by : 

R S ( f , ^ f l ) = ( 5 + d f f + /,(a)-iy(Q))f+|[f,f 

= R ( h - / V ( f l ) f = A - f R ( f ) - - ^ I x : D A Q > k (4.45) 
V 2 J 

with R(f ) the pull-back of R(T) on 9R,(I) x £PF { g )(£). In view of the particular form taken by 

R ^ t , and since the invariants we are looking for are constructed in terms of curvatures, one 
can forget about the Gl(2,ft) fibration (represented by the A"1 and A terms) since one deals 

with forms globally defined on E, such as R(f) and R ^ t . 
As before, £ and / £ , / s refer to the action of $(£) on 9lt(Z) and Z respectively. In the 

Weil scheme, the equivariant curvature is given by : 

R$(f,SL«) = e x p ^ ^ 
- - w _ ~ - (3 + iy )(5))(£J + iy )(ca) - -

- R(H+0+iz)(S)R(0+- ^ -^R(D (4.46) 

2 

The equivariant Euler class, which plays the role of the invariant polynomial 7^jw of section 

II, is defined by : 

^ = - ^ g p v ( R w ( f ) ) * (4.47) 

Once equation (4.46) has been made explicit (using equations (G.8) and (G. 11) of Appendix 
G), can be written as : 

V§ V 2 

+1^C D A ~ _ 1 ^ ( 5 ) L C D A ~ _ 1 — > ( 4 4 g ) 

Z Z 4 

with : 

(4.49) 
¥ ^ = g v " ( o g x , - / i : ( S ) g x , ) - g v X Y x , = ( g _ 1 Y ) " 
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and a y as defined in Appendix G. 

Using the basicity property : 

+3+/ £ ) (X)Y = 0 (4.50) 

one easily checks : 

( ? + 0 + / £ ) ( X ) S $ = O (4.51) 

Now, because ~7= rgpV is covariant constant (see Appendix G) and because of the Bianchi 

identity for : 

(8 + 8 + d £ ) S $ = 0 (4.52) 

And consequently : 

( I + £ + / z ) ( f c ) S $ = 0 (4.53) 

(Compare with [BCI94]). 
The last step is to apply Cartan's theorem 3 : one has to replace co by a ®(E)-

connection on 911(E) x E [BGV91J. An obvious solution is given by a cJD(E)-connection co on 

9U(E), so that the form of equation (4.46) is maintained with the replacement: 

CO >co 

O >Q= 8co+~[co,co] 
2 (4.54) 

Y >Y = Sg-£(co)g 

y •> ¥ = S'ly = g" 1 ( § g ~ ^ (« )g ) 

Furthermore, since 911(E) is a principal bundle over ©R(E) with structure group the 

Weyl group, one may choose co a Q)(E)-connection on 3U(E). It is very likely that the 

conformal picture is recovered by choosing the section provided by the (negative) constant 
scalar curvature condition (4.20), but, at the time of writing this has not been explicitely 
checked. 

V) Concluding Remarks. 
Cohomological field theories are gauge theories of an exotic type. The question of the 

definition of the observables is crucial The definition has to be such that "physics" - e.g. 

correlation functions of observables - be gauge independent, i.e. be independent of the 

parameters or external fields needed to define a perturbativeiy computable Lagrangian, namely, 

a Lagrangian whose quadratic part is non degenerate. The fact that the equivariant 
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cohomology' classes defined in the previous section do not depend on the various connections 

used to define them suggests that they be computed by "averaging out" over these connections. 

This is formally realizable in terms of functional integrals. The well known difficulties in 

defining those result in ambiguities which are well understood at the perturbative level 

provided that they are properly constrained algebraically. The equivariant cohomology 

framework exhibited here both at the level of fields and at the level of observables is a 

compelling ingredient whose necessity has often not been fully appreciated. 

The construction reviewed here may not give all observables. Note that those which 

have been constructed here emerge as integrated local expressions in the fields. Whereas these 

are basic cohomology classes [OSB89], it is not clear a priori which cohomology classes the 

local densities represent. Another delicacy in the definition of observables has to do with global 

aspects which are known to be crucial [DK90, Mu83]. 

The corresponding mathematics should in each case guarantee that one is not 

describing a trivial cohomology class via complicated formulae. A final remark is in order since 

it provides a bridge with the origin of cohomological theories. The introduction of the 

connection co -the Faddeev-Popov ghost introduced by L. Baulieu and I.M. Singer-, rather 

natural from the geometrical point of view may however look somewhat redundant, since only 

curvatures are involved in the final formulae. A similar impression may prevail from the field 

point of view. It has however several advantages, one being the necessity to introduce the 

operations 3, 3 and L The devoted reader will easily establish the bridge between equivariant 

cohomology and twisted N = 2 supersymmetry. 
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APPENDIX A 

Some basic facts and conventions about associated bundles. 

Let n(B,§) be a smooth principal fiber bundle with a right action of the Lie group §. 

The right-transformed by ye Q of a point ne n is written %{. An infinitesimal transformation, 

represented by XeLkQ, gives rise to a so-called fundamental vector field A,n on Lf. The 

operations on n are denoted by : 

'n(^) = 'nftri) a n d 'n(k) = *n(kn) ( / v - 1 ) 
Def Def 

while the differential is d n . 
Now, let us consider a smooth manifold CS with a left-action of S on it. The left-

transformed by ye9 of a point fecS is written y(f). Here again, to any XeLieS there 

corresponds a fundamental vector field X$ on ,7, and the operations on CS are also written : 

= ijiXj) and ly(X) = UXy) (A.2) 
Def Def 

Finally, we consider the right-action on the smooth product manifold II x 5 defined by : 

( ^ f ) Y = (7iY,y^(f)) (A3) 

for ye §. Hence, for an infinitesimal transformation Xe Lie§, the corresponding fundamental 

vector field o n E i x J will be : 

where X n and Xj are the fundamental vector fields associated to the original right and left 
actions of X on n and 3 respectively. 

One can show that n x CS with this right-action of § can be made into a smooth 

principal bundle with structure group 8, whose base space, denoted by II x g 5, is itself a 

smooth fiber bundle (not principal) over B, with typical fiber CS [GHV73]. 

Whereas the differentials on n x J are d n x j = d n + %, the operations become : 

inxrs (V) T f r

 f n x j (^nx^) = On + h X^-nx j ) 
D e f (A.5) 

and the same for / n x 3 . Note that Xj is the fundamental vector field associated with the original 
action of S on (here a left action) which explains the relative sign in the last term of (A.5). 
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APPENDIX B 

Cartan's Theorem 3 [C50]. 

Let P(co,Q) represent an equivariant cohomology class of it{M)® Ti^. Let 9 be a 

connection in , i.e. a Lie§ valued one form on fWsuch that: 

ir^X)(a=X and ln^k)($ = - [X ,co] (B.l) 

for any X& Lie§, and @ its curvature. 

Let : 

cot = tco+(l - t )0 

/ v l r i 0 < t < 1 (B.2) 
Q t = ( d n + d^ jQ+- [o ) t , o ) t J 

It is easy to check that: 

(in(X)-¥i^(X))oit = X 

{ln(X)+l^(X))(ot = -|A,co tJ 

For all polynomials P in co and Q, define [MSZ85] the derivation k by : 

(kP)(co,Q) = J k tP(co t ,Q t) (B.4) 
[o,il 

with: 

ktco. = 0 

ktQt = d tco t 

such that: 

k t (dn + d«-) - ( d n + ^ )kt = d t (B.6) 

and: 

[/ n(A) + W(A),k t ] = [/na) + /^a),k t] = 0 (B.7) 

Thus : 

[in(X)+i^{X),k] = [lu(X)+l^(X),k} = 0 (B.8) 

and: 

P(co,Q)-P(9,0) = J d t P ( c o t , Q t ) 

[o,i] 
= J k t [ ( d n + d J p ] ( c o t , Q t ) - J ( d n + d ^ ) k t P ( c o t , Q t ) (B.9) [o,i! [o,i] 
= k ( d n + d ^ ) P - ( d n + d ^ ) k P 

Now, since P represents an equivariant cohomology class : 
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(d n+d^)p=(/ na)+^a))p=(/ na)+^a))p=o o u o ) 
Then : 

P(co,Q)=P(0,0)-(d n + d ^ ) k P (B.l l ) 

Because of the commutativity of k with j' n(X) + i${ (X) and / n (X)+lM (X), 

(in(X)+ i^(X))kP = {ln(k)+lM(X))kP = 0 (B. 12) 

It follows that: 

( d n + d^)P(e,0) = d^P(e,0) = O 

(in(X)+iM(X))P(Q,G) = iM(X)P(Q,®) = 0 (B.13) 

(in(X)+i^(X))p(e,e)=i^(X)P(Q,e)=o 

P(6,0) is an element of the basic cohomology of 5W, cohomologous to P(co,Q) within the 

equivariant cochain algebra and this correspondence is obviously defined at the level of 

cohomology. The same calculation shows that given two connections 0}, 62 on Q*(fM), 

P(8i,0j) and P(02,02) are cohomologous within the basic cohomology of Q*(5Vf). 
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APPENDIX C 
An Alternative construction of equivariant cohomology classes of ( I 

The construction given in the text may look unnecessarily complicated. In the present 
case where 9(M,G) = (£ x P(I ,G) and § acts separately on d and P(I,G), the situation can be 

simplified as follows : construct equivariant cohomology classes of P(I ,G) using a connection 
© on (£, with curvature O. Now, choose f = a : 

4(X)f = 0 (C. l ) 

( £ + / P )(X)f = 0 (C.2) 

The equivariant curvature of a in the intermediate scheme is given by : 

FS(<S) = (5 + dp + / p ( S ) - / P ( Q ) ) a + ^ [ a , a ] (C.3) 

One easily finds that this is the same as the equivariant curvature in the Weil scheme : 

F $ ( a ) = (6 + d P ) ( a + /P(a>)a) + + /P(a>)a),(a + iP(a>>3)] (C.4) 

and they both coincide with (a,cD,Q) of equation (3.17). 
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APPENDIX D 
An action of 2)(I) on T^](Z) and 9T^\l.). 

If (x,n,Vx) is a point of TĴ 'Vz), we choose the following right-action of 2)(E): 

V(pe2)(Z) , ( n ^ V ^ = ()i ( p, qT^x), d x<p- !(V x)) (D. 1) 

where dx(p~ ! : T X E - » T , E is the differential of <pe3)(E) at xeE : 

V V x e T x Z , V f e e ^ Z ) , d xq>- 1V x(f) = V x ( f oq," 1) (D.2) 

and (x(p is the element of £B(E) with components : 

(a w (p w ) + (a w (p^)(u z z ocpj 

where (z,z) and (w,w) are coordinates at x and (p _ 1 ( x ) respectively, and (q> w , (p w ) the local 
representative of cp with respect to (z,z) and (w,w) . Equation (D.3) defines the natural right-
action o f $ ( I ) on ffi(E). 

From now on we shall consider infinitesimal diffeomorphisms represented by vector 
fields X = Xzdz+tfdim£): 

z(x) -> z(cp(x)) = z(x) + Xz(x) , and c.c. (D.4) 

we get : 

V? = \i + bkii = \i + D]iA)l (D.5) 

with the notations of equation (4.5). 
Now, at x e l with coordinates (z, z) we can solve the Beltrami equation : 

(dj - } i z z 5 z ) z ^ = 0 

thus obtaining new complex coordinates (Z } 1,Z^) at x. The component V Z ^ ( x ) of V x with 
respect to the natural frame 8Z^ associated to (Z^Z^) are chosen to be coordinates of V x . 

Similarly, at (p _ 1 (X)GZ with coordinates (w, w) we solve the Beltrami equation for 
H + 8jjiand obtain complex coordinates ( Z ^ ^ Z ^ + 5 ^) at qr!(x), and the coordinates of 

\ ) _ 1 (x ) a r e c o m P o n e n t V Z ^ 6 ? > i ((p" I (x)) of V i ^ x ) with respect to the natural frame 

d7 . This is how we define a complex analytic structure on ( I ) . Hence, at the 

coordinates level, the infinitesimal action of is : 

(n,Z^(x),V Z ^(x)) > (^ + 6 ^ Z ^ J i ( ( P - 1 ( x ) ) , V Z ^ ( ( p - 1 ( x ) ) ) (D.6) 

Combining the Beltrami equations which define the coordinates (Z^Z^) and ( Z ^ ^ , 2 ^ 

with equation (D.3), one can show that Z ^ ^ ^ ^ x ) ) is an invertibie holomorphic function 
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of Z fA(x) [L]. Hence, if we introduce the complex function Z(z, z ,|i) - Z^(z, z ) , we get the 

following, correct to first order : 

Z ^ ( ( P _ 1 ( x ) ) = Z ( W ) w , ^ 5 ^ ) = Z ( z - > i z , z - A.z,n + 8 x n) (D.7) 

— 8Z SZ -5Z _ 
= Z(z, z + (D„ A „)— ( z , z , n ) - X z — ( z , z , n ) - A , z —• (z ,z , | i ) 

5 ^ z , z & . u j i ^ n J I 

Accordingly, for the coordinates V ^ (x) of V(x) we get: 

V Z ^ ( < p " 1 ( x ) ) = (v Z ' 4 o < p ) ( q , - i ( x ) ) - ^ i ( Z ^ ( x ) ) (D.8) 

Finally, it is straightforward to see that on 9T^\l.): 

cZ 
E Z ^ (cp-^x)) = (E Z ^ O ^ - \ X ) ) - ^ ^ ( Z ^ ( X ) ) (D.9) 

with E z ^ ( x ) and E Z ^ 6 ^ A ( (p" 1 (x) ) coordinates for 9T$j\l.) (see main text). 

Finally, to get the fundamental vector field X of &T^\l,) associated to the action of 

XeD(E) with respect to the complex structure of ^T^j^E), we need to relate the derivatives 

with respect to z, z and jlx to those with respect to Z^Z^ and |u, namely [KLS91J : 

5 5 (hZ\ d , ST\ i A \ — = — + — — andc.c (D.10) 

so that: 

( f \ \ 

2, = (DUA,)A + ( d , a J ^ - a 7 , A 
+ E Z A ( d a , ) ^ - A 7 - | z + c . c . (D.ll) 

with : 

A H f k = ( f ) ( x z + ^ K ( D i 2 ) 

164 



APPENDIX E 

Calculation of the equivariant curvature of f. 

R $ ( f ) = ( s+S + 9 ) ( â ) l n p z Z u + D l n E Z " +l(œ)rj 

= (ô + 3) + Si ) (3) lnp z z +I(œ)rj (E.l) 

= 3)2) In p z ^ - I(Q)r +1 l([©, £j)r +I(©~ )2)2) In p z ^ 

where we have used the invariance of T. The third term is : 

Il(p,fl5])r = i[L(5XI(©)]r 

= - iL(£) I (5 ) f 

= - | L ( 5 ) I ( œ ) ( s ) l n p z ^ + D l n E Z ^ 

= - I (w)DI (5)2 ) lnp 7 j + - I (©)DI(©)DlnE Z ^ (E.2) 

= 1I(© )I(© )3) 2) In p z ^ + j I(© )L(© )2) In p z ^ 

+ | l ( © ) L ( S ) D l n E Z ^ 

= -I(©)I(©)®S)lnp 7 j 

Finally : 

R $ ( f ) = ! M ) l n p z z +I(©)2T2)lnp z z +-I(©)I(©)2T2)lnp z z 

(E.3) 

- I ( D ) [ 2 ) l n p z z +DlnE Z M J 

Thus, as expected, R ^ ( f ) is of type (1,1) for the natural complex structure of S ( I ) x I . 

165 



APPENDIX F 

The action of 2)(E) on ^ ^ ( S ) . 

Let (x, E x ) be a point of F (Z) the frame bundle of E , where, by definition, E x is a frame 

(a basis) of T X S : E X ^ ( E X 1 ) . One defines coordinates for E x as follows. One selects 

coordinates (x k) for xeZ and denoted by (dk) the natural basis of T X E defined by these 

coordinates: dk =d/dxk. Then, the coordinates of E x are the components A Jk of the 

decomposition of E x with respect to the natural basis ( 5 k ) : 

E x k = A j

k 5 j (F.l) 

Each vector E x ¿ belongs to T X E . As explained in Appendix C , there is a natural (left) action of 
(PeS)(E) on T X E , given by dx(p : T X E - > T ^ E the differential of (p at x : 

V V X e T X Z , VfEe°°(Z) , d xq>VX (f) = V X (f o (p) (F.2) 

In terms of coordinates, this gives : 

( d ^ V J ^ V f ^ c p 1 ) (F.3) 

where (p1 means the local representative of cp with respect to the coordinates (x*) : 

cp(x) = y = (y1) = ((p !(xk)). Applying equation (F.3) to the frame vectors E x j , one gets : 

A'*j = A ^ c p 1 ) (F.4) 

and at the infinitesimal level, for \e!3(L): 

A a j = A ^ d ^ x 1 + = +dm}})) = A Jj + (amA.1)Am

j (F.5) 

where A' !j are the coordinates of the transformed frame at cp(x). 

Finally, at the coordinates level, the natural left-action of Xeü(L) on F (Z) is : 

( ( x ^ j ) ) > ( (x k + X k X(A i j + (a m X i )A m

j ) ) (F.6) 

Hence, the fundamental vector field on F(Z) defined by the action of XeV)(I<) reads : 

tf^ + A ^ t ó - t - (F.7) 
8 A j 

Now, if we consider SPF| gj(I) instead of F(S), we need a right-action of 2)(S) on £PF|gj(S) 

and thus a right-action on F(S) : 

( (g^vX(x a ) , (A%)) >((g, v + / v ( ^ v ) , ( x a - X a ) , ( A C T

T - ( 5 p X ° ) A P T ) ) (F.8) 

166 



at the coordinates level, for A,eT>(S), and the corresponding fundamental vector field is given 

by: 

h = (kMs^-r- - № a - (5 p X f f )AP t (F.9) 

In particular: 
g 

5 g ^ (F.10) 

= / i ( ^ v 5 ^ - / y ( X ) g ) . r = 0 

so that: 

l9(X)g = 0 (F.10) 

for any ge9H(E). 
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APPENDIX G 

Calculation of the equivariant curvature R^J 

and of the corresponding Euler class . 

Recall: 

r\=LCT\ +^(g- 15g)V^L CrV + ^ g X v 5 g v , (G.l) 

where T is the Levi-Civita connection : 

L C r \ = ̂ g " v ( a p g , v + a , g p v - a v g p J d x P (G.2) 

Now : 

R(D = (5 + d s)[L Cr + | g - 1 5 g ) + ^ ^ r + ̂ g - ^ ^ r + ^ g ^ g 

(i >i (\ V ( G 3 ) 

^ R + ^ r ^ g ^ g j ^ ^ r - ^ - g ^ g J 
where R stands for the Levi-Civita curvature : 

L C R = d s

L Cr+^[ L Cr, L Cr] (G.4) 

and L C D stands for the Levi-Civita covariant derivative. We also recall that, by definition : 

L C D g = 0 (G.5) 

Differentiating equation (G.5), one gets : 

L C D , ( 6 g , v ) - ( s L C T , p

v ) g № - ( 5 L C r > P , ) g p v = 0 (G.6) 

from which one deduces that : 

5 L C I \ ; = ^ g p v ( L C D , 5 g p , +

L C D , 5 g , p - L C D p 5 g „ ) (G7) 

Since 6 and d s anticommute, it follows that : 

C 5 L C r + ^ g - ] 6 g T 4 g P V ( L C D , 5 g , p - L C D p 6 g , , ) d x ^ 
V ^ " (G.8) 

= - ( L C D A 5 g ) V 

D e f 2 l b V 

where : 

In = g^dx* (G.9) 

In the same way, using : 
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4(S)(g- !5g) = g _ 14(5)8g = -g _ 1 £(5)g = -g _ 1 / £ (5 )g (G. 10) 

one obtains : 

^ ( 5 ) ( 5 L C r + j g - ^ g ) ) = - j g P v ( L C D u / 2 ( £ ) g , p - L C D p / v ( 5 ) g , , ) d x ^ 
V Jv- (G. l l ) 

= - | ( L C D A / v ( 5 ) g ) ^ 

Going over to the Weil scheme, the same construction occurs in the transformation of the 

quadratic term —g J5g , leading to the term : — vj/vj/, with \\i defined in equation (4.49). 
v2 J 4 

Finally, one needs the property that —r=go v is covariant constant, for the connection T. 

First, for the Levi-Civita part: 

[ S } & (G.12) 

Using the identity : 

V V p + V p e ^ v + V v e p ^ 0 (G.13) 

together with: 

rxVv = | g a P 5 x g o p (G.14) 

the property follows. 
Finally, for the second part of the connection, one needs : 

which again follows from the identity (G. 13). 
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