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Quantum cohomology of complete intersections 

Arnaud Beauville 1 

Introduction 

The quantum cohomology algebra of a projective manifold X is the cohomo

logy of X endowed with a different algebra structure, which takes into account the 

geometry of rational curves in X . This structure has been first defined heuristically 

by the mathematical physicists [V,W]; a rigorous construction (and proof of the 

associativity, which is highly non trivial) has been achieved recently by Ruan and 

Tian [R-T]. 

When computed e.g. for surfaces, the quantum cohomology looks rather com

plicated [C-M]. The aim of this note is to show that the situation improves consi

derably when the dimension becomes high with respect to the degree. Our main 

result is: 

Theorem.— Let X C P n + r be a smooth complete intersection of degree ( d i , . . . , dr) 

and dimension n > 3 , with n > 2 Yli^i — 1) — 1 • Let d — d\ ... dr and 8 = 

Y2{dii — 1) • The quantum cohomology algebra H*(X, Q) is the algebra generated 

by the hyperplane class H and the primitive cohomology H n (X, Q) Q , with the re

lations: 

ET+ 1 =dil...d}rK* H - a z z O a - / ? = ( a | / ? ) i ( H n - d J 1 . . . ^ H * - 1 ) 

for a , / ? e H % X , Q ) 0 . 

The method applies more generally to a large class of Fano manifolds (see 

Proposition 1 below). It is actually a straightforward consequence of the definitions 

- except for the exact value of the coefficient d^1 ... dfr , which requires some stan

dard computations in the cohomology of the Grassmannian. Still I believe that the 

simplicity of the result is worth noticing. 

As the referee pointed out, we get actually more than an abstract presentation 

of the quantum cohomology algebra by generators and relations. The point is that 

the powers of the generator H have a simple geometric interpretation: denoting by 

Hp € H 2 p (X , Z) the class of a codimension p linear section, one has for p < n 

k—p k—p 

i=0 1=0 

1 Partially supported by the European HCM project "Algebraic Geometry in Europe" (AGE), 

Contract CHRXCT-940557. 

Ce texte paraît dans Mathematical Physics, Analysis, Geometry 2, 384-398 (1995). 
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where k = n + r + 1 — Y2 dt and dii is the number of lines in X meeting two 

general linear spaces of codimension n — i and k + i — 1 respectively (formula (1.7) 

and Remark 1 below). This allows to write down explicitely the quantum product in 

the basis ( H p ) . We get from this a number of enumerative formulas: for instance we 

find that the number of conies passing through 2 general points in a hypersurface of 

degree d and dimension 2c? — 3 is \d\(d — 1)! , while the number of twisted cubics 

through 3 general points in a hypersurface of degree d and dimension 3d — 6 is 

I would like to thank A. Bruno, R. Donagi, G. Ellingsrud and Peng Lu for their 
useful comments. During the preparation of this paper I had long and vivid discussions 
with Claude Itzykson, while his health was declining very rapidly - till he died on May 22. 
I would like to dedicate this paper to his memory. 

1 . Quantum cohomology of Fano manifolds 

I am considering in this paper Fano manifolds with b2 = 1, i.e. smooth com

pact complex manifolds X such that H 2 ( X , Z ) is generated by an ample class H 

and the canonical class Kx is — kR for some positive integer k . I will use the 

following properties of the quantum cohomology product on H*(X, Z) or H*(X ,Q) 

(proved in [R-T]): 

(1.1) it is invariant; under smooth deformations; 

(1.2) it is associative, compatible with the grading mod. 2 , and anticommuta-

tive. It is compatible with the intersection form ( | ) on H*(X, Z ) , i.e. one has 

(x\yz) = (xy I z) for x, y, z in H*(X, Z ) . The element 1 £ H°(X, Z ) is still a unit. 

(1.3) the product x • y of two homogeneous elements is defined by 

x • y = (x . y)0 + (x • y)x + ... + (x • y)j + ... 

where (x • y)0 is the ordinary cohomology product, and (x • y)j is a class of degree 

deg(x) + deg(y) - 2kj . 

(1.4) Assume that the moduli space Aij of maps / : P 1 —> X of degree j (i.e. such 

that d e g / * H = j ) has the expected dimension n + kj ; choose any smooth com-

pactification .M j of A4j such that the evaluation maps e2 : J\4j -> X ( 0 < i < 2 ) 

defined by e j ( / ) = f(i) extend to M3 . Then the "instanton correction" (x • y)j is 

defined by 

(x, i/, z)j := ((x • y)j \ z) = _ e^x . e\y . e*2z . 

(1.5) If x,y,z 6 H*(X, Z ) are classes of subvarieties A , B , C of X which are in 

general position, it follows easily from (1.4) that the triple product (x,y,z)j is the 

number of curves of degree j meeting A , B and C (counted with multiplicity abc 

if the curve meets A , resp. B , resp. C in a , resp. 6, resp. c distinct points). 
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To avoid confusion I will denote by H p G H 2 p ( X , Z) for 0 < p < n the p-th 

power of H in the ordinary cohomology, and reserve the notations x • y or xn 

(x,y € H*(X, Q) ) exclusively for the quantum product. One has H 0 = 1, Hi = H . 

and H n is d times the class of a point, where d is (by definition) the degree of X . 

The following result is a direct consequence of Property (1.3): 

Proposition 1.— Let X be a projective manifold, of dimension n>2, of degree 

d. Assume: 
(i) The ordinary cohomology algebra H*(X, Q) is spanned by H and H n ( X , Q) ; 

(ii) One has K x = -fcH with k > § . 

(iii) / / n = 2fc - 1 , H n ( X , Q) is nonzero. 

(iv) If n = 2k-2, d i m H n ( X , Q ) 0 ^ l . 

There exists an integer / i (X) such that the quantum cohomology algebra 

H*(X, Q) is the algebra generated by H and H n ( X , Q) Q , with the relations: 

(R) H n + 1 = ^ ( X ) H n + 1 - ^ H • a = 0 a • /? = ( a | / 3 ) ^ ( H n - / i (X) Rn~k) 

for a ^ 6 ^ ( X , Q ) 0 ' . 

(Recall that the primitive cohomology H n ( X , Q) Q is by definition equal to 

H n ( X , Q) if n is odd, and to the orthogonal of H | if n is even.) 

Let p be an integer, with —k < p < ~ . According to (1.3), one has 

(1.6) H • Hfc + P _i ~ Hfc + P + lp Hp , 

for some number £p G Q (which is zero for p < 0 ) . Intersecting both sides with 

Rn-p gives £p = ^ (H ,H n _p ,H jb+ p - i ) (so that £ p = £ n ^ k + 1 - p ) . 

From (1.6) one obtains inductively, for — k < p < ~ , 

(1.7) nk+p = Ek+v-C£ei)Hi>. 

If n < 2k — 2 , we can apply this with p = n — k + 1; since Hr/_f_i = 0 we 

obtain 

n+1-A; 

(1.8) H n + 1 = / i ( X ) H n + 1 - * with / i ( X ) = ^ ^ . 
?;=o 

If n = 2k-2, the product H • H n belongs to H n ( X , Q) . We will see below 

that under the hypothesis (iv) one has for all a 6 H n ( X , Q) Q H • a = 0 , hence 

(H • H n | a) = (H • a | H n ) = 0 . Therefore H • H n is proportional to H^ , which 

means that (1.6) and (1.7) still hold for p = k — 1, yielding again (1.8) . 

If n = 2k - 1, one finds H • H n = H^ + m for some integer rn . If m is 

nonzero H is invertible in H*(X, Q) ; since H • H n ( X , Q) is zero for degree reasons, 
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this implies H n ( X , Q) — 0 . Therefore under the hypothesis (iii) we obtain again 

(1 .8 ) . 

Let a G H n ( X , Q) Q ; let us prove that H - a is zero. If n ^ 2k — 2 this is clear 

for degree recisons. Assume n = 2k — 2 ; then H • a belongs to H°(X, Q) . If a ^ 0 , 

there exists by hypothesis (iv) an element (3 in H n ( X , Q) Q not proportional to a; 

the equality (H • a)(3 = (H • (3)a leads indeed to H • a = 0 . 

Let a,/3 € H n ( X , Q) Q . By (1.3) and (1.7) there exists a number q £ Q such 

that 

Multiplying by & and usimg (1.8) yields q — — (<%l| /?) ^ , which gives the last 

relation (R) . 

Finally we just have to remark that the Q-algebra spanned by H and H n ( X , Q) 0 

with the relations (R) has the same dimension as H*(X, Q) , so that all relations 

follow from (R) . • 

Remarks.— 1) Assume moreover that the variety of lines contained in X has the 

expected dimension n + k — 3 , and that H is very ample, i.e. is the class of a 

hyperplane section of X C P N . Then according to (1.5) d£p is the number of 

lines in X meeting two general linear spaces of codimension n — p and k + p — 1 

respectively. For instance, £o is the number of lines passing through a point in a 

$ganeral linear section of codimension k — 2 of X . 

2 | If M m .equal to 2k — 2 or 2k — 1., the result of Prop. 1 does not neces

sarily hold if one assrames only auacl (ii).. Consider for instance a general linear 

section oi codimension '3 of the Grassmannian G ( 2 , 5 ) . This is a Fano threefold of 

index k = 2 , degree d = 5 , which satisfies the hypotheses (i) and (ii) of the Propo

sition (but not (iii)). For such a threefold one has by (1.3) H • H 3 = + c ? 

with c = ± ( H , H 3 , H 3 ) 2 . From H 2 = H 2 + £ 0 and H 3 = H 3 + (£0 + ^i )H (1.7) 

we deduce 

H 4 = ( 2 4 + * i ) H 2 - + c - * g . 

Easy geometric computations give £0 = 3 , ¿ 2 = 5 , c = 10 , hence c — £Q = 1 ^ 0 . 

Now let X be a general linear section of codimension 2 of G ( 2 , 5 ) . This is 

a Fano fourfold of index k = 3 , which satisfies (i) and (ii). Let c\ and C2 be the 

classes in H*(X, Q) of the traces of the special Schubert cycles in G ( 2 , 5 ) (see § 2 

below for the notation). One has H = cx . A simple computation (using (1.4)) gives 

H H 4 = oc2 , from which one can construct a class a G H 4 ( X , Q) Q with H • a ^ 0 . 

3) Condition (iv) in its current form has been shown to me by A. Bruno. In 

an earlier version I used a weaker condition (for n = 2k — 2 ): 

60 



(iv) ' the cohomology class of the suhvariety of X spanned by the lines passing 

through a general point is proportional fo Ha . 

Using (1.4) one shows that this cohomology class is equal to ^ H • H n , so that 

(iv) ' is essentially equivalent to the result of prop. 1 (in particular, (iv) implies 

(iv) ' )• 

2. Complete intersections 

Let X be a smooth complete intersection in P n + r of degree (<f 1 ? . . . , dr) and 

dimension n > 3 , with n > 2 ^ (d , - — 1) — 1 . To prove the theorem, we can assume 

in view of (1.1) that X is general; then the variety of lines (resp. conies, resp. twisted 

cubics) contained in X has the expected dimension: see for instance [E-S], where the 

proof (given for the case of twisted cubics) adapts immediately to the easier cases 

of lines and conies. Let us check that the hypotheses of Proposition 1 are satisfied. 

Condition (i) holds by the weak Lefschetz theorem. One has Kx = —fcH , with k = 

n + 1 — ]T)(<ii — 1) ; therefore the inequality on n ensures that (ii) holds. The space 

H n ( X , Q) is nonzero except for odd-dimensional quadrics [D], so condition (iii) holds 

as well. Finally if H n ( X , Q) is of dimension 2 for n even, it is of type ( § , § ) ; by 

[D] this is possible only for even-dimensional quadrics, which gives (iv). 

Therefore the quantum cohomology of X is given by Proposition 1; to achieve 

the proof of the Theorem it remains to compute the number / i (X) = ^2ip . Recall 

that dip is the number of lines in X meeting two general linear spaces of codimen-

sion n ~ p and k + p — 1 respectively (Remark 1). This number has been computed 

by Libgober [L]; I will give here a different proof. 

Let V be a complex vector space, of dimension N ; let us denote by G = G ( 2 , V ) 

the Grassmannian of lines in the projective space P ( V ) 1 . On G we have a tauto

logical exact sequence 

0 S — > ( 9 G ® c V —> Q 0 , 

where the sub- and quotient bundles S and Q are of rank 2 and N — 2 respectively. 

The Chern classes c 1 ? . . . , C N - 2 of Q are represented by the special Schubert 

cycles: 

C p z z c l { £ € G | f n H p + 1 ^ 0 } 

where H p + 1 is a fixed linear subspace of P ( V ) of codimension p + 1. In particular, 

the subvariety of lines in G meeting two general linear spaces of codimension p + 1 

and q + 1 has cohomology class cp cq . 

1 We use the naive convention, i.e. P(V) is the variety of lines in V . 
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Let / G S(*V* be a homogeneous polynomial of degree d on P ( V ) . It defines 

by restriction a global section / of S dS* , which vanishes exactly at the points of 

G where the corresponding line is contained in the hypersurface / = 0 . In other 

words, the subvariety of lines contained in this hypersurface is the zero locus of 

/ G H°(G, S dS*) . If / is general enough, it has the expected codimension d+ 1, 

and therefore its cohomology class is the top Chern class C d + i ( S d S * ) . Hence the 

cohomology class of the variety of lines contained in our complete intersection X is 

Q 1 + 1 ( S d l S * ) . . . c d r + i ( S d r S * ) . Therefore we find 

£P = ^ J Q 1 + i ( S d l S * ) . . . Q r + i ( S d r S * ) c n _ 1 _ p c A ; _ 2 + p 

(recall that k = n + r + 1 — dt•). 

We will compute this number using the Chern classes x = Ci (S*) , y = ^ ( S * ) ? 

or rather the virtual classes a, ft such that x — a + ft , y = aft . The Schubert 

cycles cp are then given by 

1 + C l + . . . + c N _ 2 = (l-x + y)'1 = (1- a)'1^ - 0)-1 

= 1 (_a 0_\ 
a - 0 \ l - a 1 - / 9 / ' 

ap+l _ pp+l , d • T T • 
hence cp = ; the Chern class c<i + 1 (S d S*) isequalto \\(ja + {d - j)(3) . 

at — 3 A * 

To integrate we use the following lemma: 

Lemma.— Lei P e C [ Q ! , ^ ] be a symmetric homogeneous polynomial of degree 

2(N — 2) (so that P(ce, /3) is a polynomial of maximum degree in the Chern classes 

x and y) . Then / G P ( a , / 3 ) is the coefficient of a n ' 1 ft^'1 in - f ( a - ft)2 P(a , /5) . 

This is probably well-known; let me give a quick proof for the sake of complete-

ness. Put Cp = — — for all p. The (usual!) cohomology algebra of G is 

the algebra of symmetric polynomials in a, ft , modulo the ideal generated by C N _ I 

and CN [G]. Consider the linear form which associates to a symmetric polynomial 

P(a , ft) the coefficient of a N _ 1 / 3 N _ 1 in —\{ai — ft)2 P(a , ft) . It vanishes on the 

ideal ( C N - I , C N ) and on the polynomials of degree < 2N — 4 , hence factors through 

a linear form £ : H 2 N ~~ 4 (G, Q ) ~> Q , necessarily proportional to JQ . Let us evaluate 

these two forms on the polynomial c ^ _ 2 • One has (a — ft)2 c ^ _ 2 = ( a N _ 1 — / 3 N _ 1 ) 2 , 

hence £(c^_2) -- 1; on the other hand J G c ^ _ _ 2 ^ s *he number of lines in P ( V ) 

through 2 points, that is 1 . This proves the lemma. 

Let us apply the lemma to the polynomial F(a, ft) c n - \ - p Ck-2+p , where 
e - l 

F(a, ft) = cij oP fte~i is a symmetric homogeneous polynomial of degree e := 
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J2(di + 1) • One has 

(a - &? cn_x_v ck_2+p = (an~P - l3n-p) (ak-1^ - 1 

Since N = n + r + 1, the coefficient of Q ' N _ 1 / ? N _ 1 in (a — J3)2 F(a, ¡3) c n _ i _ p C f c _ 2 + P 

is 2 a r - k + i — 2ar+p ; if moreover F(a,fl) is divisible by (AJ3)R , the first coeffi

cient is zero (recall that k > % > 1 ) . Applying this to the polynomial F(a,/3) = 

Q 1 + 1 ( S r f l S * ) . . . cdr+1(S
drS*) we get LP - a r + p , that is 

n+l—k _. R D{ 

(2.1) £ € p OT+P^—P = - IH j ( i a+ (d,- - j ) /?) . 

r 

Taking q? = /3 = 1 gives / i (X) = TP — e/̂ 1' , which achieves the proof of the 

1=1 

Theorem. Note that Libgober's formula (2.1) gives explicit expressions for the 

£ p ' s , for instance 

r 

(2.2) £o = Y[di\ 
i=i 

(2.3) '.=]!*!( E ^ y 1 ) . 
I < j < d -

and so on. 

3, Application I: enumerative formulas 

Let X be a smooth projective manifold satifying the hypotheses of Proposition 

1; it follows from that Proposition that all the triple products ( H p , H g , H r ) 2 can be 

computed in terms of the integers £ p . If the variety of lines, conies or twisted cubics 

in X has the expected dimension, this gives some nice enumerative formulas which 

we are going to describe. 

Let p, ç, r be positive integers < n such that p + q + r = n + k ; we arrange 

them so that p < q < r . Since 2k > n by hypothesis this implies p < k and 

k < p + q < 2k (hence q > k). Therefore 

q — k q — k 

Hp • H 9 = H p • (H« - ( ] T > ) H ^ f c ) = (^(X) - £ > ) H p + 9 _ f c , 
»=o ¿=0 
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q—k 

hence ( H p , H „ H r ) 1 = ( H p • Hq j H r ) = d ( , i (X) - £ • 

Using the equstlities £{ —• £njri-k-i a n d the convention £{ = 0 for i > n + 1 — k , 

we find 

Proposition 2 .— Assume that the variety of lines contained in X has the expected 

dimension n + k — 3 . Zei p, r 6e positive integers such that p < q < r < n and 

p + q + r = n + 2k. The number of lines in X meeting three general linear spaces 
n — q 

of codimension p , q and r respectively in P n + r is d £{ . 

Actually this could also be obtained by a computation in the Grassmannian as 

in § 2. This is probably also the case for the next results, though the computation 

would be much more involved. 

Let us look at conies. Let p, q, r be positive integers such that p + q + r = 

n + 2k ; as above we assume p < q < r < n . Moreover we will assume k < n , which 

excludes only the trivial case of quadrics [K-Oj. This implies p < k and therefore 
n — q 

2k<p + q<3k. We have as before H p • H g = ( ] T £t) H p + < ? ~ f c ; since W^~k = 

7 = 0 
n — r 

H p + ( ? _fc + £j) H n _ r , we obtain 

3=0 
n — q n — r 

(H p , H „ H r } 2 = (H p • H, I H r ) = d ( ^ U) tj) • 

¿=0 j=0 

Proposition 3 A s s u m e that X is not a quadric, and that the variety of conies 

contained in X has the expected dimension n + 2k — 3 . Let p, q, r be positive inte

gers such that p < q < r < n and p + q + r = n + 2k. The number of conies in X 

meeting three general linear spaces of codimension p , q and r respectively in P n + r 

n—q n—r 

i=0 j=Q 

This has to be taken with a grain of salt in the case p = 1 , q = r = n , because 

every hyperplane meets a conic twice, so the above number must be divided by 2 . 

Since H n is d times the class of a point we find that the number of conies in X 

through 2 general points is ^ , where £q is the number of lines through a general 

point in the intersection of X with a general linear space of codimension k — 2 . For 

complete intersections formula (2.2) gives: 

Corollary.— Let X be a smooth complete intersection of degree (d\,... ,dr) in 

P n + r , with n --- 2Y2{di — 1) — 1 . The number of conies in X passing through 2 

1 r 

general points is ^Jj[(^'-)2 -
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Example .— Let X be a cubic threefold, P, Q two general points in X , L, M two 

general lines. We find that there are 6 conies in X through P and Q - a fact that 

can easily be checked geometrically (the line ( P , Q ) meets X along a third point R ; 

conies in X through P and Q are in one-to-one correspondence with lines through 

R ) . Similarly from Proposition 3 we find 14 conies through P meeting L and M . 

The computation for twisted cubics is very similar. Let p, q, r be positive 

integers with p < q < r < n and p + q + r = n + 3k. Since 2k > n this implies 

p > k and p + q > k + n . We have 

p—k q—k 

H P • H, = (H* - (J2 H P - F C ) • (H 9 - (J2 ij) w~k) 
t=0 j=0 

q — k p — k p — k q — k 

= ( M ( x ) 2 - / / ( x ) £ / . , - M ( x ) + (E*)(I>)) RP+9~2k 

j = 0 t = 0 t = 0 j = 0 

p — k q — k p-j-q — 3k 

= ( f i ( X ) - E 4 M X ) - ] [ > ) ) ( H P + f f - 2 * + ( E ^ m ) H p + f f _ 3 * ) 
?=0 j=0 m=0 

Reasoning as above we get: 

Proposition 4 .— Assume that the variety of twisted cubics contained in X has the 

expected dimension n + — 3 . Let p, q, r be positive integers such that p < q < r 

< n and p + q + r — n + 3k „ The number of twisted cubics in X meeting three 

general linear spaces of codimension p } q and r respectively in P n + r is 

n—p n — q n — r 

dCL^ (E';) (E£-) • 
2=0 j=0 m=0 

In particular: 

Corollary.— Let X be a smooth complete intersection of degree ( c / l 5 . . . , dr) in 

P n + r , with n — 3 ^2(di — 1) — 3 Then the number of twisted cubics in X passing 

through 3 general points is — \\(dil)3 • 

Example .— Going back to our cubic threefold we find that the number of twisted 

cubics through 3 general points is 24 ; this can be checked geometrically, as shown 

to me by S. Verra. 

4 . Application II: the primitive cohomology 

So far we have only considered the subalgebra of H*(X, Z) generated by H . 

In this last section I would like to look at the remaining part. Because of the 
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relations (R) , the only interesting triple product which appears is ( H ^ , « , for 

a, 9 € H n ( X , Z ) 0 . Since Uk • a = (H* - £0) • a = -£0a , we get 

(4.1) (H f c , a, /3) = (H f c • a | /3) = -£0 (a | 0) • 

Let us translate this geometrically using (1.4). We suppose given a smooth 

subvariety Y of X , of codimension k and degree dy , such that the variety T of 

lines in X meeting Y is smooth, of dimension n — 2 . For instance we can take for 

Y a general linear section of codimension k in X ; if k — n — 1, we can take for Y 

a line. The correspondence 

q 
R — > X 

P with R := { ( L , x) G T x X | x G L } 

r 

gives rise to a homomorphism = p*q* : H n ( X , Z) —» H n ~ 2 ( T , Z) . By definition 

this is a morphism of Hodge structures, i.e. (pc maps H P , 9 ( X ) into E P - 1 ' 9 - 1 (r) 

for p + q = n . 

Propos i t ions . - One has (<p(a) \ <p{p)) = - ^ p (<* I P) for a,/? G H n ( X , Z ) G . 

Let us choose a desingularization F of the variety of lines in X ; as above it 

has the expected dimension n + k — 3 . We denote by U the natural family of lines 

above F and by q : U —> X the natural map. The moduli space M.\ of degree 1 

maps P 1 —> X has a natural smooth compactification, namely A4\ = U x p U x p U ; 

the map ti \ AA\ —y X (0 ^ i ^ 2) is obtained by composing the projection Pt+i 

with q . The inverse image of Y under eo is then identified with the fibered product 

R Xp R , in such a way that the evaluation map e2 : R X r R —> X is qopi . (1.4) 

yields 

{Y,a,P)1 = / e\a e\p . 
JRxrR 

Since R is a P 1 -bundle over T and the class g*H is transversal to the fibres, 

the map A : H n ~ 2 ( r , Z ) 0 H n ( T , Z ) —> H W ( R , Z ) given by A ( 7 , £ ) = p*7.9*H+p*J 
is an isomorphism, which satisfies p*A(7,$) = 7 . Let us write 

q*a = p>(a) . <f H + p V , = pV(/?). 9 *H + p*/?' . 

Let 7r = pop ! == p o p 2 be the projection of R Xp R onto V . One has 

el a =• p*q*& = n*<p(a) p*q*H + 7r*af , and similarly for e^P . 

For degree reasons the last terms disappear in the product e[a. e^P , and we get 
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JhxL 

where L is a general line intersecting Y . The value of the integral is obviously 1 ; 

since the cohomology class of Y is , the result follows from (4.1) . 

Example Let us go back to our favorite example, the cubic threefold, taking for 

Y a generic line in X . Then F is a smooth curve; the map <p : H 3 ( X , Z) —> H 1 (T , Z) 

gives rise to a morphism $ ; JX —> JF , where JT is the Jacobian of T and JX the 

intermediate Jacobian of X (see e.g. [C-G]); the formula (<p(&) \ <p(P)) ~ ~~2 (a \ ¡3) 

for a,/3 G H 3 ( X , Z ) given by Proposition 5 means that the principal polarization 

of JF induces twice the principal polarization of JX . One deduces easily from this 

that the intermediate Jacobian JX is isomorphic (as a principally polarized Abelian 

variety) to the Prym variety associated to T and the natural involution of F which 

maps a line L to the third line cut down on X by the 2-plane spanned by Y and 

L - a fundamental fact for the geometry of the cubic threefold, due to Mumford 

(see Appendix C of [C-G]). 
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