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ABSTRACT 

These are notes from introductory lectures given at the Ecole Normale in Paris and at the 

Strasbourg meeting dedicated to the memory of Claude Itzykson. 

I review in considerable detail and in a hopefully pedagogical way the work of Seiberg 

and Witten on N = 2 supersymmetric 51/(2) gauge theory without extra matter. This pre­

sentation basically follows their original work, except in the last section where the low-energy 

effective action is obtained emphasizing more the relation between monodromies and differen­

tial equations rather than using elliptic curves. 

To appear in the Proceedings of the "61. Rencontre entre Physiciens Théoriciens 

et Mathématiciens", Strasbourg, France, December 1995 

dedicated to the memory of Claude Itzykson 
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Ce texte reprend une prépublication du Laboratoire de Physique Théorique de l'Ecole 
Normale Supérieure de Décembre 1995 - LPTENS-95/53, hep-th@xxx/9601007. 

87 



1. Introduction 

Although a quite old one, the notion of duality has become most central in field and 

string theory during the last year and a half. The major breakthrough in field theory was the 

paper by Seiberg and Witten [1] considering the pure N = 2 supersymmetric SU(2) Yang-

Mills theory. This work was then generalized to other gauge groups [2,3] and to theories 

including extra matter fields [4]. In the same time, it became increasingly clear that dualities 

in string theories play a maybe even more fascinating role (for a brief review see e.g. [5] or [6]). 

Rather than attempting to give an overview of the situation, in the present notes I will try 

to give a pedagogical introduction to the first paper by Seiberg and Witten [1] . Several other 

introductions do exist [7], and I hope that the present notes complement them in a useful way. 

The idea of duality probably goes back to Dirac who observed that the source-free Maxwell 

equations are symmetric under the exchange of the electric and magnetic fields. More precisely, 

the symmetry is E —> J3, B —• —JE, or F^v —• — \e^p(TFp(J. (Here e^p^ is the flat-space 

antisymmetric e-tensor with e 0 1 2 3 = + 1 and 77^ has signature ( 1 , — 1 , — 1 , — 1 ) . ) To main­

tain this symmetry in the presence of sources, Dirac introduced, somewhat ad hoc, magnetic 

monopoles with magnetic charges qm in addition to the electric charges qe, and showed that 

consistency of the quantum theory requires a charge quantization condition qmqe — 27rn with 

integer n. Hence the minimal charges obey qm = y-. Duality exchanges qe and </m, i.e. qe and 

Now recall that the electric charge qe also is the coupling constant. So duality exchanges 

the coupling constant with its inverse (up to the factor of 27r), hence exchanging strong and 

weak coupling. This is the reason why we are so much interested in duality: the hope is to 

learn about strong-coupling physics from the weak-coupling physics of a dual formulation of 

the theory. Of course, in classical Maxwell theory we know all we may want to know, but this 

is no longer true in quantum electrodynamics. 

Actually, quantum electrodynamics is not a good candidate for exhibiting a duality sym­

metry since there are no magnetic monopoles, but the latter naturally appear in spontaneously 

broken non-abelian gauge theories [8]. Unfortunately, electric-magnetic duality in its simplest 

form cannot be a symmetry of the quantum theory due to the running of the coupling con­

stant (among other reasons). Indeed, if duality exchanges a(A) <-» (where a(A) = ^ ^ y ) 

at some scale A, in general this won't be true at another scale. This argument is avoided if 

the coupling does not run, i.e. if the /^-function vanishes as is the case in certain (N = 4) 
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supersymmetric extensions of the Yang-Mills theory. This and other reasons led Montonen 

and Olive [9] to conjecture that duality might be an exact symmetry of AF = 4 susy Yang-Mills 

theory. A nice review of these ideas can be found in [10]. 

Let me recall that a somewhat similar duality symmetry appears in the two-dimensional 

Ising model where it exchanges the temperature with a dual temperature, thereby exchanging 

high and low temperature analogous to strong and weak coupling. For the Ising model, the sole 

existence of the duality symmetry led to the exact determination of the critical temperature 

as the self-dual point, well prior to the exact solution by Onsager. One may view the existence 

of this self-dual point as the requirement that the dual high and low temperature regimes can 

be consistently "glued" together. Similarly, in the Seiberg-Witten theory, as will be explained 

below, duality allows us to obtain the full effective action for the light fields at any coupling (the 

analogue of the Ising free energy at any temperature) from knowledge of its weak-coupling limit 

and the behaviour at certain strong-coupling "singularities", together with a holomorphicity 

requirement that tells us how to patch together the different limiting regimes. 

Let me give an overview of how I will proceed. N — 2 supersymmetry is central to the 

work of Seiberg and Witten and to the way duality works, so we must spend some time in 

the nqxt section to review those notions of supersymmetry that we will need, including the 

formulation of the N — 2 super Yang-Mills action. In section 3, I will discuss the Wilsonian 

low-energy effective action corresponding to the (microscopic) N = 2 super Yang-Mills action 

for the gauge group SU(2). The original SU(2) gauge symmetry has been broken down to 

/7(1) by the expectation value a of the scalar field <j> contained in the N — 2 multiplet, and the 

effective action describes the physics of the remaining massless U(l) susy multiplet in terms 

of an a priori unknown function T(a). N — 2 supersymmetry constrains T to be a (possibly 

multivalued) holomorphic function. Different vacuum expectation values a, or rather different 

values of the gauge-invariant vacuum expectation value u — (tr (p2) lead to physically different 

theories. So u parametrizes the space of inequivalent vacua, called the moduli space. 

In section 4, I will discuss how one defines the duality transformations and show that 

duality inverts a certain combination r of the effective coupling constant and the effective 

theta angle. I will also discuss the spectrum of massive states (BPS mass formula). Let me 

insist that this duality is an exact symmetry of the abelian low-energy effective theory, not of 

the microscopic SU(2) theory. This is different from the Montonen-Olive conjecture about an 
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exact duality symmetry of a microscopic gauge theory. 

In section 5, we will study the behaviour of the low-energy effective theory at certain 

singular points in the moduli space, i.e. at certain values of the parameter u where a magnetic 

monopole or a dyon (an electrically and magnetically charged state) becomes massless, leading 

to a singularity of the effective action. These singularities translate into certain monodromies of 

a ~ {(f>) and its dual partner ap = d^c^. In section 6, we put everything together, and I show 

how to obtain a(u) and ajj(u) and hence J7(a) from the knowledge of these monodromies. 

Then the low energy effective action is known and the theory solved for all values of the 

effective coupling constant r = d ^ { a ^ . Section 6 is the only part where the presentation 

does not follow the logic of Seiberg and Witten's paper, but I rather emphasize the relation 

between monodromies and differential equations, and obtain a(u) and aj)(u) as solutions of a 

hypergeometric equation. I then show how this fits into the reasoning of Seiberg and Witten 

using elliptic curves. In a concluding section 7, I mention some of the developments that 

followed the wTork of Seiberg and Witten described in these notes. 

2. Some notions of supersymmetry 

Clearly, I cannot give a complete discussion of the theory of N — 2 supersymmetry, see 

e.g. ref. [11]. Instead, I will introduce just as much as I believe is necessary to understand the 

basic features of the N — 2 supersymmetric Yang-Mills theory. Maybe I should stress that all 

of the physics will be in four dimensional Minkowski space, so the supersymmetries all refer 

to the standard D = 4 case. A standard Dirac spinor then has four complex components and 

transforms reducibly under the action of the (covering group 5/(2, C) of the) Lorentz group. It 

is more convenient to break such a Dirac spinor into pieces each having 2 complex components 

and transforming irreducibly. These two-component spinors are denoted xa a n ( l Xa — (xa)* 

according to their Lorentz transformation properties. Dealing with two-component spinors, 

one also encounters the matrices cr̂  and a*1: {cr^aa being the unit matrix for ¡1 — 0 and the 

Pauli matrices a1 for // = i — 1,2,3, while for one has —a1 instead. For completeness, 

I mention that one also needs the antisymmetric tensor ea^ with e 0 1 = +1 and its inverse 

to raise and lower spinor indices. The convention for contracting indices is ipx = ^aXa a n d 

= ^aXa-
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2.1. UNEXTENDED SUPERSYMMETRY 

The simplest, unextended supersymmetry (called N — 1 susy in contrast with the extended 

N > 1 susys) can be represented on a variety of multiplets of fields involving bosons and 

fermions. One of the simplest representations involves a complex scalar field (f> and a two-

component spinor ipa (a = 1,2). They form the so-called chiral scalar multiplet. I do not 

write the susy transformations since we do not need them here (see [11]). To write down 

susy invariant Lagrangians (actions) it is convenient to assemble <fi and ip into a superfield. 

Therefore one introduces anticommuting varaiables 9a and 9^ and writes 

<D = cj>(y) + V2B^(y) + e2F(y) (2.1) 

where = x11 + IBaH and 6$ = Ba^a, B2 = BB = 0a0a = -29l92, BoW = Baa*J«. (Notice 

that B2 is used to denote BB as well as the second component of 9. It should be clear which 

one is meant, and almost always it is BB.) $ is a chiral superfield. One also needed to include 

a field F that will turn out to be an auxiliary field. Expanding the y-dependence (and using 

9lBl = B2B2 = 0) one finds 

$ =<p(x) + i9a»Bd»4>{x) - -B2B2d2<p{x) + V26i>(x) 
4 (2-2) 

-~92{d^{x)a^B) + B2F{x) . 
v 2 

A supersymmetry invariant action then is given by the superspace integral 

1 J d 4 x d 2 0 d 2 0 $ + $ . (2.3) 

The ^-integrations are defined such that only the term proportional to B2B2 in $ + $ gives a 

non-vanishing result. (One has / d29A299292 = 4.) Then (2.3) becomes 

j d 4 x ( d ^ t * - ifa^d^ + F+F) . (2.4) 

We see that the simple $ + $- te rm has produced the standard kinetic terms for a complex 

scalar <j> and the spinor rj). F is an auxiliary field which can be set equal to zero by its equa­

tion of motion. Supersymmetry invariant interactions can be generated by a superpotential 

Jd 4.x [/ A29 W ( $ ) + h .c ] where W ( $ ) depends only on $ and not on <I>+. 
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Another supersymmetry multiplet is the vector multiplet that contains a (massles gauge) 

vector field and its superpartner Xa (gaugino). They are combined together with an 

auxiliary field D into a superfield V as* 

V = -QCJHA^ + i02(9X) - i62(6X) + \e2e2D . (2.5) 

We will be interested in the case of non-abelian gauge symmetry where A^, and hence A, A and 

D are in the adjoint representation: A^ = A^TAI [Ta,T&] = fabcTc, etc. From the superfield V 

one defines another (spinorial) superfield WA as 

W = ( _ a + 0D- ia^OF^ + 0 V v M A ) (y) (2.6) 

(again, y» = x* + z0<7"0), where a*" = \{<r*av - <jva% = d»AV - - ig[A^Av], 

V^A = d^X — ig[Ap, A] and g is the gauge coupling constant. The corresponding superspace 

formula is 

Wa = ~D2 (eWDae-W) . (2.7) 

Here Da and are the superspace derivatives d/d6a + a n d —d/d6a — ¿ ^ ¿ , 0 ° ^ . 

The supersymmetric Yang-Mills action then simply is (one has J &26 92 — —2) 

~ Y d 4 s d 2 0 t r WAWA = J d 4 xtr —^FpuF**" + '-F^F^ - iX^V^X + \D2 . (2.8) 

In addition to the standard Yang-Mills term — ̂ F^F^ one has also generated a term ^F^F^ 

which, after integration, gives the instanton number. It should appear in the ctction multiplying 

the ^-parameter (not to be confused with the anticommuting 0-variables of superspace!) and 

with a real coefficient. Hence if one introduces the complex coupling constant 

0 47TZ 

r = 7T + — 2.9 
2tt gl 

* Actually the form given here is the one obtained after fixing the Wess-Zumino gauge in the general real 

superfield V using V —> V + A + A + where A is a chiral superfield. 
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then the following real action precisely does what one wants: 

— I m T /*d 4 xd 2 #t r WaWa =\[dixtr --FliVF>iV - i\a»V ~\ +-D2 

16, [ J J g2J I 2 J ( 2 L Q ) 

with the jP2-term and the instanton number conventionally normalized. 

The matter field $ can be minimally coupled to the Yang-Mills field by putting it in some 

representation of the gauge group, say the adjoint, and replacing (2.3) and (2.4) by 

l- j d 4 * d 2 0 d 2 0 t r $ + e - 2 » v $ 

= J d4xtr ( | V ^ | 2 - z ^ V ^ + F + F \ / 5 i ^ + { A , ^ } + v/2i^[A,^]) . 

(2.H) 

In addition to the appearance of the covariant derivatives we also see explicit couplings 

between </>, ip and A, D as required by supersymmetry. 

2.2. T H E N = 2 SUPER Y A N G - M I L L S ACTION 

N = 2 supersymmetry combines all of the fields if) and A into a single susy multiplet. 

Of course, this means that all fields must be in the same representation of the gauge group as 

A^, i.e. in the adjoint representation. This multiplet contains two spinor fields %t> and A on 

equal footing. So the simplest guess for the N = 2 super Yang-Mills action is a combination 

of (2.10) and (2.11) with relative coefficients such that the two kinetic terms for if) and A have 

the same coefficients. Integrating by parts one of them, we see that we have to add (2.10) and 

p- times (2.11). It is by no means obvious that the resulting sum has N = 2 supersymmetry, 

but one can check that it does. Thus the N — 2 super Yang-Mills action is 

S = / d 4 x [im (4-d2#tr WaWa) + A / d 2 0d 2 0t r $ + e " 2 ' v $ 
J 4 9 J J (2.12) 

- I m tr J d ^ x ^ J d29WaWa+ j d2ed2d<S>+e-2gV<$> . 

Note that a non-trivial superpotential W ( $ ) is not allowed by N = 2 supersymmetry. 
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An important point concerns the auxiliary fields in 8: 

S a u x = 4 / - d 4 * t r ^D2-g<f>+{D,<j>} + F+F . (2.13) 

Solving the auxiliary field equations and inserting the result back into the action gives 

Saux = ~ J dAX-2tv {[<t>+A]f (2.14) 

which shows that the bosonic potential is V(<j>) = ^tr ( [^ + ,<^] ) 2 > 0. As is well known, 

a ground state field configuration <̂o with V(<£o) > 0 does break supersymmetry. In other 

words, unbroken susy requires a ground state (vacuum) with V(<f>o) — 0. Note that this does 

not imply (/>o = 0. A sufficient and necessary condition is that <̂o and (f)^ commute. 

The N — 2 supersymmetry of (2.12) can be rendered manifest by using a N — 2 superspace 

notation. I will not go into any details and simply quote some relevant formulas. In addition 

to the anticommuting 9a,0^ of N = 1 susy, one now needs a second set of anticommuting 

0a^6a. One introduces the N = 2 chiral superfield 

* = $(y ,0) + y/20aWa(y,9) + 9a9aG(y,9) (2.15) 

where = x" + %9aH + i№9 = y" + %9oW and 

G(y, 9) = - | j d29 [$(y - i9a0,9,9)]+ exp [~2gV(y - i9a9,9,9)) (2.16) 

with $(y ,0) and $ (x ,0 ,0 ) a s g i v e n in (2.1) and (2.2) and as given in (2.6). The d29-

integration is meant to be at fixed y. \t is the N = 2 analogue, of a chiral superfield, subject to 

the constraint (2.16) necessary in order to eliminate certain unphysical degrees or freedeom. 

The N = 2 superspace notation "implies" that the following action is N = 2 susy invariant: 

Im 4- [ dixd29d29-tr q>2 . (2.17) 
J 2 J v ; 

Carrying out the d29-integration yields precisely the action (2.12). 
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Note that the integrand in (2.17) only depends on not on \I>+. More generally one can 

show that N = 2 supersymmetry constrains the form of the action to be 

4 - I m / dAxd2ed26T($) (2.18) 
107T J 

where T\ called the N — 2 prepotentia!, depends only on $ and not on This is referred 

to as holomorphy of the prepotential. For the N — 2 super Yang-Mills action (2.12) or (2.17) 

one simply has 

^ ( * ) = ^ c l a s s ( * ) = ^ t r r* 2 . (2.19) 

The quadratic dependence on $ is fixed by renormalisability. Below we will consider low-

energy effective actions. Then the only constraint is N = 2 susy, translated as holomorphicity 

of J7. In TV = 1 superspace language, the general action (2.18) reads [12] 

-Urn f d*x \ f d20Fab(*)WaaWh

a 

+ / d26d20 (VE~ 2^) 

where Fa($) = Fab{$) = o^dVb
 a n ( * w ^ e r e °">b a r e Lie algebra indices, so that $ = 

$ a T a , Wa = W£Ta with tr TaTb = Sai,. This concludes our quick tour through supersymmetric 

Yang-Mills theories. 

3. Low-energy effective action of N — 2 susy SU(2) Yang-Mills theory 

Following Seiberg and Witten [1] we want to study and determine the low-energy effective 

action of the N — 2 susy Yang-Mills theory with gauge group SU(2). The latter theory is 

the microscopic theory which controls the high-energy behaviour. It is renormalisable and 

well-known to be asymptotically free. The low-energy effective action will turn out to be quite 

different. 

95 



3.1. L O W - E N E R G Y EFFECTIVE ACTIONS 

There are two types of effective actions. One is the standard generating functional T[ip] of 

one-particle irreducible Feynman diagrams (vertex functions). It is obtained from the standard 

renormalised generating functional W[tp] of connected diagrams by a Legendre transformation. 

Momentum integrations in loop-diagrams are from zero up to a UV-cutoff which is taken to 

infinity at the end. T[(p] = R [//,<£>] also depends on the scale ¡1 used to define the renormalized 

vertex functions. 

A quite different object is the Wilsonian effective action Swt/^V?]- ^ LS defined as T [//,<£>], 

except that all loop-momenta are only integrated down to ¡1 which serves as an infra-red cutoff. 

In theories with massive particles only, there is no big difference between Swt/^ <p] and ip] 

(as long as /i is less than the smallest mass). When massless particles are present, as is the case 

for gauge theories, the situation is different. In particular, in supersymmetric gauge theories 

there is the so-called Konishi anomaly which can be viewed as an IR-effect. Although Sw[[i, <p] 

depends holomorphically on //, this is not the case for R[/i, </?} due to this anomaly. 

3.2. T H E SU(2) CASE, MODULI SPACE 

What Seiberg and Witten achieved, and what will occupy the rest of these notes, is to 

determine the Wilsonian effective action in the case where the microscopic theory one starts 

with is the SU(2), N — 2 super Yang-Mills theory (2.12) or (2.17). As explained above (see 

(2.14)), classically this theory has a scalar potential V((j>) = ^tr ([<^>+,<£>])2. Unbroken susy 

requires that V{(j>) — 0 in the vacuum, but this still leaves the possibilities of non-vanishing <j> 

with [</>+, cf>] = 0. We are interested in determining the gauge inequivalent vacua. A general cj> is 

of the form c/>(x) = \ Y^j=i (aj(x) + ^j(x)) aj with real fields a,j(x) and bj(x) (where I assume 

that not all three ay vanish, otherwise exchange the roles of the ay's and fty's in the sequel). By 

a 57/(2) gauge transformation one can always arrange a\(x) — a^ix) — 0. Then {(p. </>+] = 0 

implies b\(x) = boix) = 0 and hence, with a — a$ + ¿63, one has (f> = ^aa^. Obviously, in the 

vacuum a must be a constant. Gauge transformation from the Weyl group (i.e. rotations by 7r 

around the 1- or 2-axis of SU(2)) can still change a —a, so a and —a are gauge equivalent, 

too. The gauge invariant quantity describing inequivalent vacua is | a 2 , or tr 02, which is the 

same, semiclassically. When quantum fluctuations are important this is no longer so. In the 
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sequel, we will use the following definitions for a and u: 

u = (tr <f>2) , (<f>) = ±aa 3 . (3.1) 

The complex parameter u labels gauge inequivalent vacua. The manifold of gauge inequivalent 

vacua is called the moduli space M of the theory. Hence u is a coordinate on A4, and A4 is 

essentially the complex u-plane. We will see in the sequel that M. has certain singularities, 

and the knowledge of the behaviour of the theory near the singularities will eventually allow 

the determination of the effective action S\y. 

Clearly, for non-vanishing (</>), the 5(7(2) gauge symmetry is broken by the Higgs mecha­

nism, since the ^-kinetic term |VM^>| 2 generates masses for the gauge fields. With the above 

conventions, A^, 6 = 1,2 become massive with masses given by | ra 2 = p-|ga| 2, i.e m — y/2a. 

Similarly due to the </>, A,t/> interaction terms, 4>h,\h, 6 = 1 , 2 become massive with the same 

mass as the A^, as required by supersymmetry. Obviously, A 3 ,*/? 3 and A 3 , as well as the 

mode of <j) describing the flucuation of (j) in the ^-direction, remain massless. These mass-

less modes are described by a Wilsonian low-energy effective action which has to be N — 2 

supersymmetry invariant, since, although the gauge symmetry is broken, SU(2) —* ¿7(1), the 

N — 2 susy remains unbroken. Thus it must be of the general form (2.18) or (2.20) where 

the indices a, b now take only a single value (a, 6 = 3) and will be suppressed since the gauge 

group is (7(1). Also, V in (2.20) is in the adjoint representation and it is easy to see that from 

e-2gV = \ - 2gV + ... only the 1 can contribute. In other words, in an abelian theory there 

is no self-coupling of the gauge boson and the same arguments extend to all members of the 

N = 2 susy multiplet: they do not carry electric charge. Thus for a Z7(l)-gauge theory, from 

(2.20) we get simply 

~ I m jd4x- | y #0P9{<b)W°Wa + jd2Od20$+F'($) . (3.2) 
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3.3. M E T R I C ON MODULI SPACE 

Consider the second term of the effective action (3.2). In component fields this term reads 

¿ I m jd4* [F"{<t>)\d»4>\2 ~ iT"{^^d^ + ...] (3.3) 

where + . . . stands for non-derivative terms. Similarly, the first term in (3.2) gives 

j^Imj^x fi^^-^jF^F^ - ¿ ñ - ^ " W A ^ A + . . . . (3.4) 

If we think of these kinetic terms as a four dimensional sigma-model, then the J7'1^) or rather 

ImjF"^) that appears for all of them plays the role of a metric in field space. By the same 

token it defines the metric in the space of (inequivalent) vacuum configurations, i.e. the metric 

on moduli space. From the </>-kinetic term one sees that a sensible definition of the metric on 

the moduli space is (a denotes the complex conjugate of a) 

ds2 = Im.7 r / /(a)dada = Imr(a)dada (3-5) 

where r(a) = ^ " ( a ) is the effective (complexified) coupling constant in analogy with (2.19). 

The (j-model metric ~ ImJ7"^) has been replaced on the moduli space M by its 

expectation value in the vacuum corresponding to the given point on A"f, i.e. by Im^ '^a ) = 

Imr(a) . 

The question now is whether the description of the effective action in terms of the fields 

and the function J7 is appropriate for all vacua, i.e. for all value of u, i.e. on all of 

moduli space. In particular the kinetic terms (3.3), (3.4), or what is the same, the metric (3.5) 

on moduli space should be positive definite, translating into lmr(a) > 0. However, a simple 

argument shows that this cannot be the case: since J7(a) is holomorphic, Imr(a) = Im d 

is a harmonic function and as such it cannot have a minimum, and hence (on the compactified 

complex plane) it cannot obey lmr(a) > 0 everywhere (unless it is a constant as in the classical 

case). The way out is to allow for different local descriptions: the coordinates a,a and the 

function J7(a) are appropriate only in a certain region of M. When a singular point with 

lmr(a) —̂  0 is approached one has to use a different set of coordinates a in which Imf(a) is 

non-singular (and non-vanishing). This is possible provided the singularity of the metric (3.5) 

is only a coordinate singularity, i.e. the kinetic terms of the effective action are not intrinsically 

singular, which will be the case. 
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3.4. A S Y M P T O T I C FREEDOM AND THE ONE-LOOP FORMULA 

Classically the function T is given by ^ T C I A S S # 2 . The one-loop contribution has been 

determined in [13]. The combined tree-level and one-loop result is 

T ^ ) = ^ \ J ^ . (3.6) 

Here A 2 is some combination of p? and numerical factors chosen so as to fix the normalisation of 

^pert- Note that due to non-renormalisation theorems for N — 2 susy there are no corrections 

from two or more loops to the Wilsonian effective action 5\v and (3.6) is the full perturbative 

result. There are however non-perturbative corrections that will be determined below. 

For very large a the dominant contribution when computing 5\y from the microscopic 

SU(2) gauge theory comes from regions of large momenta (p ~ a) where the microscopic 

theory is asymptotically free. Thus, as a —* oo the effective coupling constant goes to zero, 

and the perturbative expression (3.6) for T becomes an excellent approximation. Also u ~ ^a2 

in this limit* Thus 

* ,>~£ e ' l , ,£ 
. , 9 x as u —» oc . (3.7) 

r ( « ) ~ - ^ + 3 j 

Note that due to the logarithm appearing at one-loop, r(a) is a multi-valued function of 

a2 rsj 2u. Its imaginary part, however, lmr(a) ~ ^rln^j is single-valued and positive (for 

a2 -> oo). 

• One can check from the explicit solution in section 6 that one indeed has ^a2 — u — 0(1/u) as u — oc. 
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4. Duality 

As already noted, a and a do provide local coordinates on the moduli space A4 for the 

region of large u. This means that in this region $ (and $ + ) and Wa are appropriate fields 

to describe the low-energy effective action. As also noted, this description cannot be valid 

globally, since I m j ^ a ) , being a harmonic function, must vanish somewhere, unless it is a 

constant - which it is not. Duality will provide a different set of (dual) fields and W$ that 

provide an appropriate description for a different region of the moduli space. 

4 . 1 . D U A L I T Y TRANSFORMATION 

Consider the form (3.2) of the effective action. Define a field dual to $ by 

$D = f'№ (4.1) 

and a function FD^D) dual to by 

?D(*D) = - * (4-2) 

where, of course, !FF

D($D) means ATD{^D)I^D- These duality transformations simply con­

stitute a Legendre transformation^ FD{^D) — ^ ( $ ) ~~ $$Z) with defined as in (4.1). 

Equation (4.2) then is the standard inverse relation that follows from the Legendre transform. 

Using these relations, the second term in the action (3.2) can be written as 

Im f dAxd20d2e<f>+f!($)-Im fd*xd29d26 (-T'D{$D)) + $D 
J \ (4.3) 

- im / d4xd2ed2e$lfl

D($D). 

We see that this second term in the effective action (3.2) is invariant under the duality trans­

formation (4.1), (4.2). 

t This was pointed out to me by Frank Ferrari. 
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The reader will recognise the similarity of (4.1), (4.2) with a canonical transforma­

tion. Indeed = dJ2'/<9$ ressembles a (complex) momentum (remember that the ef­

fective action is ~ j d*xd20 d 2 0 e q . (2.18)), so that the second term in (3.2) is like 

Im J q*p = | j(p*q — q*p) and the duality transformation is qj) = p and pjj = —q which 

clearly is a canonical transformation. It is well-known that canonical transformations preserve 

the phase-space measure. As a consequence, if the functional integral is formulated as a phase-

space integral (~ J V$VIlexip[f $11 — 77]), under appropriate conditions, the Jacobian for the 

integration measure is unity for canonical transformations. The present duality transformation 

is a particularly simple canonical transformation and we expect the Jacobian to be one. 

Next, consider the ^ , ' ( $ ) W ' r Q W c r t e r m in the effective action (3.2). While the duality 

transformation (4.1), (4.2) on $ is local, this will not be the case for the transformation of 

Wa. Recall that W contains the U(l) field strength i 7 ^ , cf. eq. (2.6). This F^v is not arbitrary 

but of the form d^Av — d^A^ for some A^. This can be translated into the Bianchi identity 

\&vpfTdvFp<, = duF^ = 0. The corresponding constraint in superspace is lm(DaWa) = 0 

where Da is the same superspace derivative as in (2.7). This constraint is a consequence of the 

abelian version of the expression (2.7) of W in terms of V. In the functional integral one has 

the choice of integrating over V only, or over Wa and imposing the constraint Im (DQWa) = 0 

by a real Lagrange multiplier superfield which we call Vp: 

JvVexp j ^ I m J d4xd20f"($)WaWa 

~ JVWVVDexp [Y^ 1* 1
 / d * x ( / d 2 0 f " ( * ) W a W a + ̂  Jd20d20VDDaWQ^j . 

(4.4) 

Observe that 

/d20d20VDDaWQ = - /d20d20 DQVDWa = + f d20D2{DaVDWQ) 
J / J

f (4.5) 

= / d20{D2DaVD)Wa = - 4 / d20{WD)aWa 

where we used DgWa = 0 and where the dual Wjy is defined from V& in analogy with the 

abelian version of (2.7) as (Wj))a = ~\DlDaVj). Then one can do the functional integral 
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over W and one obtains 

/ W P E X P [ I ^ I M / d 4 x d 2 e { - j * w w z W D a ) \ • ( 4 - 6 ) 

This reexpresses the (N = 1) supersymmetrized Yang-Mills action in terms of a dual 

Yang-Mills action with the effective coupling r(a) = Jr,\a) replaced by ~ ^~y- Recall that 
T ( a ) ~ + ^ 7 a ) , s o T ~r g e n e r a l i z e s the inversion of the coupling constant discussed 

in the introduction. Also, it can be shown that WD actually describes the electromagnetic dual 

F^v —> so that the manipulations leading to (4.6) constitute a duality transformation 

that generalizes the old electromagnetic duality of Montonen and Olive (cf.. the introduction). 

Expressing the —JTF^ in terms of one sees from (4.2) that Fp^jj) = — jjj^- = — ; ^ $ y 

so that 

-A-,=TD{aD). (4.7) 
T(a) 

The whole action (3.2) can then equivalently be written as 

A - I m jd*x ]^f&HF№D)W%WDa + j#0#0*%PD{*D) . (4.8) 

4.2. T H E DUALITY GROUP 

To discuss the full group of duality transformations of the action it is most convenient to 

write it as 

— I m / d*xd20^^WQWQ + — I d*xd26d2e ( $ + $ £ - $ + $ ) . (4.9) 
167T J d$ 32z7r J 

While we have shown in the previous subsection that there is a duality symmetry 

( V ) - ( : : ) ( • ; ) • 
the form (4.9) shows that there also is a symmetry 

( V M : : ) ( ? ) • - • 
Indeed, the second term in (4.9) remains invariant since h is real, while the first term in (4.9) 
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gets shifted by 

- J - I m / d 4 x d 2 0 WaWa = /tfxFavF"" = -2TT6Z/ (4.12) 
l07T J 16?r J 

where z/ £ Z is the instanton number. Since the action appears as e1^ in the functional integral, 

two actions differing only by 2TTZ are equivalent, and we conclude that (4.11) with integer b is 

a symmetry of the effective action. The transformations (4.10) and (4.11) together generate 

the group ¿7(2, Z). This is the group of duality symmetries. 

Note that the metric (3.5) on moduli space can be written as 

ds 2 = Im(dapdá) = ^(dadap — dapda) (4.13) 

where (</>D) = ^CLDA3
 a n d Q>D — dT(a)lda, and that this metric obviously also is invariant 

under the duality group 5/(2, Z) 

4 . 3 . M O N O P O L E S , DYONS AND THE BPS MASS SPECTRUM 

At this point, I w7ill have to add a couple of ingredients without much further justification 

and refer the reader to the literature for more details. 

In a spontaneously broken gauge theory as the one we are considering, typically there are 

solitons (static, finite-energy solutions of the equations of motion) that carry magnetic charge 

and behave like non-singular magnetic monopoles [8] (for a pedagogical treatment, see [14]). 

The duality transformation (4.10) constructed above exchanges electric and magnetic degrees 

of freedom, hence electrically charged states, as would be described by hypermultiplets of our 

N = 2 supersymmetric version, with magnetic monopoles. 

In N — 2 susy theories there are twro types of multiplets: small (or short) ones (4 helicity 

states) and large (or long) ones (16 helicity states). Massless states must be in short multiplets, 

while massive states are in short ones if they satisfy m2 = 2|ZJ 2, Z being the central charge of 

the N = 2 susy algebra, or in long ones if ra2 > 2\Z\2 [15]. The states that become massive by 

the Higgs mechanism must be in short multiplets since they were before the symmetry breaking 

(if one imagines turning on the scalar field expectation value), and the Higgs mechanism cannot 

generate the missing 16 — 4 = 12 helicity states. For purely electrically charged states one 
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has Z — ane where ne is the (integer) electric charge. Duality then implies that a purely 

magnetically charged state has Z = a$nm where nm is the (integer) magnetic charge. A state 

with both types of charge, called a dyon, has Z — ane + a # n m since the central charge is 

additive. All this applies to states in short multiplets, so-called BPS-states. The mass formula 

for these states then is 

m2 = 2\Z\2 , Z = ( n m , n e ) ^ ^ . (4.14) 

/ a /A f a D \ 
It is clear that under a Sl(2, Z) transformation M = I € 57(2, Z) acting on 1 J, 

\ 7 SJ V a ) 
the charge vector gets transformed to ( n m , ne)M = (n ' m , n'J which are again integer charges. In 

particular, one sees again at the level of the charges that the transformation (4.10) exchanges 

purely electrically charged states with purely magnetically charged ones. It can be shown 

[16,10,1] that precisely those BPS states are stable for which nm and ne are relatively prime, 

i.e. for stable states ( n m , n e ) ^ (qm,qn) for integer m,n and q ^ ± 1 . 

5- Singularities and Monodromy 

In this section we will study the behaviour of a(u) and aj)(u) as u varies on the moduli space 

M. Particularly useful information will be obtained from their behaviour as u is taken around 

a closed contour. If the contour does not encircle certain singular points to be determined 

below, a(u) and aj)(u) will return to their initial values once u has completed its contour. 

However, if the u-contour goes around these singular points, a(u) and CLD(U) do not return 

to their initial values but rather to certain linear combinations thereof: one has a non-trivial 

monodromy for the multi-valued functions a(u) and aj)(u). 

5.1. T H E M O N O D R O M Y AT INFINITY 

This is immediately clear from the behaviour near u — oo. As already explained in section 

3.4, as u —» oc , due to asymptotic freedom, the perturbative expression for T{a) is valid and 

one has from (3.6) for ajj — dJ7(a)/da 

i ( a2 \ 

AD(U) = ~ A (In + 1 J , u —• oo . (5.1) 

Now take u around a counterclockwise contour of very large radius in the complex u-plane, 
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often simply written as u —> e2mu. This is equivalent to having u encircle the point at oo on 

the Riemann sphere in a clockwise sense. In any case, since u = \a2 (for u —> oo) one has 

a —> —a and 

i ( e2ma2 \ 
ap - + -(-a) ( l n ~ ^ 2 ^ 1 ) = ~ a ° + 2 a ( 5 - 2 ) 

or 

/aD(u)\ (aD{u)\ ( - 1 2 \ 
; / -+ Moo / x , Moo = . (5.3) 

Clearly, u — oo is a branch point of aj)(u) ~ ^\ /2u (ln-^- + l ) . This is why this point is 

referred to as a singularity of the moduli space. 

5.2. H O W M A N Y SINGULARITIES? 

Can u — oo be the only singular point? Since a branch cut has to start and end somewhere, 

there must be at least one other singular point. Following Seiberg and Witten, I will argue that 

one actually needs three singular points at least. To see why two cannot work, let's suppose 

for a moment that there are only two singularities and show that this leads to a contradiction. 

Before doing so, let me note that there is an important so-called U(l)^-symmetry in 

the classical theory that takes <J> -> e2LA<J), W -> emW, 9 -> e"*0, 0 e"*0, thus d2fl -> 

e~2iad29, d29 -+ e~2iad20 and hence * -> e 2 m # , so that the classical action (2.12) or 

(2.17) is invariant under this global symmetry. More generality, the action (2.18) will be 

invariant if J7^) —> e 4 u*,F(\P). This symmetry is broken by the one-loop correction and also by 

instanton contributions. The latter give corrections to J7 of the form $ 2 J2T=i ck (A 2 / \ I> 2 )"*, 

and hence are invariant only for ( e

4 ? Q f ) 2 ^ = 15 i.e. a = ^ p , n £ Z . Hence instantons 

break the [/(l)#-symmetry to a dicrete Zs- The one-loop corrections behave as J^^2 In | r —> 

eAlOL ^ ^ ^ 2 l n ^ - — ^ ^ 2 ^ . As in the paragraph before eq. (4.12) one shows that this only 

changes the action by 2TTV ( ^ ) where v is integer, so that again this change is irrelevant as 

long as ĵr = n or a — ^jp. Under this Zs-symmetry, <F> —> e%IRN/2<F>, i.e. for odd n one has 

<J)2 —> — (F)2. The non-vanishing expectation value u = (tr <J>2) breaks this Zs further to Z 4 . 

Hence for a given vacuum, i.e. a given point on moduli space there is only a Z^symmetry left 

from the [7(l)#-symmetry. However, on the manifold of all possible vacua, i.e. on M, one has 

still the full Zg-symmetry, taking u to — u. 
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Due to this global symmetry u —> —it, singularities of should come in pairs: for each 

singularity at u — UQ there is another one at u = —UQ. The only fixed points of u —> — u are 

m = oc and u = 0. We have already seen that w = oo is a singular point of M. So if there are 

only two singularities the other must be the fixed point u — 0. 

If there are only two singularities, at u — oc and г¿ = 0, then by contour deformation 

("pulling the contour over the back of the sphere")* one sees that the monodromy around 0 

(in a counterclockwise sense) is the same as the above monodromy -around oc: Mo = Moo-

But then a2 is not affected by any monodromy and hence is a good global coordinate, so one 

can take u = \a2 on all of A4, and furthermore one must have 

«X> = ^ ( l n ^ + l ) + * ( « ) { b A ) 

a = y/2u 

where g(a) is some entire function of a2. This implies that 

daD i ( a2 \ dg 

T = 1 7 = ; r A J + 3J + d ^ ( 5 ' 5 ) 

The function g being entire, Im j | cannot have a minimum (unless constant) and it is clear 

that Im r cannot be positive everywhere. As already emphasized, this means that a (or rather 

a2) cannot be a good global coordinate and (5.4) cannot hold globally. Hence, two singularities 

only cannot work. 

The next simplest choice is to try 3 singularities. Due to the u —> —u symmetry, these 

3 singularities are at oc,uo and — UQ for some UQ ^ 0. In particular, u — 0 is no longer a 

singularity of the quantum moduli space. To get a singularity also at u — 0 one would need at 

least four singularities at o c , u q , — a n d 0. As discussed later, this is not possible, and more 

generally, exactly 3 singularities seems to be the only consistent possibility. 

So there is no singularity at u = 0 in the quantum moduli space M. Classically, however, 

one precisely expects that u — 0 should be a singular point, since classically u — | a 2 , hence 

* It is well-known from complex analysis that monodromies are associated with contours around branch 

points. The precise from of the* contour does not matter, and it can be deformed as long as it does not 

meet another branch point. Our singularities precisely are the branch points of a(u) or ao(u). 
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a = 0 at this point, and then there is no Higgs mechanism any more. Thus all (elementary) 

massive states, i.e. the gauge bosons A ; \ , A 2 and their susy partners 0 1 , ^ 2 , A 1 , A 2 become 

massless. Thus the description of the lights fields in terms of the previous Wilsonian effective 

action should break down, inducing a singularity on the moduli space. As already stressed, 

this is the clasical picture. While a —> oo leads to asymptotic freedom and the microscopic 

SU(2) theory is weakly coupled, as a —> 0 one goes to a strong coupling regime where the 

classical reasoning has no validity any more, and u ^ \a2. By the BPS mass formula (4.14) 

massless gauge bosons still are possible at a — 0, but this does no longer correspond to u = 0. 

So where has the singularity due to massless gauge bosons at a = 0 moved to? One might 

be tempted to think that a — 0 now corresponds to the singularities at u — ±uo , but this is 

not the case as I will show in a moment. The answer is that the point a = 0 no longer belongs 

to the quantum moduli space (at least not to the component connected to u = oo which is the 

only thing one considers). This can be seen explicitly from the form of the solution for a(u) 

given in the next section. 

5 .3 . T H E STRONG COUPLING SINGULARITIES 

Let's now concentrate on the case of three singularities at u = oo, UQ and — UQ. What is the 

interpretation of the (strong-coupling) singularities at finite u — ±UQ? One might first try to 

consider that they are still due to the gauge bosons becoming massless. However, as Seiberg and 

Witten point out, massless gauge bosons would imply an asymptotically conformally invariant 

theory in the infrared limit and conformal invariance implies u — (tr (f2) — 0 unless tr <j? has 

dimension zero and hence would be the unity operator - which it is not. So the singularities 

at u = ±t*o 0) do not correspond to massless gauge bosons. 

There are no other elementary N — 2 multiplets in our theory. The next thing to try is 

to consider collective excitations - solitons, like the magnetic monopoles or dyons. Let's first 

study what happens if a magnetic monopole of unit magnetic charge becomes massless. From 

the BPS mass formula (4.14), the mass of the magnetic monopole is 

m 2 = 2\aD\2 (5.6) 

and hence vanishes at aj) = 0. We will see that this produces one of the two stron-coupling 

singularities. So call the value of u at whiche ap vanishes. Magnetic monopoles are described 
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by hypermultiplets M of A r = 2 susy that couple locally to the dual fields <&p and W p , just 

as electrically charged "electrons" would be described by hypermultiplets that couple locally 

to $ and W. So in the dual description we have <frp, Wj) and M , and, near T*o, ~ ( $ Z ) ) is 

small. This theory is exactly N = 2 susy QED with very light electrons (and a subscript D on 

every quantity). The latter theory is not asymptotically free, but has a /^-function given by 

where gp is the coupling constant. But the scale fi is proportional to ajj and 2

4 / " \ is Tj) for 

0D = 0 (of course, super QED, unless embedded into a larger gauge group, does not allow for 

a non-vanishing theta angle). One concludes that for u w or ap « 0 

d i i / r o\ 
« L H — T D = T D — m a p . (5.8) 

dap 7T 7T 

Since rp = d ^ ~ ^ this can be integrated to give 

a w ao H—aplnap (u ~ i/o) (5-9) 
7T 

where we dropped a subleading term — ̂ ap . Now, ap should be a good coordinate in the 

vicinity of uo, hence depend linearly* on u. One concludes 

<*>D ~ co(u - UQ) 
i (5.10) 

a « ao H—co(w — uo) ln(w — uo) . 

From these expressions one immediately reads the monodromy as u turns around uo counter­

clockwise, u — UQ —• e27ri(u — uo): 

( : H - 0 ^ ( : ) • * • - ( _ , : ) • < - > 

To obtain the monodromy matrix at u = —uo it is enough to observe that the contour 

around u = oo is equivalent to a counterclockwise contour of very large radius in the complex 

• One might want to try a more general dependence like ao ~ CQ(U — uo)k with k > 0. This leads to a 
monodromy in 5 / (2 , Z) only for integer k. The factorisation condition below, together with the form of 
M(nm, ne) also given below, then imply that k = 1 is the only possibility. 

1 0 8 



plane. This contour can be deformed into a contour encircling UQ and a contour encircling —UQ, 

both counterclockwise. It follows the factorisation condition on the monodromy matrices* 

Moo = M t t 0 M - t t 0 (5.12) 

and hence 

M - « o = ( i g 3 ) ' ( 5 l l 3 ) 

What is the interpretation of this singularity at u = —wo? TO discover this, consider the 

behaviour under monodromy of the BPS mass formula ra2 = 2 | Z | 2 with Z given by (4.14), 

( aD \ . / <*>D\ (ao\ 

J. The monodromy transformation I I —> M 1 | can be 
a J \ a ) \ a ) 

interpreted as changing the magnetic and electric quantum numbers as 

( n m , n e ) - » ( n m , n e ) M . (5.14) 

The state of vanishing mass responsible for a singularity should be invariant under the mon­

odromy, and hence be a left eigenvector of M with unit eigenvalue. This is clearly so for the 

magnetic monopole: (1,0) is a left eigenvector of I ^ I with unit eigenvalue. This simply 

reflects that ra2 = 2 |ap | 2 is invariant under (5.11). Similarly, the left eigenvector of (5.13) with 

unit eigenvalue is (nm,ne) = (1 , —1) This is a dyon. Thus the sigularity at —UQ is interpreted 

as being due to a ( 1 , - 1 ) dyon becoming massless. 

More generally, ( n m , n c ) is the left eigenvector with unit eigenvalue''" of 

/ 1 + 2nmne 2n2

e \ 

which is the monodromy matrix that should appear for any singularity due to a massless dyon 

with charges ( n m , n e ) . Note that Moo as given in (5.3) is not of this form, since it does not 

correspond to a hypermultiplet becoming massless. 

f There is an ambiguity concerning the ordering of MUo and M _ U o which will be resolved below. 
J Of course, the same is true for any (qnmyqne) with q G Z, but according to the discussion in section 4.3 

on the stability of BPS states, states with q ±1 are not stable. 
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One notices that the relation (5.12) does not look invariant under u —> —u, i.e UQ —• —UQ 

since MUo and M _ t t 0 do not commute. The apparent contradiction with the Z2-symmetry is 

resolved by the following remark. The precise definition of the composition of two monodromies 

as in (5.12) requires a choice of base-point u — P (just as in the definition of homotopy groups). 

Using a different base-point, namely u = —P, leads to 

Moo=M.U0MU0 (5.16) 

/ 3 2 \ 

instead. Then one would obtain M-UQ = I j , and comparing with (5.15), this would 

be interpreted as due to a (1,1) dyon. Thus the Z2-symmetry u —> — u on the quantum moduli 

space also acts on the base-point P, hence exchanging (5.12) and (5.16). At the same time it 

exchanges the ( 1 , - 1 ) dyon with the (1,1) dyon. 

Does this mean that the (1,1) and ( 1 , - 1 ) dyons play a privileged role? Actually not. If 

one first turns k times around oo, then around uo, and then k times around OO in the opposite 

sense, the corresponding monodromy is Af 0 O MUoM^ = [ = M ( l , — 2k) and 
Y - 2 1 + 4k J 

f - l - 4 k 2 + Sk + 8k2\ 
similarly M~kM-UoM^ = I ^ 3 + 4& j = ~ J ~ 2fc). So one sees that 

these monodromies correspond to dyons with nm — 1 and any ne G Z becoming massless. 

Similarly one has e.g. M^QM-UoM~Q

k = M(l - 2k, - 1 ) , etc. 

Let's come back to the question of how many singularities there are. Suppose there are p 

strong coupling singularities at wi, 112,... up in addition to the one-loop perturbative singularity 

at u — OO. Then one has a factorisation analogous to (5.12): 

Moo = MUlMU2...MUp (5.17) 

with Mu, = M ( N S , 4 2 ) ) of the form (5.15). It thus becomes a problem of number theory to 

find out whether, for given p, there exist solutions to (5.17) with integer and For 

several low values of p > 2 it has been checked [2] that there are no such solutions, and it 

seems likely tha,t the same is true for all p > 2. 
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6. The solution : determination of the low-energy effective action 

So far we have seen that ajj(u) and a(u) are single-valued except for the monodromies 

around oo,uo and — UQ. A s is well-known from complex analysis, this means that ajj(u) and 

a(u) are really multi-valued functions with branch cuts, the branch points being oo ,^o and 

—u$. A typical example is f(u) = y/uF(a, 6, c; u), wrhere F is the hypergeometric function. The 

latter has a branch cut from 1 to oo. Similarly, y/u has a branch cut from 0 to oo (usually taken 

along the negative real axis), so that f(u) has two branch cuts joining the three singular points 

0,1 and oo. When u goes around any of these singular points there is a non-trivial monodromy 

between f(u) and one other function g(u) = udF(al\bl,c';u). The three monodromy matrices 

are in (almost) one-to-one correspondence with the pair of functions f(u) and g(u). 

In the physical problem at hand one knows the monodromies, namely 

and one wants to determine the corresponding functions an{u) and a(u). As will be explained, 

the monodromies fix aj)(u) and a(u) up to normalisation, which will be determined from the 

known asymptotics (5.1) at infinity. 

The precise location of uo depends on the renormalisation conditions which can be chosen 

such that uq = 1 [1]. Assuming this choice in the sequel will simplify somewhat the equations. 

If one wants to keep wo, essentially all one has to do is to replace u ± 1 by = ^ ± 1. 

6.1. T H E DIFFERENTIAL EQUATION A P P R O A C H 

Monodromies typically arise from differential equations with periodic coefficients. This is 

well-known in solid-state physics where one considers a Schrodinger equation with a periodic 

potential* 

r d 2 1 
- ^ ~ 2 + V ( x ) HX) = Q , V(x + 2ir) = V{x) . (6.2) 

There are two independent solutions ^>\(x) and ^{x). One wants to compare solutions at x 

and at x + 2TT. Since, due to the periodicity of the potential V, the differential equation at 

• The constant energy has been included into the potential, and the mass has been normalised to | . 
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x + 2TT is exactly the same as at X, the set of solutions must be the same. In other words, 

ifri(x + 2TT) and 0 2 + 2TT) must be linear combinations of ip\(x) and 0 2 ( ^ ) -

^ ( * + 2*) = M ^ ( s ) (6.3) 

where M is a (constant) monodromy matrix. 

The same situation arises for differential equations in the complex plane with meromorphic 

coefficients. Consider again the Schrôdinger-type equation 

~&JrV{z) v ' ( z ) = 0 ( 6- 4 ) 

with meromorphic V(z), having poles at z\,... zv and (in general) also at oo. The periodicity 

of the previous example is now replaced by the single-valuedness of V(z) as z goes around any 

of the poles of V (with z — Z{ corresponding roughly to elx). So, as z goes once around any one 

of the z{, the differential equation (6.4) does not change. So by the same argument as above, 

the two solutions ifti(z) and 0 2 ( z ) , when continued along the path surrounding Z{ must again 

be linear combinations of $\{z) and ^(z): 

( ^ ) (* + e2"(* - *•")) = M i (II) <*) ( 6 - 5 ) 

with a constant 2 x 2-monodromy matrix Mi for each of the poles of V. Of course, one again 

has the factorisation condition (5.17) for Moo- It is well-known, that non-trivial constant 

monodromies correspond to poles of V that are at most of second order. In the language of 

differential equations, (6.4) then only has regular singular points. 

In our physical problem, the two multivalued functions aj)(z) and a(z) have 3 singularities 

with non-trivial monodromies at —1,+1 and oo. Hence they must be solutions of a second-

order differential equation (6.4) with the potential V having (at most) second-order poles 

precisely at these points. The general form of this potential is^ 

[ > 4[(*+l)* + ( z - l ) 2 ( z + l ) ( z - l ) J [ ' 

with double poles at —1,+1 and oo. The corresponding residues are —1(1 — Aj), — j ( l — A 2 ) 

f Additional terms in V that naively look like first-order poles ( ~ j ~ or cannot appear since they 

correspond to third-order poles at z — oc. 
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and — i ( l — A3). Without loss of generality, I assume A2 > 0. The corresponding differential 

equation (6.4) is well-known in the mathematical literature (see e.g. [17]) since it can be trans­

formed into the hypergeometric differential equation. It has appeared, among others, in the 

study of the (classical) Liouville three-point function and the determination of constant cur­

vature metrics on Riemann surfaces [18]. The transformation to the standard hypergeometric 

equation is readily performed by setting 

1>(z) = (z + l ) ^ 1 - X ' \ z - 1 ) 5 ( ! "
 A2) / ( I±T) . ( 6. 7 ) 

One then finds that / satisfies the hypergeometric differential equation 

x(l - x)f"(x) + [c - (a + b + l)x]f(x) - abf(x) = 0 (6.8) 

with 

a = i ( l - A i - A 2 + A 3 ) 

6 = i ( l _ A i - A 2 - A 3 ) (6.9) 

c = 1 - Ai . 

The solutions of the hypergeometric equation (6.8) can be written in many different ways due 

to the various identities between the hypergeometric function F(a ,6 , c\x) and products with 

powers, e.g. (1 — x)c~a~bF(c — a, c — 6, c; # ) , etc. A convenient choice for the two independent 

solutions is the following [17] 

ftfx) = (-x)~aF(a1a+ 1 - c,a + 1 - b; -) 

f2(x) = (1 - x)c-a-hF{c - a, c - 6, c + 1 - a - 5; 1 - x) . 

/1 and /2 correspond to Kummer's solutions denoted 1/3 and UQ. The choice of /1 and /2 is 

motivated by the fact that /1 has simple monodromy properties around x — 0 0 (i.e. z — 0 0 ) 

and /2 has simple monodromy properties around x = 1 (i.e. z — 1), so they are good candidates 

to be identified with a(z) and aj)(z). 

One can extract a great deal of information from the asymptotic forms of aj)(z) and 

a(z). As z —> 0 0 one has Vfz) ~ —| - r rS so that the two independent solutions behave 
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asy mptotically as z2^1 ± A s ) if A 3 ^ 0, and as yfz and y/zhiz if A3 = 0. Comparing with ( 5 . 4 ) 

(with u —> 0) we see that the latter case is realised. Similarly, with A3 = 0, as z —» 1, one has 

V(z) ~ —\ ^ ~ ^ 2 — ^(^Li) 2^) ? where I have kept the subleading term. From the logarithmic 
A2 

asymptotics (5.10) one then concludes A2 = 1 (and from the subleading term also — -f — ^r^)-

The Z'2-symmetry (z —• —z) on the moduli space then implies that, as z —* — 1, the potential 

V does not have a double pole either, so that also Ai = 1. Hence we conclude 

A 1 = A 2 = 1, A 3 = 0 ^ V W = - I I - T T i _ T y (6.11) 

and a — b — — | , c = 0. Thus from (6.7) one has ^1,2(2) — /1,2 (̂ O- One can then verify, 

using the formulas in ref. [17] (and denoting the argument again by u rather than z) that the 

two solutions 

/ \ • / / \ - u ~ U / l 1 . 1 - u\ 
aD(u) = ifoiy) = z — F I - , - , 2 ; — 2 ~ 1 

/ 1 1 2 \ ^ ' " ^ 
a(ti) = - 2 z ^ ( u ) - V^(u + 1; — J 

indeed have the required monodromies (6.1), as well as the correct asymptotics. 

It might look as if we have not used the monodromy properties to determine aj) and a 

and that they have been determined only from the asymptotics. This is not entirely true, of 

course. The very fact that there are non-trivial monodromies only at 0 0 , + 1 and —1 implied 

that aj) and a must satisfy the second-order differential equation (6.4) with the potential (6.6). 

To determine the \ { we then used the asymptotics of aj) and a. But this is (almost) the same 

as using the monodromies since the latter were obtained from the asymptotics. 

Using the integral representation [17] of the hypergeometric function, the solution (6.12) 

can be nicely rewritten as 

y/2 f dx y/x — u 

1 

1 
A/2 f dx \/x — u 

- 1 

(6.13) 

One can invert the second equation (6.12) to obtain u(a) and insert the result into aj)(u) 

to obtain aj)(a). Integrating with respect to a yields J7(a) and hence the low-energy effective 
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action. I should stress that this expression for J^(a) is not globally valid but only on a certain 

portion of the moduli space. Different analytic continuations must be used on other portions. 

6 . 2 . T H E A P P R O A C H USING ELLIPTIC CURVES 

In their paper, Seiberg and Witten do not use the differential equation approach just 

described, but rather introduce an auxiliary construction: a certain elliptic curve by means of 

which two functions with the correct monodromy properties are constructed. I will not go into 

details here, but simply sketch this approach. 

To motivate their construction a posteriori, we notice the following: from the integral rep­

resentation ( 6 . 1 3 ) it is natural to consider the complex x-plane. More precisely, the integrand 

has square-root branch cuts with branch points at + 1 , — 1, u and oc. The two branch cuts can 

be taken to run from —1 to + 1 and from w to oo. The Riemann surface of the integrand is 

two-sheeted with the two sheets connected through the cuts. If one adds the point at infinity 

to each of the two sheets, the topology of the Riemann surface is that of two spheres connected 

by two tubes (the cuts), i.e. a torus. So one sees that the Riemann surface of the integrand in 

( 6 . 1 3 ) has genus one. This is the elliptic curve considered by Seiberg and Witten. 

As. is well-known, on a torus there are two independent non-trivial closed paths (cycles). 

One cycle (72) can be taken to go once around the cut ( — 1 , 1 ) , and the other cycle (71) to go 

from 1 to u on the first sheet and back from u to 1 on the second sheet. The solutions aj)(u) 

and a(u) in ( 6 . 1 3 ) are precisely the integrals of some suitable differential A along the two cycles 

71 and 72: 

ajj— I>X , a — i> \ . A = ^ dx . 
/ / ' 2TT V x 2 - 1 
71 72 

( 6 . 1 4 ) 

These integrals are called period integrals. They are known to satisfy a second-order differentia] 

equation, the so-called Picard-Fuchs equation, that is nothing else than our Schrödinger-type 

equation ( 6 . 4 ) with V given by ( 6 . 1 1 ) . 

How do the monodromies appear in this formalism? As u goes once around + 1 , - 1 or 00. 

the cycles 7 1 , 7 2 are changed into linear combinations of themselves with integer coefficients: 

^ 7 1 ^ M ^ 7 1 ^ , A f e S / ( 2 , Z ) . (6,15) 
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This immediately implies 

with the same M as in (6.15). The advantage here is that one automatically gets monodromies 

with integer coefficients. The other advantage is that 

daD/du 
r ( u ) = "d^KT ( 6- 1 7 ) 

can be easily seen to be the r-parameter describing the complex structure of the torus, and as 

such is garanteed to satisfy 

Imr(w) > 0 (6.18) 

which was the requirement for positivity of the metric on moduli space. 

To motivate the appearance of the genus-one elliptic curve (i.e. the torus) a priori -

without knowing the solution (6.13) from the differential equation approach - Seiberg and 

Witten remark that the three monodromies are all very special: they do not generate all of 

5/(2, Z) but only a certain subgroup T(2) of matrices in 57(2, Z) congruent to 1 modulo 2. 

Furthermore, they remark that the it-plane with punctures at 1 , -1 , oo can be thought of as 

the quotient of the upper half plane H by T(2), and that H/Y(2) naturally parametrizes (i.e. 

is the moduli space of) elliptic curves described by 

y2 = (x2 - l)(x - u) . (6.19) 

Equation (6.19) corresponds to the genus-one Riemann surface discussed above, and it is then 

natural to introduce the cycles 7 1 , 7 2 and the differential A from (6.13). The rest of the 

argument then goes as I just exposed. 
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7. Conclusions and outlook 

In these notes, I have given a rather detailed, and hopefully pedagogical introduction to 

the work of Seiberg and Witten [1]. We have seen realised a version of electric-magnetic duality 

accompanied by a duality transformation on the expectation value of the scalar (Higgs) field, 

a <R* aj). There is a manifold of inequivalent vacua, the moduli space corresponding to 

different Higgs expectation values. The duality relates strong coupling regions in M. to the 

perturbative region of large a where the effective low-energy action is known asymptotically 

in terms of T. Thus duality allows us to determine the latter also at strong coupling. The 

holomorphicity condition from N = 2 supersymmetry then puts such strong constraints on 

J-{a), or equivalently on aj)(u) and a(u) that the full functions can be determined solely from 

their asymptotic behaviour at the strong and weak coupling singularities of M. 

There are a couple of questions one might ask, like what is the profound reason for the 

appearance of elliptic curves, or of the differential equation. It is intriguing to note that the 

latter with the potential (6.6) appears in conformal field theories as the null vector decoupling 

equation. It is satisfied by certain chiral conformal four-point correlation functions 

( V A 4 ( O O ) V A 3 ( 1 ) V A 2 ( 2 ) V A i ( 0 ) ) 

where the V A are chiral vertex operators and where the conformal dimensions Aj are de­

termined in terms of the Ai,A2,A3. Whether this is a pure coincidence or has some deeper 

meaning does not seem to be clear at the moment. 

Also, several generalisations of the pure SU(2) Yang-Mills theory exposed here have been 

studied. One is to add matter hypermultiplets [4], another is to consider pure Yang-Mills 

theory but for gauge groups different from SU(2) [2,3], or to allow for different gauge groups 

as well as matter [19]. Here let me only note that for the pure 5/7(3) theory, solving the 

condition [</>, </>"*"] = 0 leads to (j) = a\H\ + « 2 ^ / 2 where Hi are the two Cartan genera­

tors of 5(7(3), so that one has a two-complex dimensional moduli space, parametrized by 

0 1 , 0 2 or rather by u = (tr (j>2) and v = (tr <£3). The duals are ajji = i = 1,2. The 

monodromies in moduli space (i.e. the "(u,i;)-space) then act on the four-component object 

(aj)i(u,v),aj)2{v>,v),ai(uiv),a2(u,v)). They can be reproduced from period integrals of some 

hyperelliptic curve [2]. The corresponding (Picard-Fuchs) differential equations are two-partial 
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differential equations in u and v [2] with solutions given by Appel functions [17] that generalise 

the hypergeometric function to two variables. 

Last, but not least, I should mention that similar duality ideas in string theory have led 

to yet another explosion of this domain of theoretical physics. A particular nice link with the 

field theory discussed here has been made in [20] where the field theoretic duality is related to 

string dualities. 
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