USING ANTICOMMUTING VARIABLES

Alice Rogers

During the last twenty years or so a new kind of mathematics, whose objects are
indentified by the prefix ‘super” has been studied. This mathematics involves anti-
commuting variables in addition to commuting variables.

The motivation for such mathematics comes almost entirely from physics, parti-
cularly from the quantization of systems with Fermionic degrees of freedom and of
systems with gauge symmetry. The prefix 'super’ is derived from the idea of super-
symmetry in physics. The term supersymmetry is used to denote a symmetry which
mixes Bosonic and Fermionic degrees of freedom, that is to say, particles of integral
spin and particles with half integral spin. Bosonic fields obey canonical commuta-
tion relationships, so that Bosonic theories can be formulated in terms of functions
of conventional variable, while Fermionic fields obey canonical anticommutation re-
lations so that an analogous formulation of Fermionic fields involves functions of an-
ticommuting variables. Such a treatment of Fermions is particularly desirable when
considering supersymmetry, because the two types of field related by the symmetry
are then treated in a analogous fashion.

Anticommuting variables occur in the quantization of theories with symmetry
as a means of handling the constrained phase spaces which arise in such theories.
The constraints lead to a reduction in the dimension of the phase space, which can
effectively be obtained by including extra anticommuting dimensions. This is be-
cause Gaussian integrals of anticommuting variables introduce a determinant (the
Fadeev-Popov determinant) rather than an inverse determinant. Of course the ex-
tra dimensions are to be interpreted formally rather than as describing any physical
reality.

These notes briefly summarise the basic analysis of functions of anticommuting
variables. A more detailed account may be found (for instance) in [1], which also
describes some applications to geometry.

There are two philosophies in supermathematics; one is the concrete approach,
in which actual sets parametrised by commuting and anticommuting variables are
considered, and then functions between such sets analysed ; the other is more formal,
with the algebra of function being extended, rather than the spaces themselves. The
approach taken is partly a question of taste and partly a question of the particular
problem being considered - the two approaches being largely interchangeable [2,3].
In these notes the concrete approach will be taken.

The starting point is the infinite-dimensional Grassmann algebra Rs over the reals
with generators 1, 31, 32. .., and relations
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This algebra Rs is split into two parts Rs, and Rs,, with Rs, containing terms built
from an even number of genrators and Rs, those terms built from products of an
odd number of generators. Even elements of the algebra commute with all elements,
while odd elements anticommute with one another. The standard (m,n)— dimensio-
nal superspace (on which geometric objects such as supermanifolds may be locally
modelled) is the space Rg"™ product of (Rs,)™ and (Rs,)™ with typical element
(X', x™EN L E™)

The analysis of functions on the purely odd superspace R2™ is very simple; the

most general function considered takes the form

f(a1a"')£m): Z fpau
HEMn

where u = py ...y, is a multi-index with 1Tvp; < ... <y < n, My, denotes
the set of all such multi-indices (including the empty index) and &* = &*1 ... EHinl,
The coefficients f,, are constants - the space in which these are allowed to take values
(which might be the reals, the complex numbers or Rs) determining the particular
function space under consideration. Differentiation of such functions is defined by
the simple rule

W
% = (—D)TEM g g R if =

= 0 otherwise

Integration is more difficult; neither measure theory nor anti-differentiation leads
to any useful definition; the standard definition (due originally to Berezin [4]) is
formal with no notion of limit. The integral is simply defined by the rule

Jda‘ L dETF(E) =f1m

where f;__n, denotes the coefficient of the highest degree term in the expansion (*) of
f. This integral allows many standard techniques in functional analysis to be exten-
ded to the anticommuting case; for instance the kernel of a differential operator H is
the function H(&',...,&™n’,...,n") such that

H(EY ..., &) :Jdn‘ LomMHE L N ™MW

The trace can be obtained from the kernel by the formula

trace(H) = Jdn] ...n"H(—,7n),
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Since the delta function (or kernel of the identity operator) satisfies

n
Sm—¢&) = Jd“pew(iz P —&h)
j=1
Fourier transforms can defined which satisfy a simple Fourier inversion theorem.
On its own, analysis of functions of an anticommuting variable is a somewhat
trivial subject; bolted on to conventional analysis and geometry, some surprisingly
userful and powerful techniques can be developed; an example is the study of the
Dirac operator (making use of the fact that the operators p* = &' + 0/0¢&! satisfy the
Clifford algebra relations Y’ +ipt = 26Y which is described in [1].
The literature on supermathematics and supersynunetry is vast, and no attempt
will be made here to provide a complete bibliography. An account of supersymmetry
and the use of superspace techniques may be found in [5].
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