@article{RFM_1996__2_S1_7_0, author = {Chalendar, Isabelle}, title = {Alg\`ebres duales et classes $\protect \mathbb{A}_{n,m}$}, journal = {Femmes & math}, pages = {7--10}, publisher = {Association femmes et math\'ematiques}, year = {1996}, language = {fr}, url = {http://archive.numdam.org/item/RFM_1996__2_S1_7_0/} }
Chalendar, Isabelle. Algèbres duales et classes $\protect \mathbb{A}_{n,m}$. Femmes & math, 1er Forum des Jeunes Mathématiciennes (1996), pp. 7-10. http://archive.numdam.org/item/RFM_1996__2_S1_7_0/
[1] B. Beauzamy. Un opérateur sans sous-espace invariant : simplification de l’exemple de P. Enflo. Acta-Math., 144 :65-82, 1980. | MR | Zbl
[2] H. Bercovici. Factorization theorems and the structure of operators on Hilbert space. Ann. of Math., 128 :399-413, 1988. | MR | Zbl
[3] H. Bercovici, C. Foias, and C. Pearcy. Dual algebras with applications to invariant subspaces and dilation theory. In CBMS Regional conference series in mathematics, number 56. A.M.S., Providence, 1985. | MR | Zbl
[4] B. Chevreau, G. Exner, and C. Pearcy. Boundary sets for a contraction. J. Operator Theory, 34 :347-380, 1995. | MR | Zbl
[5] B. Chevreau. Survey of the class . preprint.
[6] G.R. Exnerf Young Soo Jo, Il Bong Jung. contractions : Dual operators algebra, Jordan models and multiplicity. to appear. | MR | Zbl
[7] P. Enflo. On the invariant subspace problem in Banach spaces. Acta-Math. | MR | Zbl
[8] M. Ouannasser. Sur les contractions dans la classe . J. Operator Theory, 28 :105-120, 1992. | MR | Zbl
[9] C. Read. A solution to the invariant subspace problem. Bulletin London Mathematical Society, 16 :337-401, 1984. | MR | Zbl
[10] B. Sz-Nagy and C. Foias. Harmonic analysis of operators on Hilbert space. North Holland, Amsterdam, 1970. | MR | Zbl