@article{RFM_2001__5_S1_33_0, author = {Pansu, Pierre}, title = {L{\textquoteright}{\oe}uvre math\'ematique de {Jacqueline} {Ferrand}}, journal = {Femmes & math}, pages = {33--44}, publisher = {Association femmes et math\'ematiques}, year = {2001}, language = {fr}, url = {http://archive.numdam.org/item/RFM_2001__5_S1_33_0/} }
Pansu, Pierre. L’œuvre mathématique de Jacqueline Ferrand. Femmes & math, Des femmes dans les mathématiques contemporaines (2001), pp. 33-44. http://archive.numdam.org/item/RFM_2001__5_S1_33_0/
[A] L.V. Ahlfors, Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen. Acta Soc. Sci. Fennicae , . | JFM
[Al] D.V. Alekseevski, Groups of transformations of Riemannian spaces. Mat. Sbornik , = Math. USSR Sbornik , . | MR | Zbl
[C] C. Caratheodory, Über die Begrenzung einfach zusammenhängender Gebiete. Math. Ann. , . | JFM | MR
[D] G. D’ambra, Lorentz manifolds with noncompact isometry group. Invent. Math. , . | MR | Zbl
[F1] J. Ferrand, Etude de la représentation conforme au voisinage de la frontière. Ann. Ec. Norm. Sup. Paris , . | Numdam | MR | Zbl
[F2] —, Etude de la correspondance entre les frontières dans la représentation conforme. Bull. Soc. Math. de France , | Numdam | MR | Zbl
[F3] —, Fonctions préharmoniques et fonctions préholomorphes. Bull. Sci. Math. , . | MR | Zbl
[F4] —, Etude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace. Ann. Ec. Norm. Sup. Paris , . | Numdam | MR | Zbl
[F5] —, Représentation conforme et transformations à intégrale de Dirichlet bornée. Cahiers Scientifiques, Fasc. 12, Gauthier-Villars, Paris . | Zbl
[F6] —, Application des méthodes de Hilbert à l’étude des transformations infinitésimales d’une variété différentiable. Bull. Soc. Math. de France , | Numdam | MR | Zbl
[F7] —, Transformations conformes et quasi-conformes des variétés riemanniennes compactes. Mém. Acad. Royale Belgique , . | Zbl
[F8] —, Invariants conformes globaux sur les variétés riemanniennes. J. Differen. Geom. , . | MR | Zbl
[F9] —, Etude d’une classe d’applications liées à des homomorphismes d’algèbres de fonctions. Duke Math. J. , . | MR | Zbl
[F10] —, Geometrical interpretation of scalar curvature and regularity of conformal homeomorphisms. P. 91-105 in “Differential Geometry and Relativity”, M. Cahen and M. Flato eds., D. Reidel, Dordrecht .
[F11] —, G. Martin &M. Vuorinen, Lipschitz conditions in conformally invariant metrics. J. d’Analyse Math. , . | MR | Zbl
[F12] —, The action of conformal transformations on Riemannian manifolds. Math. Ann. , . | MR | Zbl
[F13] —, Conformal capacities and extremal metrics. Pacific. J. Math. , . | Zbl
[F14] —, Convergence and degeneracy of quasiconformal maps of Riemannian manifolds. J. Analyse Math. , . | MR | Zbl
[G] M. Gromov, Rigid transformation groups. In “Géométrie Différentielle”, D. Bernard et Y. Choquet-Bruhat eds., Hermann, Paris . | MR | Zbl
[GGR] V. Goldshtein, L. Gurov & A. Romanov, Homeomorphisms that induce monomorphisms of Sobolev spaces. Israel J. Math. , . | MR | Zbl
[GP] M. Gromov & P. Pansu, Rigidity of lattices, an introduction. in “Geometric topology : recent developments”, Montecatini Terme 1990, P. de Bartolomeis and F. Tricerri eds, Lect. Notes in Math. Band , Springer, Berlin . | MR | Zbl
[Gr] H. Grötsch, Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit Zusammenhängende Erweiterung des Picardschen Satzes. Ber. Verh. Sächs. Akad. Wiss. Leipzig , . | JFM
[GR] V. Goldshtein &M. Rubin, Reconstruction of domains from their groups of quasiconformal autohomeomorphisms. Diff. Geom. and its Appl. , . | MR | Zbl
[H] J. Heinonen, A capacity estimate on Carnot groups. Bull. Sci. Math. , . | MR | Zbl
[HK] J. Heinonen & P. Koskela, From local to global in quasiconformal structures. Proc. Natl. Acad. Sci. USA , . | MR | Zbl
[K] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings. Marcel Dekker, Amsterdam . | MR | Zbl
[KP] R. Kulkarni & U. Pinkall, A canonical metric for Moebius structures and its applications. Math. Zeit. , . | MR | Zbl
[KR] A. Koranyi & M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. in Math. , . | MR | Zbl
[L] A. Lichnerowicz, Sur les transformations conformes d’une variété riemannienne compacte. C. R. Acad. Sci. Paris , . | MR | Zbl
[La] F. Labourie , Large group actions on manifolds. Proceedings of ICM Berlin, 1998. Doc. Math., J. DMV Extra Vol. ICM II, 371-380 (1998). | MR | Zbl
[M] Ch. Mercat, Holomorphie discrète et modèle d’Ising. Thèse, Université Louis Pasteur, Strasbourg, 142 p. (1998). | Zbl
[O] M. Obata, The conjectures on conformal transformations of Riemannian manifolds. Bull. Amer. Math. Soc. , . | MR | Zbl
[P] P. Pansu, Difféomorphismes de -dilatation bornée. A paraître aux Ann. Acad. Sci. Fennicae. | MR | Zbl
[S] R. Schoen, On the number of constant scalar curvature metrics in a conformal class. P. 311-320 in “Differential geometry. A symposium in honour of Manfredo do Carmo”, Rio de Janeiro 1988, Pitman . | MR | Zbl
[V] J. Väisälä, Lectures on -dimensional quasiconformal mappings. Lect. Notes in Math. Band , Springer, Berlin . | MR
[Z] R. Zimmer, Actions of semisimple groups and discrete subgroups. P. 1247-1258 in “Proc. Intern. Cong. Math. Berkeley 1986”, Vol. 2, Amer. Math. Soc., Providence . | MR | Zbl