Vitesse de convergence en théorie des probabilités

Christine Fricker

Le but de l'exposé est de présenter les problèmes et les résultats classiques liés à la vitesse de convergence vers l'équilibre de processus de Markov finis en les illustrant par des exemples de marches aléatoires sur des graphes, puis de les appliquer à l'étude d'un modèle issu des files d'attente, le modèle d'Erlang, qui a fait l'objet d'un travail commun avec Philippe Robert et Danielle Tibi [5].

Soit (X_n) une chaîne de Markov irréductible apériodique sur un ensemble fini E d'unique mesure d'équilibre $\pi = (\pi_i)_{i \in E}$.

Question : Quel est le temps d'atteinte de l'équilibre, i.e. à partir de quel n peut-on approximer la loi de X_n par π ?

Ce problème est intéressant si la mesure d'équilibre a une expression simple alors que les probabilités transitoires de la chaîne, utiles en pratique, sont difficiles à calculer. L'exemple de référence sera le suivant.

Définition: Une marche aléatoire sur un graphe G est une chaîne de Markov sur G telle que la transition de x à y se fait avec probabilité $p(x,y) = \frac{1}{d_z}$ si y est voisin de x, 0 sinon, d_x étant le degré de x ou nombre de voisins de x.

Si G est de degré constant, comme le tore \mathbb{Z}_N ou l'hypercube $\{0,1\}^N$ considérés dans la suite, la mesure d'équilibre est uniforme.

Soit d(t) l'écart entre la probabilité à l'instant t et la mesure d'équilibre, plus précisément

$$d(t) \stackrel{\text{def}}{=} \max_{x \in E} \|P_x(t) - \pi\|_{vt}$$

où $P_x(t)$ est la loi de X(t) quand X(0) = x et la norme utilisée est la norme en variation totale définie pour λ , et μ deux mesures sur l'ensemble fini E par

$$\|\lambda - \mu\|_{vt} = \sup_{A \subset E} |\lambda(A) - \mu(A)| = \frac{1}{2} \sum_{x \in E} |\lambda_x - \mu_x|.$$

En général, d(t) a un comportement typique : Remarquons que $d(t) \in [0,1]$. Pendant un certain temps $P_x(t)$ reste loin de la mesure d'équilibre π et d(t) est proche de 1, puis l'équilibre s'installe en un temps très court et d(t) devient voisin de 0. On définit ainsi le temps d'atteinte de l'équilibre $\tau_e = \inf\{t > 0, d(t) < 1/e\}$ où la valeur de la constante arbitraire 1/e dans]0,1[importe peu. Par ailleurs un résultat de Doeblin donne une décroissance exponentielle de $t \to d(t)$

$$d(t) \le Ce^{-t/\tau_r},$$

 τ_r étant appelé temps de relaxation. La vitesse de convergence vers l'équilibre est mesurée par ces deux quantités. On s'intéresse aux grands systèmes où |E| est une fonction croissante d'un N grand. On veut obtenir le comportement asymptotique des bornes de $d_N(t)$ et des temps de relaxation et d'atteinte de l'équilibre. Pour certaines chaînes de Markov, la décroissance vers l'équilibre se fait de façon brutale (voir Diaconis [3]) au sens suivant.

Définition : On dit qu'une suite de chaînes de Markov (X_n^N) possède la propriété de cut-off pour (a_N) si et seulement si

$$\lim_{N \to +\infty} d_N(ta_N) = \begin{cases} 1 & \text{si } t < 1 \\ 0 & \text{si } t > 1 \end{cases}.$$

Les méthodes pour estimer d(t) sont de trois types :

Géométrie (voir Diaconis et Strook [4]).

Si la chaîne de Markov (ou le processus de Markov) de matrice de transition (p(x, y)) est réversible i.e. $(\pi_x p(x, y))$ est symétrique, de valeurs propres par conséquent réelles comprises entre -1 et 1, 1 est valeur propre et on note β_1 la deuxième plus grande valeur propre. La proposition suivante donne que τ_r^{-1} est exactement $1 - \beta_1$, dit trou spectral.

Proposition

$$||P_x(t) - \pi||_{vt} \le \frac{1}{2} \sqrt{\frac{1 - \pi(x)}{\pi(x)}} e^{-(1-\beta_1)t}, \quad x \in E, t \in \mathbb{R}^+.$$

La majoration de d(t) passe donc par le calcul de β_1 , qui peut être obtenu par le principe de Rayleigh-Ritz. Remarquons que la connaissance de β_1 seul ne suffit pas à majorer d(t), ni à avoir une borne sur τ_e .

Pour le tore et l'hypercube, on a une expression exacte des valeurs propres et $\beta_1^N = \cos 2\pi/N$ (respect. 1-2/N). La proposition ci-dessus montre que $d_N(t) \leq \sqrt{N}e^{-2\pi^2t/N^2}/2$ d'où $\tau_e^N < N^2 \log N/(4\pi^2)$, respectivement $d_N(t) \leq 2^{N/2-1}e^{-2t/N}$ d'où $\tau_e^N < N^2(\log 2)/4$.

Analyse de Fourier (si E est un groupe) (voir Diaconis [2])

Définition: Si $p = (p_g)_{g \in G}$ est une probabilité sur (G, +) groupe commutatif fini, on appelle fonction caractéristique de p et on note p la fonction définie sur l'ensemble des caractères x de G, c'est-à-dire des homomorphismes de (G, +) dans $(\mathbb{C}^*, .)$, par

$$\hat{p}(\chi) = \sum_{g \in G} \chi(g) p_g.$$

Proposition: Pour toute loi p sur G, si π est la loi uniforme sur G,

$$||p - \pi||_{vt} \le \frac{1}{4} \sum_{x \ne 1} |\hat{p}(\chi)|^2.$$

En déterminant les caractères et en utilisant cette proposition, pour le tore et pour l'hypercube, on obtient de meilleures estimations de $d_N(t)$

$$1/2(\cos(\pi/N))^t \le d_N(t) \le \sqrt{3/2}(\cos(\pi/N))^t; d_N(t) \le \frac{1}{2} \left(\exp\left((N+1)\exp\left(-\frac{4t}{N+1}\right) - 1\right)\right)$$

qui conduisent à de meilleures bornes pour le temps d'atteinte de l'équilibre en N^2 , respectivement N(log N)/4, qui en est en fait un équivalent.

Probabilités

Elle est basée sur le couplage (voir Aldous [1]).

Définition: On dit qu'il y a couplage avec le processus stationnaire si on peut construire deux processus de Markov (X(t)) et $(\tilde{X}(t))$ de même matrice de transition tels que $X_0 = x \in E, \tilde{X}_0 \sim \pi$ tels que si $T = \inf\{t \geq 0, X(t) = \tilde{X}(t)\}$ alors $X(t) = \tilde{X}(t)$ si $t \geq T$. On peut borner d(t) à l'aide du temps de couplage T avec la trajectoire stationnaire :

$$d(t) \le P(T > t).$$

Pour le tore et l'hypercube, on obtient des bornes du même ordre que par l'analyse de Fourier pour le temps d'atteinte de l'équilibre en N^2 , respectivement N(log N)/2.

Nous terminons cet exposé par l'étude du modèle d'Erlang, utilisé pour modéliser un central téléphonique. Soit $(X_N(t))$, le nombre de clients à l'instant t de la file M/M/N/N de taux d'arrivée λN et de taux de service 1, processus de Markov sur $E = \{0, \ldots, N\}$ de mesure d'équilibre la loi de Poisson tronquée sur E. Le résultat principal donne un majorant de $d_N(t)$ et l'existence d'un cut-off pour les 3 régimes possibles du modèle.

Proposition Si $\lambda \leq 1, d_N(t) \leq Ne^{-t}$ et $(X_N(t))$ vérifie la propriété de cut-off pour $(\log N)/2$ et si $\lambda > 1, d_N(t) \leq \lambda^{N/2}e^{-N(\sqrt{\lambda}-1)^2t}$ vérifie la propriété de cut-off pour $\log(\lambda/(\lambda-1))$.

Intuitivement, et des renormalisations le montrent, si $\lambda > 1, X_N(t)$ reste voisin de N et si $\lambda < 1$ (resp. $\lambda = 1), X_N(t)$ reste dans une zone $[\lambda N - a\sqrt{N}, \lambda N + a\sqrt{N}]$ (resp. $[N - a\sqrt{N}, N]$). Le temps d'atteinte de l'équilibre sera équivalent au temps d'atteinte de N partant de 0 dans le cas $\lambda > 1$, au temps d'atteinte de la zone partant de 0 dans les autres cas.

Références

- [1] Aldous, D. Random walks on finite groups and rapidly mixing Markov chains. In Seminar on probability, XVII, vol. 986 of Lecture Notes in Math. Springer, Berlin, 1983, pp. 243-297.
- [2] Diaconis, P. Group representations in probability and statistics. Institute of Mathematical Statistics, Harward, 1988.

- [3] Diaconis, P. The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad. Sci. U.S.A. 93, 4 (1996), 1659-1664.
- [4] Diaconis, P., and Stroock, D. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1, 1 (1991), 36-61.
- [5] Fricker, C., Robert, P., and Tibi, D. On the rates of convergence of Erlang's model. Journal of Applied Probability 36, 4 (1999), 1-18.

Christine Fricker
INRIA
Rocquencourt
78 153 Le Chesnay Cedex
France
Christine.Fricker@inria.fr