À propos de mathématiques
Perturbation des problèmes de commande optimale
Femmes & math, Forum 8 des Jeunes Mathématiciennes, Tome 8 (2006), pp. 39-43.

Dans cet article, on étudie la perturbation d’un problème de commande optimale avec une contrainte sur l’état. On donne une condition suffisante minimale de stabilité, ainsi qu’un développement au premier ordre des solutions.

Publié le :
Hermant, Audrey 1

1 INRIA Rocquencourt BP 105 78153 Le Chesnay
@article{RFM_2006__8__39_0,
     author = {Hermant, Audrey},
     title = {Perturbation des probl\`emes de commande optimale},
     journal = {Femmes & math},
     pages = {39--43},
     publisher = {Association femmes et math\'ematiques},
     volume = {8},
     year = {2006},
     language = {fr},
     url = {http://archive.numdam.org/item/RFM_2006__8__39_0/}
}
TY  - JOUR
AU  - Hermant, Audrey
TI  - Perturbation des problèmes de commande optimale
JO  - Femmes & math
PY  - 2006
SP  - 39
EP  - 43
VL  - 8
PB  - Association femmes et mathématiques
UR  - http://archive.numdam.org/item/RFM_2006__8__39_0/
LA  - fr
ID  - RFM_2006__8__39_0
ER  - 
%0 Journal Article
%A Hermant, Audrey
%T Perturbation des problèmes de commande optimale
%J Femmes & math
%D 2006
%P 39-43
%V 8
%I Association femmes et mathématiques
%U http://archive.numdam.org/item/RFM_2006__8__39_0/
%G fr
%F RFM_2006__8__39_0
Hermant, Audrey. Perturbation des problèmes de commande optimale. Femmes & math, Forum 8 des Jeunes Mathématiciennes, Tome 8 (2006), pp. 39-43. http://archive.numdam.org/item/RFM_2006__8__39_0/

[1] P. Berkmann et H.J. Pesch. Abort landing in windshear : optimal control problem with third-order state constraint and varied switching structure. J. Optim. Theory Appl., 1995. | MR | Zbl

[2] J.T. Betts. Practical methods for optimal control using nonlinear programming. Society for Industrial and Applied Mathematics (SIAM), 2001. | MR | Zbl

[3] J.F. Bonnans et A. Hermant. No-gap second-order optimality conditions for optimal control problems with a single state constraint and control, to appear in Math. Program. | MR | Zbl

[4] J.F. Bonnans et A. Hermant. Stability and sensitivity analysis for optimal control problems with a first-order state constraint. Rapport de Recherche INRIA, Juillet 2006.

[5] D.H. Jacobson, M.M. Lele et J.L. Speyer. New necessary conditions of optimality for control problems with state-variable inequality contraints. J. Math. Anal. Appl., 1971. | MR | Zbl

[6] J. Stoer et R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, 1993. | MR | Zbl