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Résumé. — Viruses have a protein shell, called the viral capsid, that encapsulates and
hence provides protection for the viral genome. The distribution of the proteins in the
capsids is highly structured and follows an organisational principle that can be described
based on group theory and tiling theory. It provides a basis for mathematical models that
address the self-assembly of the capsids from their capsid proteins, and may ultimately
be used to assist the design of anti-viral therapeutics.

1. Introduction

Viral capsids are cage structures, formed from proteins, that are used by viruses to
protect their genetic material. Most spherical viruses organise their protein subunits
in clusters of 3, 5 or 6 proteins, that are called trimers, pentamers and hexamers, res-
pectively, and are distributed with icosahedral symmetry in the capsid. An example
is given in Fig. 1(a), with a magnified view in (b) showing a subset of the hexamers.

(a) (b)

FIGURE 1. Example of a viral capsid (a), with capsomeres shown in mag-
nification in (b). Both figures from the Johnson Lab at the Scripps Research
Institute.
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In a landmark paper Caspar and Klug have established a theory that predicts the
surface structures of viruses in terms of a family of polyhedra [1] that encode the
locations and relative orientations of the protein clusters. It is fundamental in vi-
rology and has a broad spectrum of applications, ranging from image analysis of
experimental data to the construction of models for the self-assembly of viral cap-
sids. Despite its huge success, experimental results have provided evidence for the
fact that this theory is incomplete, and in particular cannot account for the structure
of viruses in the family of Papovaviridae, which are of special interest for the pu-
blic health sector because they contain cancer-causing viruses. We have developed
a theory based on group theory and tiling theory that closes this gap [2, 3]. It leads
to a new series of polyhedra, the triacontahedral series [4], that corresponds to the
particles observed during the self-assembly of the major capsid proteins of viruses
in the family of Papovaviridae. Among others, the new theory allows to classify the
malformations that may occur during self-assembly (e.g. [5]), and it has opened up
various areas of application, most importantly the construction of models for the
self-assembly of viral capsids.

2. The construction principle

Since all protein clusters in the capsids of Papovaviridae are composed of five
individual protein subunits, including in particular also those not located at the 5-
fold axes of icosahedral symmetry, the surface structures of these viruses cannot be
modelled via hexagonal surface lattices and are hence a priori excluded by Caspar-
Klug Theory. A straightforward generalisation of the Caspar-Klug construction to
this case is not possible because there are no planar lattices composed only of penta-
gons which could be used instead of the hexagonal ones. However, appropriate
surface lattices with the desired symmetry properties can be induced via projection
from lattices in a higher-dimensional space. In particular, by exploiting the concept
of symmetry to the full we make use of generalised grids that are determined via the
affinisation of the non-crystallographic Coxeter group H3 using a method inspired
by the projection formalism (see e.g. [6]) known from the theory of quasicrystals [7]
and Penrose tilings [8].

By construction, our method leads to finite three-dimensional nested point sets
that are subsets of the vertex sets of such generalised lattices and by construction
contain the vertices of polyhedra (or tessellations called tilings) that encode the sur-
face structures of the viral capsids. For example, in order to classify the surface struc-
tures of Papovaviridae, one has to identify all (not necessarily isometric) polyhedra
with vertices in this set that are such that all five-coordinated vertices are uniformly
distributed. Each five-coordinated vertex then specifies the location and orientation
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of a pentamer as illustrated in the example in Fig. 2. The tessellation in this figure is

(a)

5

3 2

(b)

FIGURE 2. (a) The tiling representing the viral capsid of SV40, and (b) the
corresponding tiles.

given in terms of two types of shapes, which are called tiles according to termino-
logy in tiling theory. Since we are considering capsids formed from identical proteins
their locations are represented by opening angles of equal magnitude on the tile set.
There are thus precisely five proteins located around the 72 five-coordinated vertices
(of which 12 are located on the five-fold axes of icosahedral symmetry indicated by
a 5 in the figure), each specifying the locations of the proteins in a pentamer. A spe-
cial feature of the theory is the fact that tiles are not only idealised mathematical
objects, but have a biological interpretation in terms of interactions between protein
subunits : each rhomb tile represents an interaction between the two protein subu-
nits represented by that tile (called dimer interaction), while each kite tile represents
an interaction between the three proteins it encodes (called trimer interaction).

The new theory is well-suited to the description of the capsid structures of Pa-
povaviridae while still reproducing the tessellations relevant to the viruses covered
by the Caspar-Klug classification. Moreover, its predictive power and scope of ap-
plications is significantly enhanced with respected to Caspar-Klug Theory because
it predicts besides the locations of the proteins also the locations of the intersubunit
bonds between them.

3. Applications

Our theory for the structural description of viruses forms a basis for the construc-
tion of assembly models, because it specifies the locations of the bonds between the
protein subunits that form an essential input in the modelling of the assembly pro-
cess. In particular, we use this information to derive graphs that encode the structure
and order of succession of the intermediate species (partly assembled capsids) that
occur during self-assembly of the capsid proteins. These graphs are combinatorial
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objects that are used to derive quantities of interest such as the concentrations of
the assembly intermediates, and they hence characterize the assembly process [9].
Based on them, we have developed a method to quantify the change in assembly be-
haviour in dependence on changes in the association constants. Moreover, we have
determined the dominant pathways of assembly via a master equation approach,
and have analysed the geometric characteristics of the intermediate species repre-
sented by them, which has implications on potential strategies of interference with
the assembly process for medical purposes [10].

With the same mathematical formalism we have furthermore characterised the
additional covalent bonds in the capsids that are responsible for crosslinking, that is
for the occurrence of networks of bonds that are organised in a chainmail construc-
tion and provide particular stability to the viral capsids [11]. We have shown that our
approach can be used to classify these crosslinking structures, and that it provides
a theoretical tool to probe whether crosslinking is possible for a given type of virus
[12].

Many single-stranded (ss)RNA viruses organise a significant part of their genome
in a dodecahedral cage as a RNA duplex structure that mirrors the symmetry of
the capsid. We have further developed a model by Bruinsma and Rudnick for the
structural organisation of the RNA in pariacoto virus based on results from graph
theory and DNA network engineering [13]. We show that it is a representative of a
whole family of cage structures that abide to the same construction principle, and
derive the energetically optimal configurations.
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