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TWO ALGORITHMS FOR INTEGER
OPTIMIZATION (>)

by E. LŒHMAN, Ph. T. NGHIEM and A. WHINSTON

Résumé. — Cet article présente deux algorithmes d'exploration directe pour la
résolution des programmes linéaires contenant des nombres entiers. Pour le premier
algorithme, qui utilise la procédure à"énumératïon de Balas ; deux procédures de
choix de la variable de branchement ont été expérimentées : dans la première, on choisit
la variable à laquelle le programme linéaire continu donne la valeur la plus proche de 0
ou de 1 y dans la deuxième, on choisit la variable qui, forcée à la valeur 0 ou 1, conduit à
Vaccroissement minimum de la fonction économique après le premier pivot. Le deux-
ième algorithme utilise une méthode d'^numération qui généralise celle de Balas. Les
temps de calcul sont donnés pour divers problèmes test.

Various algorithms have been presented to solve integer program-
ming problems. The most prominent methods are due to Gomory [7],
Land and Doig [9], Balas [1], and Graves and Whinston [8]. Many other
researchers have contributed to the development of this theory.

This paper présents two clearly relate d algorithms motivated by the
ideas developed in Land and Doig. They developed a procedure which
in its form was not particularly suitable for use on a computer. However,
they introduced a key idea which has been used subsequently both
implicity and explicitly by several algorithms. Their idea was to use the
associated linear programming problem to guide the ^search for the
optimal integer solution. The two algorithms to be presented below can
be considered as computerized extensions of the original Land and Doig
procedure.

Most linear integer programming problems of either theoretical
interest or practical importance have the special property that the
variables are restricted to the values zero and one. Furthermore, integer
problems not possessing this property may be solved as zero-one pro-
blems using the well known binary représentation. We confine ourselves
to stating the algorithm when the variables must satisfy only the zero-
one restrictions.

(1) Research supported in part by the Office of Naval Research and Army Research Office.
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The problem to be solved can be stated as follows :

N

Min YJ

s.t. YJ aijxj ^ bi i = !> 2> —> m

^ = 0,1 j = 1, 2, . . , N

xj > 0 / = iV + 1, ..., m

In effect the formulation allows for both integer constrained variables
and continuous nonnegative variables. The coefficients of the problems
are not required to be integer valued.

While both algorithms to be described in detail below use the asso-
ciated linear programming problem they differ in several ways. Two
different tree search procedures are used. The first method referred to as
« inflexible bactracking » is essentially the search method presented by
Glover [6], in his extension of the Balas Algorithm. The successive choices
of integer variables and their initial assignment of a value of zero or one
need not be predetermined but is directed by the search strategy.
However, once a variable is selected and assigned an initial value the
ordering of the variables is temporarily fixed. The second algorithm
which is titled « a flexible tree search ennumerative procedure » does not
make this requirement. Land and Doig presented still another tree search
which however is not considered practical because of storage requirements
for use on a computer.

The initial step of both algorithms is to find the optimal solution to
the continuous linear programming problem where the zero-one integer
variables are bounded between zero and one. The tree search succes-
sively assigns integer values to the variables. For each set of assigned
integer values dictated by the tree search, the associated optimal linear
programming solution in both algorithms is found by the dual simplex
algorithm. Criterion of sélection among the potential candidate variables
differs somewhat between the two algorithms. The case of the dual simplex
algorithm in integer programming has been suggested by Driebeek [4],

1. INFLEXIBLE BACKTRACKING TREE SEARCH ALGORITHM

Suppose there are N integer variables which can have the value zero
or one. AH possible combinations of zero and one are investigated by
constructing a tree of partial solutions. Each node of the tree corres-
ponds to a different partial solution. For this search the order in which
variables are chosen and fixed to a value is important.
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A node s is defined by :

1. Asubset J S C { 1 , 2,...,N}

(1.1) J'={h,-jp}

where the j% are ordered.

2. To each ji there is a subset K^

(1-2) K\H) = { k[,... k\ }

and the ftj are ordered.

If k € Kp then #* = 0 in the partial solution defined by node s.

If Ar € J5, then xu = 1 in the partial solution defined by node 5.

Let ifs = U^ÜCJ,. The set F = J s U i^s defines the variables fixed
at node s. The set S = { 1, 2, ..., iV } — F contains the indices of the
free variables. A new node may be obtained from. node s by either a
forward or a backward step.

Forward step from node s : A forward step consists of fixing a free
variable to the values of zero or one. A new node s' is obtained as follows :

If 5 is not empty, / is chosen from S and the choice of x/ = 0 or 1
is made.

Replace by S = S —- { / }, so the set of free variables is reduced by
one element.

1. If xf = 1, then Js = { j u ..., j p + 1 = f }. The newly fixed variable is
added to the last set of variables fixed to zero, and

(1.3) K% = Ks
Si i = l,...p K%+1=0

2. If xf = 0, then Ks
h = K% U { / } and

(1.4) r' = r.

Backward step from node s : The backward step consists of setting a
fixed variable at the alternate value. Let x/ be the variable from which
backtracking occurs. The variables appearing below Xf in the tree are free.

1. If / € K% (i.e., xf = 0), then set K], = K% — {f), and

(1.5) • / ' = {ƒ„ . . . , / p + i = ƒ }•

The variable is removed from the set of variables fixed to zero and
added to the set of variables fixed to one.

2. If / = j p , (i.e., xf = 1) then Js' = { ƒ„ ..., j p _ 1 } and

(1.6) KU = ' K^ U { / } ; K% = K%,i = 1, p - 2.
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The variable is removed from the set of variables fixed to one and
added the set of variables fixed to zero.

By for war d steps and backward steps, all node s (and hence, all
partial solutions) can be enumerated*

EXAMPLE :

Figure 1

Figure 1 shows the tree structure for a partial solution at node III.

Forward Step : If we go forward from rC4 and ehoose, say, XQ = 1,
then we obtain a new node IV.

If we ehoose m = 0, then

Jw = { 1, 5 }

^ = { 3 } , 2^v = { 4 , 6 }

In either case, we remove { 6 } from the set of free variables.

Backward Step : If we go backward from #4, then we set #4 at its
complementary value, i.e., #4 = 1.

J v = { 1, 5, 4 }

KÏ = {Z},Kv
5=0,Kl = 0

and all variables appearing below XA are freed.

This tree search method is used in the first zero-one algorithm. The
problem considered is to :

(1.7) minimize zo = ex subject to Ax < 5, x ^ 0 and
zero-one solutions for xu ... xN are required

while xN+u ... Xn may have any non négative value. The initial tableau
is shown below.
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Value
Basic

Variables

V.B.V.

bi

bjn

0

Basic
Variables

V.B.

yi

Vm

Integer
Variables

xi ... xN

au ... axN

a-ml --• O'mN

Cl . . . C2f

Continuous
Variables

Xtf+l . . . Xn

aijy+i ••• «in

amN+l ••- öffln

CiV+1 ... Cn

Figure 2

If initially some (— Cj) > 0, where Xj is an integer variable, then we
make a transformation of the original tableau as follows :

(1.8)
bt is replaced by bt

atj is replaced by —
z0 is replaced by z0

— Cj is replaced by -j-

= l, ... m

After this transformation, the j t h column now corresponds to the
variable 1 — Xj.

If some (—Cj) > 0, where Xj is a continuous variable, then we must
add one additional constraint :

(1.9) x2

where bm+i is large enough so that the addition of this constraint will
not change the solution to the original system. By pivoting once, we obtain
a feasible solution to the dual problem. The pivot will occur in row (m + 1)
and the column is determined by max (•—• Cj).

j

After performing these steps, we have Zj < 0 ƒ = 1, ... n where,
Zj dénotes the éléments in the last row of the tableau, so the solution to
the linear program (L.P.) can be obtained by using thed ual method,
i.e., we begin witha feasible, but not optimal, solution to the dual problem
and an optimal but not feasible solution to the primai problem.

The dual method with bounds is described by Wagner [11]. Briefly
the method is to find the négative bt which is least, say bv The variable in
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the basis in row l will be removed from the basis. Then, min z^/afjis
aif<0

found, say — . The variable corresponding to column k will be intro-
aik

duced into the basis in row l.

After pivoting, we check that all b% corresponding to integer variables
are less than or equal to one. Suppose bx > 1 and xu corresponding to bt

is an integer variable. Then? we introducé xu = (1 — xu) into the tableau.
The re suit is, we replace :

bt by 1 — 6,
(1.10) and

atJ by — atj j = 1, ... n

Note that 1 —• bt < 0 so that the primai problemis infeasible. However,
because of our pivoting rules, Zj ̂  0, / = 1, ... n. Thus, we pivot
according to the dual rules again.

The process terminâtes if there are no négative a^ in a row with
&i < 0 (infeasibility) or if all bt are nonnegative (optimal, feasible solu-
tion to the primai).

After the tableau with Zj ̂  0, / == 1, ... n has been set up, then we
are ready to begin the zero-one algorithm.

Integer
Variables

Value
Basic

Variables

h

h

bm

f

Basic
Variables

2/3+1

ym

Zo

Integer
Variables

xi . . . xi

au ... au

aji . . . aji

a^+i,i aj+i,i

am± ... ami

Zl . . . Zl

Continuous
and slack
Variables

ail+l " ain

%ï+l ' • ' Oj»

aj+ui+i aj+un

ÛTOÎÎ+1 • • • &mn

zj+l . . . zn

Figure 3
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In step zero of the algorithm, we find an optimal solution to the
linear programming (L.P.) problem. This gives us a tableau in canonical
form as shown in figure 3

with 0

0

i = 1, ... m

i = 1, ... ra.

This tableau is obtained by reordering the variables and constraints.
The variables xx, ... xl are non-basic integer variables and xl+u ... xn are
non-basic continuous or slack variables. Similarly, yl7 ... ys are required
ot become integer. Here, corresponding to integer variables, we mayhave
either xt or xu where xt — (1 — xt), and yt or yt where yt = (1 — Ï/£).

After solving the L.P., rcl5 ... xt have integer values. It has been
observed that many of these will be at their optimum value, while only a
few will have the wrong value. For instance, in a problem due to Bouvier
and Messoumian [3] which has twenty integer variables and twenty
constraints, thirteen variables have zero-one values in the L.P. solution
and of these only two are different from their optimum value. This sug-
gests that we begin the forward step at level l -f- 1 of the tree. xt, ... xx
will be fixed but not ordered so at this point, we are really considering a
set of l factorial trees.

Later, in backtracking, an order will have to be chosen for xu ... xt.
This is done by finding which variable, when changed to the complemen-

Integer
variables

VALUE

BASIC

VARIABLES

h

K

f

BASIC

VARIABLES

Vi

Vn

H

FIXED INTEGER

Xl . . . Xk

FREE INTEGER
CONTINUOUS

AND SLACK

XL+X ••• Xn

Clffi

Zn

Figure 4

The tableau at the kth level
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tary value, will result in the least increase in the objective function. For
example, if Xj appears as a non-basic integer variable (and, hence, is zero)
and if we transform the tableau to have Xj = 1, then we substitute
(1 — Xj) in the appropriate column and the criterion function is increased
from z0 to z0 — Zj. Thus, to find the variable corresponding to least
increase in z0, we find min (— z,).

Step 1. We begin the forward step starting from leveH -)- 1 of the tree.
k th Stage. Figure 4 is obtained by reordering the variables and

constraints and shows the situation after either a forward or backward
step a level k of the tree of partial solutions.

a) Forward step. The forward step occurs in going down the tree.
At the beginning of the /cth stage, (k — 1) variable have fixed values of 0
or 1, and we are not allowed to pivot in the columns corresponding to
these variables. From the list of basic integer variables we choose a
variable to force out of the basis at a fixed value of zero or o ne. Either
a f ree, a continuons, or a slack variable ma y then be intro duce d in the
basis in its place.

b) Backward step. Let xu be the variable fixed at level k. Backtracking
occurs either with infeasibility for either Xk = 0, 1 or if not both values 0,
1 have been tried. Variables in the tree occurring below xk are f ree. Xk is
set to the complement of its previous value. If this is infeasible, we go to
level k — 1 and the backward step occurs again. Otherwise, the forward
step is performed.

Stage N : When no integer variables appear in the basis, then all are
fixed to zero or o ne. Begin backtracking. Continue the backward and
forward steps until ail solutions have been enumerated.

At each forward step, it is necessary to choose the next variable to
introducé and to décide if it should be introduced as zero or one. Two
choice procedures are investigated.

One is essentially just a rounding off procedure. The list of integer
variables is considered. Those free integer variables which are not in the
basis (hence, already have integer values) are first fixed. Then, the
variable which is closest to being integer is selected to leave the basis and
zero or one is chosen as its value, de pending on which number is closer.

Another procedure is based on considering the tableau and choosing
the variables which leave and enter the basis to obtain the s mallest
increase in the criterion function. Integer variables must be forced out of
the basis in order to be fixed. If the re are some variables in the basis
which are free integer variables, we consider :

= min (— zj ati) bt fortfy > 0
J

(1.12) and RN = min (— Zj at1) {bt — 1) for aSJ < 0
j

for each row i corresponding to an integer variable in the basis.
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Suppose we were to pivot in row i to fix the variable in the basis in
that row to zero or one. The following rules for fixing that variable to
zero or one results in the least increase in the criterion function. We
would find R — min (RP, RN) for row i.

If R = RP, then if the variable in the basis in row i is an original
variable, we force it to zero.

If R = RN and the variable in the basis in row i is an original
variable, we force it to one.

Likewise, if R = RP and the variable is a complementary one, we
force the original variable to one.

If R — RN and the variable appearing in row i is complementary,
we force the original variable to zero.
These rules come about because of the tableau transformation invol-
ved when a variable is forced out of the basis and fixed at zero or one.
Then, if we were to pivot in row i, the objective function would be increa-
sed from z0 to z0 + min (RP, RN). We would obtain the smallest increase
which would occur if the variable in row i were fixed to zero or one.

The ratios RP and RN are considered for each row corresponding
to an integer variable. We find the row resulting in the smallest possible
increase in z0 and remove the variable in that row from the basis, fix it to
zero or one, and introducé the variable which corresponds to min (RP, RN)
in that row.

Forward steps, backward steps, and freeing fixed variables all involve
transformations of the tableau in figure 4. The rules for these transfor-
mations are as follows :

1. Forward step

As outlined above, we choose a variable to remove from the basis.
(i) If the variable chosen is an original variable which appears in the

basis in row l :

a. to set it to zero multiply the corresponding row by (— 1) i.e.,
replace atj by -— atp j = 1, ... n and bt by — bt ;

b, to set it to one substitute (1 — ~xu) for the variable where it appears.
This results in replacing bt by bt — 1.

(ii) If the variable chosen is complementary to the original variable
and appears in the basis in row l :

a. to set the original variable to zero substitute (1 — xu) for xir
Then bt is replaced by bt — 1 ;

b, to set the original variable to one, multiply the corresponding
row by (— 1).
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In the abose cases, the number in row l in the « value basic variables »
column is now négative so if it is feasible, the dual pivoting rules result in
the removal of the basic variable in row l from the basis (1).

2. Backward step : A variable is fixed at zero or one, and we want
to try the complementary value. Recall fixed variables are non-basic.

(i) xik appears in the tableau in column /e, so xuc = 1. To set xik = 0 in
column k, subsititute (1 •—- xik) for xik. This results in :

bi is replaced by bt — aik>
(1.13) aik is replaced by — aik i = 1, ...} m,

z0 is replaced by z0 — zk

zk is replaced by — zk.

Then, if the resulting tableau is feasible, or a feasible tableau is obtained
after pivoting, we will have xih — 0.

(ii) xik appears in the tableau in column k, so xilt = 0. To set xik = 1
in column k substitute (1 — xt)k for xik. The transformations are as above,
and if feasibility is obtained, we will have x ik= 1.

3. Freeing a fixed variable

If a variable is fixedj then it is not allowed to re-enter the basis.
This means that no element a^ in the column corresponding to the variable
may be used as a pivotai element. Therefore, when pivotai éléments are

zjchosen, only those ratios ~ corresponding to free variables are conside-
red. For this reason, some Zj corresponding to fixed variables may become
positive through pivoting. When a variable is freed after being fixed,
atj in the column corresponding to the variable may again be used as
pivotai éléments. In order that the dual pivoting rules not be violated,
the sign of the Zj corresponding to the variable to be freed is checked. If

(1) Note : Suppose the équation in row i is

auxi + ... + <HnXn + yi — fa-

Then, if we multipîy this row by (— 1) we have

— CHian ... — Oir&n ••• — yt = — fa-

So in pivoting, we must remember that the coefficient of the basic variable is now — 1.

Likewise, if we substitute (1 — yi) for the basic variable yi we have :

OiVtl -h -• + Oin&n + (1 —yi) = fa

or auxi + ... + ainpCn — yi — fa — 1.
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it is positive, then the following transformation must be made before the
variable can be freed :

(i) If xih appears in the tableau in column Ar substitute (1 — xi)k for
xik column /e. We replace :

(1.14)

h by bt — aik

aik by — aik

Zo by z0 — Zj
zj by — zj

(ii) If xik appears, substitute (1 —x t)k for xik and perform the trans-
formation as above.
In either case, Zj is now négative as it should be for the dual procedure.

Forward steps may be performed as long as the tableau in figure 4
is feasible. When infeasibility occurs, transformations must be performed
on the tableau in figure 4 until a feasible tableau is again obtained.
Since the dual method is being used, pivoting is only allowed where
atj > 0. As certain variables become fixed, we are no longer allowed to
pivot in the columns corresponding to these variables so that the choices
of pivots are reduced as we proceed down the tree.

For the dual method, we begin with optimality for the free variables
since Zj < 0 corresponding to the free variables but not with feasibility
since some bt may be négative. Feasibility is achieved when all bt > 0
and the pivoting rules assure that all zi corrssponding to free variables
remain non-positive. If at some point there are négative bt but no néga-
tive au on which pivoting is allowed, then we have infeasibility. In the
program, if an infeasibility occurs, we cease pivoting to fix the current
chosen variable to 0 or 1. The last infeasible tableau is used and transfor-
med in the following steps. Backtracking occurs until a feasible tableau
is obtained.

The tree search method given above shows
how all partial solutions may be enumerated.
However, it is time consuming and unnecessary
to consider all partial solutions. Some may be
eliminated by various truncation procedures.
The truncation procedure used here is based on
a principle of Land and Doig [9]. In the tree,
we begin from z0, the optimum feasible solution
to the L.P. As we fix variables at integer values,
the solution set becomes smaller and the value
of the criterion function becomes larger since
the problem is one of minimization. The solution
to the L.P. is a lower bound for the integer solu-
tions. Figure 5 below shows several branches ̂ of
a typical solution tree. Figure 5
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When one path through the tree is completed, we obtain a value of the
criterion function zo' In constructing each subséquent path at each
tableau transformation and pivot, we consider the value of the criterion
function z. If at some point, z is greater than zo' then further pivots
will only increase the criterion function z. Hence, the value of the cri-
terion function which would be obtained at the end of this path will be
bigger than zo'. It is, thus fruitless to consider this branch further, so we
backtrack and consider a different path. If we reach the bottom of the
tree and zo"<zo'. then we have found a better solution and zo" is used
in future comparisons.

In writing a computer program for this algorithm, the main problems
are ones of bookkeeping. That is, we must keep track of which variables
are free, which have been fixed and what value they have. Also, it is
necessary to know whether the variable or its complement appears in
the tableau. Finally, we have to know which columns correspond to
which non-basic variables and which basic variables appear in which
rows. All this information is stored in various arrays. Three arrays are
used to enumerate the partial solutions. At level K, IL(l), ... IL(K) give
the indices of the fixed integer variables in order. With each level ƒ, we
associate an array R(I).

R(I) — 0 means that both zero and one have been tried for the
variable assigned to level I.

R(I) = 1 means that one has already been tried for the variable
at level I.

R(I) = 2 means zero has been tried.

R(I) = 3 means that both zero and one should be tried for the
variable at level I, that is the variable at level I is free.

If R(I) = 0, / = 1,... iV, then the algorithm terminâtes since all possible
solutions have been checked.

The array S gives the indices of the free variables. In a forward
step, if variable I is chosen, I is removed from S. In a backward step,
the index of the variable freed is added to 5. Thus, the numbers in
5 give the possible choices of variables at each level and at level K,
there are N — K éléments in 5.

In the program, an array BD is used to indicate whether a variable
or its complement appears.

BD(J) = 1 if xj appears,

BD{J) = — 1 if Xj appears.
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The following arrays are also used :
IN(I) tells which variable appears in the basis in row L
KS(J) tells which variable appears in the basis in column J.
IROW(J) tells which row variable J is in if it is in the basis.
KOL(K) tells which column variable K is in if it is non-basic.
The following flow chart summarizes this algorithm in terms of the

computer program.

Solve LP. Fix x1

which are nonbasic
integer, k^t + 1

S = N- (1 , ,l)
2OB = 100000

Forward
step

k=k+1

Choose ik from S and
j k r O or 1

Fix x i k = j k

Set Rk - 1 or 2 corres-
pondingly. S=S-( i k )

Record cürrent
integer solution
Set ZOB-zo

Go to B

Backward
step

All solutions
have been
checked

Frnd among x ,̂.
x̂  the best x;

to set to the
alternate value

Figure 6
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2. A FLEXIBLE TREE SEARCH PROCEDURE [10]

As before, we consider all possible combinations of zero and one for
N variables. This algorithm differs from the former in that the order
in which variables appear is not fixed in backtracking and variables are
first fixed to one, and then to zero. These factors resuit in a different
définition of a node from the one presented in Section 1. A node is charac-
terized by strings of variables set one and each string of ones is followed
by a set which contains at most one variable set to zero.

Formally, the characteristics of a node s are given by :

1. Js r= { j u j 2 t ... fp }, where J s a subset of the integers (1, ..., N) and

Js is partitioned into

(2.1) Js = J{ U J\ ... U Js
h

where the subscript i dénotes the rank or index of the subset J\. h} the
highest rank of the subsets of Jf is called the rank of node s. The sets J? are
strings of variables which are fixed to one at node s. The éléments within
each Jf are not ordered. Some of the Jf may be empty.

2. With each subset Jf we associate a subset Kf which either contains
one éléments k) or is empty. If Kf is not empty, then it contains the
index of a variable which is fixed to zero. The ordering of Jf induces
an ordering of the Kf. Let

h

(2.2) Ks = U K\ and
i = l

(2.3) F= KSUJS (Note that KSH Js = 0 )

Then, S = { 1, 2, ..., N } — .F is the set of « free variables » which have
not yet been fixed to zero or one. If Kft associated with J£ is empty,
then node s is said to be open and in forward steps, éléments may be
added to the set J£.

If Kb is not empty, then node 5 is said to be closed and the indices of
variables fixed to one in succeeding forward steps will be placed in a set

x* s' dénotes a new node defined by

J\ = J\ i=l9h

(2.4) Kf = K\ i = 1, h

Js' = Jf U ... U Js' U
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Consider the partial solution given in figure 7.

O

The numbers indicate the indices of variables fixed to 0 or to 1 at a
node. Suppose we are at node III of the tree. Then,

J? = { 7, 1 }

Kf = {3}

4? = {4}

Since i^"1 is not empty, node III is closed. If next we were to choose
variable 6 to fix to one, then would go in a new node IV.

£ = 1,2,3

£ = 1, 2, 3

and node IV is open since K™ — { 0 }.

As before, the partial solutions are enumerated by forward and
backward steps. Let h be the rank of node S. A forward step is possible
if 5, the set of free variables, is not empty. Then we choose an / from S
and variable ay is set to one.

1. If node s is open, then the rank of the resulting node is h.

(2.5) 7£ = J f t
sU{/}



5 8 E. LŒHMAN, PH. T. NGHIEM AND A. WHINSTON

2. If node s is closed, then the rank of the resulting node s' is h + 1>
and

(2.6) * r + 1 = 0

Jf = J°t i = l, ... h

Kf = K\ i = 1, ... h.

A backvcard step is possible only if J" is not empty.

Let Jg be the subset of highest order which is not empty. By some
décision rule we choose a k from J* and switch xk to zero. Then k is
removed from J"g. A new node s' is then obtained where

and
<+1 = 0

Ksu = 0

i.e., the éléments in Ks
g'+i, ... Kl' are freed.

Consider our previous example again at node III. Since 32 is the
first non-empty subset ( J"1 = 0 ) g = 2. Since 3l™ = { 4 }, we choose XA
to backtrack on. We then set XA = 0.

The resulting partial solution corresponding to the new
node IV obtained is given in figure 8 : and we have

Now since we have changed the value of XA, perhaps it
igure j g poggikie for Xh a n ( j X2 t o h a v e alternate values. Thus, X5

and X2 are freed and allowed to become either 0 or 1.
With this tree search procedure, we again consider the problem

given in (1.7). We first solve the linear programming problem with the
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integer variables only constrained to be between zero and one. As before
the tableau at this point is given in figure 3. The tree search algorithm
may be summarized as follows :

0. Start. Solve L.P.
All variables are cc free ». Rank h = 1.

1. Proceed to following partial solution. Forward move : Choose /
from S and xf will be set to 1. Add x/ to Jn.

2. Is this choice feasible ? If so, go to 4. If not, then go to 3.

3. Backward move :

Choose a k from Jg, where Jg is of highest rank of the non-empty
subsets. Then Kg — { k } and the current node is closed. If there
are variables of rank higher than g, they are freed. In subséquent
steps, the rank h = g -\- 1. xk i$ set to 0 and fixed. Go to 2.

4. Check for next move.
If an integer solution has been achieved, go to 5.
If not go to 1.

5. If all possible solutions have been tried, go to 6.
Otherwise go to 3.

6. Stop.

The choice procedures for this algorithm are simpler than the ones
for the previous algorithm since we always first try to set a variable
to 1. If this is not feasible, then the value 0 is tried. There are choice
procedures for both forward moves and backward moves since in back-
tracking we may choose which of the previously fixed variables are to be
set to the alternate value.

Forward move : We find which basic integer variable when removed
from the basis and fixed at one results in the least increase in the cri-
terion function. The choice rules are the same as those given in Section 1
except here we are only considering fixing variables to one.

Backward move : The highest order non-empty Jn is found. From this
set of variables fixed to one, we choose a variable to fix to zero by consi-
dering Zj for all ƒ € Jn. We find the maximum of these, say zk. The column
of this variable is then transformed by replacing

bt by bt — aik i = 1, ... m

ik J IK

zk by — zk

Since zk is the largest, we get the smallest increase (if zk is négative)
or the biggest decrease (if zk is positive) in z0 by fixing the corresponding
variable to zero.
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Two other tableau transformations are freeing variables fixed to
zero and fixing variables to one. These rules are the same as those given
in Section 1.

Figure 9 summarizes the algorithm and shows how the computer
program is organized.

Forward
step - .

Start

Solve LP.

>f

h - 1
ZOB = 100000
S = {1, N)
J-j = 0
Ki = 0

>f

Choose f € S
and fix
x f = 1

S=S-( f )

Go to A

Record current
solution. Set
ZOB=:2O

Backward
step

yes

g = highest
rank of non
empty J n

Choose

Fix x
Jg = Jg

k from

= 0
(k)

Jg

Free all
ments
Kj, i>

ele-
of
g+1

Ali solutions
have been

checked

Figure 9
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3. COMPÜTATIONAL RESULTS

Some zero-one problems due to Bouvier and Messoumian [3] were
run on the CDC 6500 using the algorithms above. The results are given
below in table 1 and eompared with the computation times attained by
Bouvier and Messoumian on the IBM 7044, The inflexible backtracking
algorithm was more efficient than the flexible backtracking algorithm
in the case of the Bouvier-Messoumian problem. There may be several
reasons for this, différences in computer programming being one of
them. The flexible backtracking algorithm is more sophisticated since
there is flexibility in choosing which variable to fix at the alternative
value ; however, this also complicates the book keeping work in the
computer program, and so might make the algorithm slower. Presumably,
the flexible algorithm could result in better choices of paths in the tree
of partial solutions and so in some cases might be a better rnethod to use.
The inflexible backtracking algorithm allowed variables to be fixed at
either zero or one in forward steps while the flexible backtracking algo-
rithm fixed variables first to one. For this reason, the inflexible algorithm
would find s mail values of the criterion function more quickly than the
other rnethodj so that truncation procedures would be more effective.
This suggests that perhaps the flexible backtracking algorithm should
be altered to allow both values of zero or one to be chosen in forward
steps.

For the inflexible backtracking algorithm, in most cases each problem
was solved in almost the same time regardless which choice procedure
was used. This is because the rounding procedure, while not choosing the
variable which gives the least increase in the criterion function, chooses a
variable which increases the criterion function relatively little and requires
less computation and tableau search time then the least increase choice
procedure. Naturally, which choice procedure is more efficient dépends
on the nature of the problem being solved.

A mixed integer problem due to Driebeek [5] with 27 constraints
and 40 variables, 9 of which are zero-one, was solved. The tableau for
this problem is represented by table 2. (L dénotes a <c less than or equal
to » constraint and E dénotes an «equality» constraint.) The problem
deals with four factories which ship to eight demanders. The first 14
constraints have to do with the capacities of the factories. For instance,
the first three constraints say that

xi0

xlt ^ 20%

In other words, we have a factor y which can produce 75 units. If
the factory produces anything, then xt = 1. If nothing is produced,
then xt = 0. If more than 75 units of production is desired, then the
factory may produce up to twenty more units. In this case x% = 1,
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which also forces x10 = 75. Then x10 + ^u gives the total output of
the faetory. There are similar constraints for the other three factories.
The next set of eonstraints deals with how the factories' production is
allocated among the demanders, and the last set of constramts gives the
demands. The problem is to minimize total costs minus total revenues,

TABLE 1. — Computation results
CDC 6500

Problem

No. 16
No. 21
No. 22
No. 23
No. 24
No. 25

Problem size
0-1 Variable
X Constraints

20 X 20
23 X 20
25 X 20
27 X 20
28 X 20
30 X 20

Flexible
Backtracking

time (s)

68.9

144.2
405.2

INFLEXIBLE BACKTRACKING
TIME (s)

Rounding
choice

procedure

15.03
48.5
21.5
50.9
61.3

134.4

Least increase
choice

procedure

15.3
45.5
18.8
84.1
65,2

141.5

Bouvier and
Messoumian

time (s)
IBM 7044

126
216
196
426
912

> 960
(No solution

reported)

CONS'

OBJ.

L
L
L
L
L
L
L
L
L
L
L
E
E
E
E
L
L
L
L
L
L
L
L

PRAINT

:FN.

_

Z
t
t
z
z
z
-
:

E

75 0 48 O TO

75
75

-2O
.40

40
-2O.

-60

* * A .&. »

1
- 1

60

20
-20

-20

20
-20

1

VARIABLE COEFFICIENTS

4 «S Aft

1
1

-1
1

1
-1

1
-1

1

1 1
1 1

6 1Ï 18 19 20

1
1
-1

1
-1

-1
1

1 1
1 1

TAG

-i -1

-i -i

i

11 i
i

LE 2

-1 -1
-1

-1
-1

1 1 1
1

1

- i

=i -i
-i -i

1 1
1 1 1

- i

-i -i
-i -i

i i
i 1 1

RîGHT
HAND
SIDE

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0

22
47
23
26

- 35
17
12
28
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i.e. to maximize profits. The solution for maximum profit of 1130.350
was obtained and verified after 8 seconds on the CDC 6500.

A similar mixed integer problem due to Wilson [12] was also solved.
This problem has 77 constraints and 80 variables, 16 of which are requi-
red to be zero or one. This problem was solved in 13.5 seconds on the
CDC 6500.
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