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SOME REMARKS ON QUADRATIC
PROGRAMMING WITH 0-1 VARIABLES

by Peter L. HAMMER(1), and Abraham A. RUBIN (2)

Abstract. — The aim of this paper is to show that (1) every bivalent (0,1) quadratic
programming problem is equivalent to one having a positive f négative) semi-definite
matrix in the objective function ; (2) to establish conditions for different classes of local
optimality ; (3) to show that any problem of bivalent (0,1) programming is equivalent (a)
to the problem of minimizing a real valued function, partly in (0,1 ), and partly in non-
négative variables, (b) to the problem of finding the minimax of a real valued function in
bivalent (0,1) variables.

INTRODUCTION

Numerous problems in various fields of opérations research (invest-
ment problems, graphs, etc.) lead naturally to problems of quadratic
programming with variables which can take on only the values 0 and 1.

The available methods for solving mathematical programs in
0-1 variables, are either dealing only with the linear case (and hence
unapplicable for our problems), or dealing with the most gênerai cases
(and hence not taking into account the particularities of a quadratic
program). Spécifie methods for the solution of quadratic bivalent pro-
grams have been studied by H. P. Kunzi and W. Oettli [4], V. Ginsburgh
and A. Van Peeterssen [2] and the present authors [5],

Our aim in this paper is to study some gênerai properties of quadratic
0-1 programs. We shall deal hère with :

a) The relationship between a quadratic 0-1 program and the asso-
ciated continuous program ;

b) Conditions for different types of local optima ;
c) Possibilities of reducing a quadratic program to
c l ) an unconstrained quadratic minimization problem,
e.2) an unconstrained quadratic minimax problem.
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*
* *

A Boolean variable xt is a variable which takes its values from the
two element Boolean algebra B2 = {0, 1}.

A vector X with n Boolean components wiil be called a Boolean
vector. The set of these vectors will be denoted by B\.

A mapping f(X) from B\ into the field R of re als will be called a
pseudo-Boolean function.

We define the distance d(X, Y) of two vectors X and Y belonging to
Bn

2 by putting :

d(X,Y)=fJ(xl-yif; (0.1)
1=1

d(X, Y) représente the number of different components of X and Y.
We define the fc-neighbourhood Wk(X) of X in B2 as the set of those

vectors Y belonging to B\ which are at distance k from X :

Wk(X) = { Y € B»2, d(X, Y) = k} (0.2)

f{X*) is a (globally) minimizing point of the pseudo-Boolean function f(X)
if :

f(X* ) ^ f(X) for any X € B%. (0.3)

-X"* is a locally minimizing point of / if :

f(X*) < f(X) for any X 6 Wt(X% (0.4)

and more generally X* will be a k-minimizing point of / if :

ƒ(*•) < f{X) for any X € W*(X*). (0.5)

Given a real value d n by n matrix Q — (qtj) and a real value d n
vector p we define the pseudo Boolean quadratic function f(X) as :

f(X) = X'QX + p'X (0.6)

Remarking that x] = x% for every i, i = 1, ..., n we add the component
pt of the vector p to the i-th diagonal element of the matrix Q. Let us
dénote by Q = (gy) the new matrix defined by :

From now on we will represent a pseudo-Boolean quadratic function
simply by :

f(X) = X'QX. (0.7)

The matrix Q will always be assumed to be symmetrie, otherwise as
1 1

X'QX = 7; X'(Q + Q') the matrix ^ (Q + Q') is symmetrie, showing that
our assumption is not restrictive.
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1. THE ASSOCIATED CONTINÜOUS PROGRAM

By a problem of quadratic pseudo-Boolean programming under linear
constraints we shall mean the problem of minimizing

X'QX
subject to

AX < b (1.1)
and to

XdBl, (1.2)

where A is a given m X n matrix, Q is a given symmetrie n X n matrix,
b is a given m-vector, and X is an n-vector to be determined.

This problem will be called Problem I. To Problem I we associate the
following Problem II :

Minimize
X'QX

subject to
AX ^ b (1.3)

and to
0 < «, < 1 (/ = 1, ..., n). (1.4)

Numerous procedures are available for solving Problem II when Q
is a positive semidefinite matrix (see, e.g. [1], [6], etc).

Obviously, by a rounding procedure we can obtain from the optimal
solution of Problem II a certain « approximation » of the optimal solution
of Problem I.

In order to make use of this remark, we have to solve Problem II ;
the simplest way seems to utilize the following :

Theorem 1. Given a symmetrie n X n matrix Q\ there exists a positive
definite n X n matrix R and an n-vector d such that if

f(X) = X'QX

g(X) = X'RX + dX,
then,

f(X) = g(X) for every X Ç BI

Proof. Let y be an arbitrary real number, and let

1 = 1

or

gy(X) = X'(Q + yI)X - y
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From the fact that x\ = xt for any x% s B2, it foliows that f(X) = gy{X)
for any X € B%.

Q being a symmetrie matrix, its eigen-values are reals. Let X dénote
the smallest of these eigen-values. The smaîlest eigen-value of Q + y/
will hence be X + y. Choosing y such that X + y should be positive, we
assure the positive definiteness of Q -f- y/, thus proving the theorem.

In order to make a reasonably good choice of the y, let us remark the
followings. If ya and y2 are two reals (yt < y2) satisfying the conditions
X + y h > 0 (h = 1, 2), and if P — h dénotes the problem of minimizing gYA
under constraints (1.3) and (1.4) (assumed to be consistent), then let us
dénote by Xn the optimal solution of P — h. Let us further dénote the

( \( 1 1 l \_5-.)### _l and let the distance

d{ Vu V2) between two real vectors V\ — (Vu, ..., VlB) and V2 = (V21, ...,
V2n) be

The following resuit holds :

Theorem 2. ƒƒ T l < y2 then d(Xl9 C) > d{X2, C).

Proof. From the fact that Xx is an optimal solution of P.— 1, and X2
is a feasible solution of the sa me problem, it folio ws that

Analogously,
g2(X2) < g2(X1).

These relations can be rewritten as

XtfXi + Yi Ê (*îi - *w) < X'2QX2 + • Yl J (x2
2i - x2i) (1.5)

1 = 1 1 = 1

X'2QX2 + y2 J (aj, - *2f) ^ *;<?*! + ï 2 É («î, - * u ) . (1.6)
» = 1 ï = l

Adding (1.5) and (1.6) we get
n n

(ïl — Ï2) Z (xli — ̂ li) < (ïl — T2) Z
i=l i - 1

As yx < y2, it follows that
n n

E té*—*u) > S (^1—*2i)-
» = 1 i = l

Hence

Î = I
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or
d(Xu C) > d(X2i C), (1.8)

proving the theorem.
It follows from Theorem 2, that in order to get a good starting solution

of PI from the rounded optimal solution of PII it is advisabïe to choose y
as small as possible.

2. CONDITIONS FOR fc-MINIMALITY

A vector X is a Ar-minimizin g point for the function / if :
f(X) < /(Y) forany Y zWk(X). (2.1)

Let us dénote by J the set of the indices of the k differing components
of X and Y :

*i = Vi i'îJ (2.2)

^i = 1 —- 2/; i€ J (2.3)

J C {!,...,*} and \J\ = * .

Condition (2.1) is expressed by

f(X)—f(Y) = £ iq^Pj— Z Z<7o^; < 0. (2.4)

Using (2.2) and (2.3) we get

f(X)—f{Y) = 1 I VijZiZj— Z S

+ Z xi Z 2?ü^ + Z Z
i € J

— Z vi Z 2^»j% — Z Z
i€J >^J i€J j€J

or,

i € J
- 1) Z 2 ï l A/(-Y) - f (Y) = Z (2*, - 1) Z 2 ï l A + Z qX (2.6)

[^ J
Hence, X is a /c-minimizing point for the function ƒ iff for every set of

indices J, such that \J\ = /c, the foîlowing relation holds :

Z (2*,-l)|Z2î,i»j+ I«J'< 0 (2.7)

Jn particular
for J = {1, 2, ..., n}, (2.7) simplifies to

É(2*,-l)flîy) < 0; (2.8)
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for J = {0, (2.7) simplifies to

(2*. - 1) L
for J = {1, 2, ..., n}, — {/} (2.7) simplifies to

0

(2,9)

(2.10)

REMABK. We point out that a l-minimizing and 2-minimizing point X*
is not necessarily a globally minimizing point. Consider for this, the
folio win g example in B\ :

Let
/ 5. 0 — 3 \

Q=( 0 5 —3)
V—3 —3 5 /

The point (1, 1, 1) is both l-minimizing and 2-minimizing, but it is
not globally minimizing ; the globally minimizing point is (0, 0, 0), as it
can be seen from Table 1.

TABLE. 1

X i

0

1

0

0

1

1

0

1

x2

0

0

1

0

1

0

1

1

* 3

0

0

0

A

0

1

1

1

X'QX

0

5

5

5

10

4

4

3
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3. MNIMIZATION UNDER CONSTRAINTS

The problem (III) we shall consider in his section is the following :
Minimize : f(X) = X'QX

under the following constraints :
<p,.(X) < 0 ƒ = 1, ..., m (3.1)

9,(X) = 0 ƒ = m + 1 ,..., l

XeB"2;

here <pj(X) are pseudo-Boolean functions of X. We shall assume that
these functions <?j(X) are integer valued. As X has to satisfy the set of
constrains (3.1), we have to define the concept of locally minimizing
points of a pseudo-Boolean function under pseudo-Boolean constraints.

X* is a locally minimizing point for the function f(X) under the set
of constraints (3.1.) if

1) X* fulfills the set of constraints (3.1.)
2) for every Y e WX{X% either f(X*) < f{Y) or Y violâtes at least

one of the constraints (3.1) (ƒ — 1, ..., l).

A. Introducing slack variables.

We introducé the slack variables uj(j = 1, ..., m), and reformulate (IV)
the program (III) :

Minimize f(X) = X'QX
so that

<Pj(X) + uj = 0, ƒ = 1, ..., m
?j(X) = 0, ƒ = m + 1, ..., l (3.2)
X € ^ 2 5 Mj > 0 / = 1, ..., ra

We can use « La grange an multipliers » (as de fine d in [3]) and formulate
the program as one without constraints. For this sake, let us dénote by
B+ and J3~, an upper and a lower bound of f(x) in B\ (for example the
sum of all its positive and all its négative coefficients). We have :

Theorem 3. (See [3]).

(oc) If X* = (#*..., #*), is an optimal solution of problem (III), then
there exists a vector U* = (u*, ..., w*), such that (X*, [ƒ*) is an optimal
solution of the following problem (V) :

Minimize
F(xu ..., xn, uu ..., um) = f(xu ..., xn)

+ (B+ _B~+ 1) ( J (9j(X) + uj)2 + £ 9
2j(X)\ ; (3.6)

xt € { 0, 1 } ; i = 1, ...; n ; ^. ^ 0, ƒ = 1, ..., m.
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({S) If (X*, U*) is an optimal solution of problem (V) and F(x*, ...,
x*, u*, ..., u*) < B+, then the constraints (3.1.) are consistent and X* is arc
optimal solution of problem (III),

(y) ƒ/ (X*, U*) is an optimal solution of problem (V), and F{x*, ,..,
#*, M*, ..., w*) > B+, i/ien £/ie constraints (3.1) are inconsistent,

Proof. Let us first notice that

fi- < ƒ(*) < 5 + (3.7)

(a) Given an opimal solution X* of problem (III), we have :

<p,.(X*) = 0 f = m + l , . . . , l
<?j(X*) < 0 ƒ = 1, ..., m

We de fine the vector [7* by

Let us suppose that there exists a vector (Y*, F*), (Y* € 5^ ; F* ^ 0)
such that

F(Y*9 F*) < F(Y*, [/*). (3.8)

It follows that Y* fulfils the System (3.1). Indeed, if not, then there
exists an index /0 such that either

/o€( l , . . . ,m) and <?jo(Y*) > 1 (3.9)
or

/0 € (m + 1, ..., I) and <?J0(Y*) ^ 0 (3.10)

In the first case, <pJ0(Y*) ̂  1 andi;^ ^ 0 imply

In the second case, we see that

9jl(Y*) > 1. (3.11)

In both cases we deduce that

S (<?j (Y*) + vf)2 + £ <?>(¥*) > 1 (3.12)
and

F( Y*5 F*) ̂  /( Y*) + B+ — B- + 1 ̂  5 + + 1 (3.13)
On the other hand

F(X*9 U*) = /(X*) < 5 + (3.14)

From (3.13) and (3.14) we get

F{X*> U*)< F(Y*, F*) (3.15)

which contradicts (3.8.) Hence Y* fulfils the constraints (3.1).
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As above we can also deduce that

v* = -9j(Y*), / = l , . . . , m
hence :

F(Y*, V*) = f(Y*) (3.16)

From (3.16) and (3.8) we deduce that

F(Y*, V*) = f{Y*) < F(X*, V) = f(X*) (3.17)
or

/(Y*) < f(X*),

contradicting the fact that X* is an optimal solution of problem (III).
(P) Conversely, let (X*, U*) be an optimal solution of problem (V). It

foliows then, that X* satisfies the constraints (3.1) and

uf=-<?j(X*), / = 1 , . . . , m (3.19)

because if not, we could reason as above deducing

F(X*, U*) > f(X*) + B+ —B- + 1 > B+ (3.20)

Nowit can be easily seen that X* is an opimal solution of problem (III)*
(y) If the constraints (3.1) are consistent, let Y* be a vector satisfying

the m and let us put

tvj = -<?j(Y*) / = l , . . . , m (3.21)
Hence,

F(Y*9 F*) = /(Y*) ̂  B+ (3.22)

which contradicts the assumption (y).

* *

B. Minimax formulation

Let us consider the following problem (VI) :
Find the minimum over all X € B\ of the maximum over all V €

of F(X9 V), where

F(X, V)

= f(X) + (B+

and where

f>/p,(x) + (3.23)

(3.24)

V = (v»...,vJeBZ (3.25)

X*, V*) wil 1 be called a minimaxing point of problem (VI) if :

F(X*, V*) > F(X*, V), for any V € JÏJ 3 2

F{X*, V*) ̂  ax F(X, V), for any XzB"2
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and (X*, F*) will be called a locally minimaxing point of problem (VI) if :

F{X*, F*) ^ F{X*, F), for any F € 8%
(3.27)

F(X*, F*) ^ Max F(X, F), for any X € Wt{X*)

Theorem 4» Every pseudo-Boolean program under linear constraints is
equivalent to a minimax problem without constraints. The relations between
the optimizing points are the following :

(CL) If X* = (re*, ..., x* is a globally minimizing point of problem (III),
then there exists a F* € B\ such that (X*, F*) is a minimaxing point of
problem (VI).

(P) If (X*, F*) is a minimaxing point of problem (VI) and
F(X*, F*) ^ B+ then X* is a globally minimizing point of problem (III).

(y) If (X*, F*) i5 a minimaxing point of problem (VI), and
F(X*, F*) > B* then the constraints (3.1.) are inconsistent

(8) If X* is a locally minimizing point of problem (III) then there
exists F* € B™, such that (X*, F*) is a locally minimaxing point of problem
(VI).

(e) If (X*, F*) i5 a locally minimaxing point of problem (VI) and

F(X*, F*) < B+

then X* is a locally minimizing point of problem (III).

Proof.

(a) If X* is a globally minimizing point of problem (III), then

cp/X*) ^ 0 ƒ = 1, ..., m (3.29)

9j(X*) ^ 0 j = m + 1, ..., l (3.30)

Let us take F* such that

v* = 0, j = 1, ..., m ;
then,

F(X*9 F*) = Max F(X*9 V)

and
F(X*9 F*) = /(X*). (3.31)

Let suppose that there exists a vector Y € B^ such that

It follows from (3.32) that Y fulfils the set of constraints (3.1). Indeed,
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if not, then at least one constraint is violated. There exists either an
index j0 € (1, ..., m) such that <pJ0(Y) ̂  1 implying vJ0 = 1, and

VJO9JO(Y) > 1, (3.33)

or an index /0 £ (m -f 1, ..., l) such that <PJQ(Y) ^ 0, implying

9/o(Y) > 1 (3.34)

Every term of the sum

£ (3.35))

will be non-negative following the choice of V :
<?j{Y) < 0 implies tys — 0

> 0 implies (^ = 1

From (3.33), (3.34) and (3.35) we get

Max F(X9 V) ̂  f(Y) + B+ — B~ + 1 ^ B+ + 1. (3.36)

From (3.31) and (3.36) we obtain

F(X*, V*) < Max F{Y, V) (3.37)

which contradicts (3.32). Hence Y fulfils the set of constraints (3.1).
As above, we deduce that

MaxF(Y, V) = /(Y), (3.38)
V

so that relation (3.32) becomes

f(Y) < f(X*) (3.39)

contradicting the fact that X* is a minimizing point for problem (III).
(p) Conversely, let (X*, V*) be a minimaxing point of problem (VI) ;

then, X* satisfies the constraints (3.1). If not, we could reason as above
deducing

F{X*, V*) = ax F{X*, V) > /(Z*) + B+ — B~ + 1 > B+.

Now it is obvious that X* is also an optimal solution of problem (III).

(y) If the constraints (3.1) are consistent, let us dénote by Y a vector
satisfying them. We get

Max F{Y9 V) =f{Y) ^ B+ (3.40)
V

which contradicts the assumption in (y).
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(8)X* satisfies the constraints (3.1). Let us take F* such that vf = 0
{/ = 1, ..., m) ; then,

F(X*, F*) =MaxF(X*, F)
F€BW2

F(X*9 F*) = f{X*) ^ B+ (3.41)

For every X € Wt(X*) one of the following alternatives holds :

(1) X satisfies the contraints and

f(X*) < f(X) (3.42)
It foliows then, that

Max F(X, F) = f(X) (3.43)
v

From (3.41), (3.42) and (3.43) we get

F(X*, F*) < ax F{Xf F)
v

(2) X does not satisfy the constraints and hence

Max F(Xt V) > B+ (3.44)
v

It folio ws then that
F(X*5 F*) < Max F(X, F) (3.45)

v
and X* is a locally minimizing point of problem (VI).

(s) From she assumption we deduce that X* satisfies the contrainst.
Then

F{X*, F*) = f(X*). (3.46)

For every feasible point Xt-'W^X*) we have

F(X*, F*) ̂  Max F(X, V) - f(X) (3.47)
v

From (3.46) and (3.47) we deduce
f{X*) < f(X) (3.48)

and hence X* is a locally minimizing point of problem (III).
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