REVUE FRANÇAISE D'INFORMATIQUE ET DE RECHERCHE OPÉRATIONNELLE. SÉRIE VERTE

PETER L. HAMMER

ABRAHAM A. RUBIN

Some remarks on quadratic programming with 0-1 variables

Revue française d'informatique et de recherche opérationnelle. Série verte, tome 4, nº V3 (1970), p. 67-79

<http://www.numdam.org/item?id=RO_1970_4_3_67_0>

© AFCET, 1970, tous droits réservés.

L'accès aux archives de la revue « Revue française d'informatique et de recherche opérationnelle. Série verte » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

R.I.R.O. (4e année, V-3, 1970, p. 67-79)

SOME REMARKS ON QUADRATIC **PROGRAMMING WITH 0-1 VARIABLES**

by Peter L. HAMMER (1), and Abraham A. RUBIN (2)

Abstract. — The aim of this paper is to show that (1) every bivalent (0,1) quadratic programming problem is equivalent to one having a positive (negative) semi-definite matrix in the objective function; (2) to establish conditions for different classes of local optimality; (3) to show that any problem of bivalent (0,1) programming is equivalent (a) to the problem of minimizing a real valued function, partly in (0,1), and partly in non-negative variables, (b) to the problem of finding the minimax of a real valued function in bivalent (0,1) variables.

INTRODUCTION

Numerous problems in various fields of operations research (investment problems, graphs, etc.) lead naturally to problems of quadratic programming with variables which can take on only the values 0 and 1.

The available methods for solving mathematical programs in 0-1 variables, are either dealing only with the linear case (and hence unapplicable for our problems), or dealing with the most general cases (and hence not taking into account the particularities of a quadratic program). Specific methods for the solution of quadratic bivalent programs have been studied by H. P. Kunzi and W. Oettli [4], V. Ginsburgh and A. Van Peeterssen [2] and the present authors [5].

Our aim in this paper is to study some general properties of quadratic 0-1 programs. We shall deal here with :

a) The relationship between a quadratic 0-1 program and the associated continuous program;

b) Conditions for different types of local optima ;

c) Possibilities of reducing a quadratic program to

c.1) an unconstrained quadratic minimization problem,

(c.2) an unconstrained quadratic minimax problem.

Present address : Université de Montréal, Centre de recherches mathématiques.)
 Technion-Isreal Institute of Technolooy Faculty of Industrial and Management Engineering.

A Boolean variable x_i is a variable which takes its values from the two element Boolean algebra $B_2 = \{0, 1\}$.

A vector X with n Boolean components will be called a Boolean vector. The set of these vectors will be denoted by B_2^n .

A mapping f(X) from B_2^n into the field R of reals will be called a *pseudo-Boolean function*.

We define the distance d(X, Y) of two vectors X and Y belonging to B_2^n by putting :

$$d(X, Y) = \sum_{i=1}^{n} (x_i - y_i)^2; \qquad (0.1)$$

d(X, Y) represents the number of different components of X and Y.

We define the k-neighbourhood $W_k(X)$ of X in B_2^n as the set of those vectors Y belonging to B_2^n which are at distance k from X:

$$W_k(X) = \{ Y \in B_2^n, d(X, Y) = k \}$$
(0.2)

 $f(X^*)$ is a (globally) minimizing point of the pseudo-Boolean function f(X) if :

$$f(X^*) \leq f(X) \text{ for any } X \in B_2^n. \tag{0.3}$$

 X^* is a locally minimizing point of f if :

$$f(X^*) \leqslant f(X) \text{ for any } X \in W_1(X^*), \tag{0.4}$$

and more generally X^* will be a k-minimizing point of f if :

$$f(X^*) \leq f(X) \text{ for any } X \in W_k(X^*). \tag{0.5}$$

Given a real valued n by n matrix $\tilde{Q} = (\tilde{q}_{ij})$ and a real valued n vector p we define the pseudo Boolean quadratic function f(X) as :

$$f(X) = X'\tilde{Q}X + p'X \tag{0.6}$$

Remarking that $x_i^2 = x_i$ for every i, i = 1, ..., n we add the component p_i of the vector p to the *i*-th diagonal element of the matrix \tilde{Q} . Let us denote by $Q = (q_{ij})$ the new matrix defined by :

$$q_{ij} = \begin{cases} \tilde{q}_{ij} & i \neq j \\ \tilde{q}_{ij} + p_i & i = j \end{cases}$$

From now on we will represent a pseudo-Boolean quadratic function simply by :

$$f(X) = X'QX. \tag{0.7}$$

The matrix Q will always be assumed to be symmetric. otherwise as $X'QX = \frac{1}{2}X'(Q+Q')$ the matrix $\frac{1}{2}(Q+Q')$ is symmetric, showing that our assumption is not restrictive.

1. THE ASSOCIATED CONTINUOUS PROGRAM

By a problem of quadratic pseudo-Boolean programming under linear constraints we shall mean the problem of minimizing

subject to
$$X'QX$$

and to (1.1)

$$X \in B_2^n, \tag{1.2}$$

where A is a given $m \times n$ matrix, Q is a given symmetric $n \times n$ matrix, b is a given m-vector, and X is an n-vector to be determined.

This problem will be called Problem I. To Problem I we associate the following Problem II :

X'QX

Minimize

subject to

 $AX \leqslant b \tag{1.3}$

and to

$$0 \leq x_i \leq 1$$
 $(j = 1, ..., n).$ (1.4)

Numerous procedures are available for solving Problem II when Q is a positive semidefinite matrix (see, e.g. [1], [6], etc.).

Obviously, by a rounding procedure we can obtain from the optimal solution of Problem II a certain « approximation » of the optimal solution of Problem I.

In order to make use of this remark, we have to solve Problem II; the simplest way seems to utilize the following :

Theorem 1. Given a symmetric $n \times n$ matrix Q, there exists a positive definite $n \times n$ matrix R and an n-vector d such that if

$$f(X) = X'QX$$
$$g(X) = X'RX + dX,$$

then,

$$f(X) = g(X)$$
 for every $X \in B_2^n$.

Proof. Let γ be an arbitrary real number, and let

$$g_{\gamma}(X) = X'QX + \gamma \sum_{i=1}^{n} (x_i^2 - x_i),$$

or

$$g_{\gamma}(X) = X'(Q + \gamma I)X - \gamma \sum_{i=1}^{n} x_i.$$

From the fact that $x_i^2 = x_i$ for any $x_i \in B_2$, it follows that $f(X) = g_{\gamma}(X)$ for any $X \in B_2^n$.

Q being a symmetric matrix, its eigen-values are reals. Let λ denote the smallest of these eigen-values. The smallest eigen-value of $Q + \gamma I$ will hence be $\lambda + \gamma$. Choosing γ such that $\lambda + \gamma$ should be positive, we assure the positive definiteness of $Q + \gamma I$, thus proving the theorem.

In order to make a reasonably good choice of the γ , let us remark the followings. If γ_1 and γ_2 are two reals $(\gamma_1 < \gamma_2)$ satisfying the conditions $\lambda + \gamma_h > 0$ (h = 1, 2), and if P - h denotes the problem of minimizing g_{γ_h} under constraints (1.3) and (1.4) (assumed to be consistent), then let us denote by X_h the optimal solution of P - h. Let us further denote the center of the hypercube B_2^n by $C = \left(\frac{1}{2}, \frac{1}{2}, ..., \frac{1}{2}\right)$, and let the distance $d(V_1, V_2)$ between two real vectors $V_1 = (V_{11}, ..., V_{1n})$ and $V_2 = (V_{21}, ..., V_{2n})$ be

$$d(V_1, V_2) = \sum_{i=1}^{n} (V_{1i} - V_{2i})^2.$$

The following result holds :

Theorem 2. If $\gamma_1 < \gamma_2$ then $d(X_1, C) > d(X_2, C)$.

Proof. From the fact that X_1 is an optimal solution of P - 1, and X_2 is a feasible solution of the same problem, it follows that

$$g_1(X_1) \leqslant g_1(X_2).$$

Analogously,

$$g_2(X_2) \leq g_2(X_1).$$

These relations can be rewritten as

$$X'_{1}QX_{1} + \gamma_{1} \sum_{i=1}^{n} (x_{1i}^{2} - x_{1i}) \leq X'_{2}QX_{2} + \gamma_{1} \sum_{i=1}^{n} (x_{2i}^{2} - x_{2i}) \quad (1.5)$$

$$X'_{2}QX_{2} + \gamma_{2} \sum_{i=1}^{n} (x^{2}_{2i} - x_{2i}) \leq X'_{1}QX_{1} + \gamma_{2} \sum_{i=1}^{n} (x^{2}_{1i} - x_{1i}). \quad (1.6)$$

Adding (1.5) and (1.6) we get

$$(\gamma_1 - \gamma_2) \sum_{i=1}^n (x_{1i}^2 - x_{1i}) \leq (\gamma_1 - \gamma_2) \sum_{i=1}^n (x_{2i}^2 - x_{2i}).$$

As $\gamma_1 < \gamma_2$, it follows that

$$\sum_{i=1}^{n} (x_{1i}^2 - x_{1i}) \ge \sum_{i=1}^{n} (x_{2i}^2 - x_{2i}).$$
(1.7)

Hence

$$\sum_{i=1}^{n} \left(x_{1i} - \frac{1}{2} \right)^2 \ge \sum_{i=1}^{n} \left(x_{2i} - \frac{1}{2} \right)^2,$$

or

$$d(X_1, C) \ge d(X_2, C), \tag{1.8}$$

proving the theorem.

It follows from Theorem 2, that in order to get a good starting solution of PI from the rounded optimal solution of PII it is advisable to choose γ as small as possible.

2. CONDITIONS FOR *k*-MINIMALITY

A vector X is a k-minimizing point for the function f if :

$$f(X) \leq f(Y)$$
 for any $Y \in W_k(X)$. (2.1)

Let us denote by J the set of the indices of the k differing components of X and Y:

$$x_i = y_i \qquad i \notin J \qquad (2.2)$$

$$x_i = 1 - y_i \qquad i \in J \tag{2.3}$$

$$J \subset \{1, ..., n\} \quad \text{and} |J| = k.$$

Condition (2.1) is expressed by

$$f(X) - f(Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j - \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} y_i y_j \leq 0.$$
 (2.4)

Using (2.2) and (2.3) we get

$$f(X) - f(Y) = \sum_{i \notin J} \sum_{j \notin J} q_{ij} x_i x_j - \sum_{i \notin J} \sum_{j \notin J} q_{ij} y_i y_j$$

+
$$\sum_{i \in J} x_i \sum_{j \notin J} 2q_{ij} x_j + \sum_{i \in J} \sum_{j \in J} q_{ij} x_i x_j$$

-
$$\sum_{i \in J} y_i \sum_{j \notin J} 2q_{ij} y_j - \sum_{i \in J} \sum_{j \in J} q_{ij} y_i y_j,$$
(2.5)

or,

$$f(X) - f(Y) = \sum_{i \in J} (2x_i - 1) \left[\sum_{j \notin J} 2q_{ij} x_j + \sum_{j \in J} q_{ij} \right], \qquad (2.6)$$

Hence, X is a k-minimizing point for the function f iff for every set of indices J, such that |J| = k, the following relation holds :

$$\sum_{i \in J} (2x_i - 1) \left[\sum_{j \in J} 2q_{ij} x_j + \sum_{j \in J} q_{ij} \right] \le 0$$
(2.7)

In particular

for $J = \{1, 2, ..., n\}, (2.7)$ simplifies to

$$\sum_{i=1}^{n} (2x_i - 1) \left(\sum_{j=1}^{n} q_{ij} \right) \leq 0 ; \qquad (2.8)$$

for $J = \{l\}, (2.7)$ simplifies to

$$(2x_{i}-1)\left(\sum_{j\notin i}2q_{i}x_{j}+q_{i}\right) \leq 0; \qquad (2.9)$$

for $J = \{1, 2, ..., n\}, -\{l\}$ (2.7) simplifies to

$$\sum_{j \neq l} (2x_j - 1)(2q_{lj}x_l + \sum_{j \neq l} q_{lj}) \leq 0$$
(2.10)

REMARK. We point out that a 1-minimizing and 2-minimizing point X^* is not necessarily a globally minimizing point. Consider for this, the following example in B_2^3 :

Let

$$Q = \begin{pmatrix} 5 & 0 & -3 \\ 0 & 5 & -3 \\ -3 & -3 & 5 \end{pmatrix}$$

The point (1, 1, 1) is both 1-minimizing and 2-minimizing, but it is not globally minimizing; the globally minimizing point is (0, 0, 0), as it can be seen from Table 1.

X ₁	×2	×3	X'Q X
o	о	0	0
1	0	0	5
0	1	0	5
0	٥	А	5
1	1	0	10
1	0	1	4
0	1	1	4
1	¹ 1	1	3

TABLE. 1

72

3. MINIMIZATION UNDER CONSTRAINTS

The problem (III) we shall consider in his section is the following : Minimize : f(X) = X'QX

under the following constraints :

$$\begin{aligned} \varphi_{j}(X) &\leq 0 \qquad j = 1, ..., m \\ \varphi_{j}(X) &= 0 \qquad j = m + 1, ..., l \\ X \in B_{2}^{n}; \end{aligned} \tag{3.1}$$

here $\varphi_j(X)$ are pseudo-Boolean functions of X. We shall assume that these functions $\varphi_j(X)$ are integer valued. As X has to satisfy the set of constraints (3.1), we have to define the concept of locally minimizing points of a pseudo-Boolean function under pseudo-Boolean constraints.

 X^* is a locally minimizing point for the function f(X) under the set of constraints (3.1.) if

1) X^* fulfills the set of constraints (3.1.)

2) for every $Y \in W_1(X^*)$, either $f(X^*) \leq f(Y)$ or Y violates at least one of the constraints (3.1) (j = 1, ..., l).

A. Introducing slack variables.

We introduce the slack variables $u_j (j = 1, ..., m)$, and reformulate (IV) the program (III):

 $\begin{array}{l} \text{Minimize } f(X) = X'QX \\ \text{so that} \end{array}$

$$\begin{aligned} \varphi_j(X) + u_j &= 0, & j = 1, ..., m \\ \varphi_j(X) &= 0, & j = m + 1, ..., l \\ X \in B_2^n; u_j &\ge 0 & j = 1, ..., m \end{aligned}$$
(3.2)

We can use « Lagrangean multipliers » (as defined in [3]) and formulate the program as one without constraints. For this sake, let us denote by B^+ and B^- , an upper and a lower bound of f(x) in B_2^n (for example the sum of all its positive and all its negative coefficients). We have :

Theorem 3. (See [3]).

(a) If $X^* = (x_1^*..., x_n^*)$, is an optimal solution of problem (III), then there exists a vector $U^* = (u_1^*, ..., u_m^*)$, such that (X^*, U^*) is an optimal solution of the following problem (V):

Minimize

$$F(x_1, ..., x_n, u_1, ..., u_m) = f(x_1, ..., x_n) + (B^+ _B^+ + 1) \left(\sum_{j=1}^m (\varphi_j(X) + u_j)^2 + \sum_{j=m+1}^l \varphi_j^2(X) \right); \quad (3.6) x_i \in \{0, 1\}; \quad i = 1, ..., n; \quad u_j \ge 0, \quad j = 1, ..., m.$$

(3) If (X^*, U^*) is an optimal solution of problem (V) and $F(x_1^*, ..., x_n^*, u_1^*, ..., u_m^*) \leq B^+$, then the constraints (3.1.) are consistent and X^* is an optimal solution of problem (III).

(Y) If (X^*, U^*) is an optimal solution of problem (V), and $F(x_1^*, ..., x_n^*, u_1^*, ..., u_m^*) > B^+$, then the constraints (3.1) are inconsistent.

Proof. Let us first notice that

$$B^- \leq f(X) \leq B^+ \tag{3.7}$$

(
$$\alpha$$
) Given an opimal solution X* of problem (III), we have :

We define the vector U^* by

$$u_j^* = -\varphi_j(X^*) \ge 0 \qquad j = 1, ..., m$$

Let us suppose that there exists a vector (Y^*, V^*) , $(Y^* \in B_2^n; V^* \ge 0)$ such that

$$F(Y^*, V^*) < F(Y^*, U^*).$$
 (3.8)

It follows that Y^* fulfils the system (3.1). Indeed, if not, then there exists an index j_0 such that either

$$j_0 \in (1, ..., m)$$
 and $\varphi_{j0}(Y^*) \ge 1$ (3.9)

 \mathbf{or}

$$\dot{j}_0 \in (m+1, ..., l)$$
 and $\varphi_{j0}(Y^*) \neq 0$ (3.10)

In the first case, $\varphi_{j0}(Y^*) \ge 1$ and $v_{j0}^* \ge 0$ imply

$$(\varphi_{j0}(Y^*) + v_{j0}^*)^2 \ge 1.$$

In the second case, we see that

$$\varphi_{j0}^{2}(Y^{*}) \ge 1.$$
 (3.11)

In both cases we deduce that

$$\sum_{j=1}^{m} (\varphi_j (Y^*) + v_j^*)^2 + \sum_{j=m+1}^{l} \varphi_j^2 (Y^*) \ge 1$$
(3.12)

and

$$F(Y^*, V^*) \ge f(Y^*) + B^+ - B^- + 1 \ge B^+ + 1$$
 (3.13)

On the other hand

$$F(X^*, U^*) = f(X^*) \leq B^+$$
(3.14)

From (3.13) and (3.14) we get

$$F(X^*, U^*) < F(Y^*, V^*)$$
 (3.15)

which contradicts (3.8.) Hence Y^* fulfils the constraints (3.1).

As above we can also deduce that

$$v_j^* = -\varphi_j(Y^*), \quad j = 1, ..., m$$

 $F(Y^*, V^*) = f(Y^*)$ (3.16)

hence :

From (3.16) and (3.8) we deduce that

$$F(Y^*, V^*) = f(Y^*) < F(X^*, U^*) = f(X^*)$$
(3.17)

 \mathbf{or}

 $f(Y^*) < f(X^*),$

contradicting the fact that X^* is an optimal solution of problem (III).

(β) Conversely, let (X^*, U^*) be an optimal solution of problem (V). It follows then, that X^* satisfies the constraints (3.1) and

$$u_j^* = -\varphi_j(X^*), \quad j = 1, ..., m$$
 (3.19)

because if not, we could reason as above deducing

$$F(X^*, U^*) \ge f(X^*) + B^+ - B^- + 1 > B^+$$
 (3.20)

Now it can be easily seen that X^* is an opimal solution of problem (III).

(γ) If the constraints (3.1) are consistent, let Y^* be a vector satisfying them and let us put

$$(\varphi_j = -\varphi_j(Y^*))$$
 $j = 1, ..., m$ (3.21)

Hence,

$$F(Y^*, V^*) = f(Y^*) \le B^+$$
 (3.22)

which contradicts the assumption (γ) .

**

B. Minimax formulation

Let us consider the following problem (VI) :

Find the minimum over all $X \in B_2^n$ of the maximum over all $V \in B_2^m$, of F(X, V), where

$$= f(X) + (B^{+} - B^{-} + 1) \left(\sum_{j=1}^{m} v_{j} \varphi_{j}(X) + \sum_{j=m+1}^{l} \varphi_{j}^{2}(X) \right)$$
(3.23)
where $X - (r_{i} - r_{i}) \in B^{n}_{i}$ (3.24)

and where

$$V = (v_1, \dots, v_n) \in B_2^m.$$
(3.25)

$$V = (v_1, ..., v_m) \in B_2^m.$$
 (3.25)

 X^* , V^*) will be called a minimaxing point of problem (VI) if :

$$F(X^*, V^*) \ge F(X^*, V), \qquad \text{for any} \qquad V \in B_2^m$$
(3.26)

$$F(X^*, V^*) \leq \underset{V \in B^{n_2}}{\text{ax}} F(X, V), \text{ for any } X \in B_2^n$$

and (X^*, V^*) will be called a *locally minimaxing point* of problem (VI) if :

$$F(X^*, V^*) \ge F(X^*, V), \qquad \text{for any} \qquad V \in B_2^m$$

$$F(X^*, V^*) \le \max_{\substack{V \in B_2^m \\ V \in B_2^m}} F(X, V), \qquad \text{for any} \qquad X \in W_1(X^*)$$
(3.27)

Theorem 4. Every pseudo-Boolean program under linear constraints is equivalent to a minimax problem without constraints. The relations between the optimizing points are the following :

(a) If $X^* = (x_1^*, ..., x_n^*)$ is a globally minimizing point of problem (III), then there exists a $V^* \in B_2^m$ such that (X^*, V^*) is a minimaxing point of problem (VI).

(3) If (X^*, V^*) is a minimaxing point of problem (VI) and $F(X^*, V^*) \leq B^+$ then X^* is a globally minimizing point of problem (III).

(γ) If (X^*, V^*) is a minimaxing point of problem (VI), and $F(X^*, V^*) > B^+$ then the constraints (3.1.) are inconsistent.

(8) If X^* is a locally minimizing point of problem (III) then there exists $V^* \in B_2^m$, such that (X^*, V^*) is a locally minimaxing point of problem (VI).

(c) If (X^*, V^*) is a locally minimaxing point of problem (VI) and $F(X^*, V^*) \leq B^+$

then X^* is a locally minimizing point of problem (III).

Proof.

(α) If X^{*} is a globally minimizing point of problem (III), then

$$\varphi_j(X^*) \leq 0 \qquad j = 1, ..., m$$
 (3.29)

$$\varphi_j(X^*) = 0 \qquad j = m + 1, ..., l$$
 (3.30)

Let us take V^* such that

$$v_j^* = 0, \quad j = 1, ..., m;$$

 $F(X^*, V^*) = \max_{V \in B^{m_2}} F(X^*, V)$

and

then,

$$F(X^*, V^*) = f(X^*).$$
 (3.31)

Let suppose that there exists a vector $Y \in B_2^n$ such that

$$\max_{V} F(Y, V) < f(X^*)$$
(3.32)

It follows from (3.32) that Y fulfils the set of constraints (3.1). Indeed,

if not, then at least one constraint is violated. There exists either an index $j_0 \in (1, ..., m)$ such that $\varphi_{j0}(Y) \ge 1$ implying $\nu_{j0} = 1$, and

$$v_{j0}\varphi_{j0}(Y) \ge 1, \tag{3.33}$$

or an index $j_0 \in (m + 1, ..., l)$ such that $\varphi_{j0}(Y) \neq 0$, implying

$$\rho_{j0}^2(Y) \ge 1 \tag{3.34}$$

Every term of the sum

$$\sum_{j=1}^{m} v_j \varphi_j(Y) \tag{3.35}$$

will be non-negative following the choice of V:

$$\begin{array}{ll} \varphi_j(Y) < 0 & \text{implies} & (v_j = 0 \\ \varphi_j(Y) > 0 & \text{implies} & (v_j = 1 \\ \varphi_j(Y) = 0 & (v_j \text{ free} \end{array}$$

From (3.33), (3.34) and (3.35) we get

$$\max_{v} F(X, V) \ge f(Y) + B^{+} - B^{-} + 1 \ge B^{+} + 1.$$
 (3.36)

From (3.31) and (3.36) we obtain

$$F(X^*, V^*) < \max_{V} F(Y, V)$$
 (3.37)

which contradicts (3.32). Hence Y fulfils the set of constraints (3.1).

As above, we deduce that

$$\max_{V} F(Y, V) = f(Y),$$
(3.38)

so that relation (3.32) becomes

$$f(Y) < f(X^*)$$
 (3.39)

contradicting the fact that X^* is a minimizing point for problem (III).

(β) Conversely, let (X*, V*) be a minimaxing point of problem (VI); then, X* satisfies the constraints (3.1). If not, we could reason as above deducing

$$F(X^*, V^*) = \underset{V}{\operatorname{ax}} F(X^*, V) \ge f(X^*) + B^+ - B^- + 1 > B^+.$$

Now it is obvious that X^* is also an optimal solution of problem (III).

 (γ) If the constraints (3.1) are consistent, let us denote by Y a vector satisfying them. We get

$$\max_{W} F(Y, V) = f(Y) \le B^{+}$$
(3.40)

which contradicts the assumption in (γ) .

 $(\delta)X^*$ satisfies the constraints (3.1). Let us take V^* such that $v_j^* = 0$ (j = 1, ..., m); then,

$$F(X^*, V^*) = \max_{V \in B^{n_2}} F(X^*, V)$$

$$F(X^*, V^*) = f(X^*) \leq B^+$$
(3.41)

For every $X \in W_1(X^*)$ one of the following alternatives holds :

(1) X satisfies the contraints and

$$f(X^*) \leq f(X) \tag{3.42}$$

It follows then, that

$$\max_{V} F(X, V) = f(X)$$
(3.43)

From (3.41), (3.42) and (3.43) we get

$$F(X^*, V^*) \leqslant \underset{V}{\operatorname{ax}} F(X, V)$$

(2) X does not satisfy the constraints and hence

$$\max_{V} F(X, V) > B^{+}$$
(3.44)

It follows then that

$$F(X^*, V^*) < \max_{V} F(X, V)$$
 (3.45)

and X^* is a locally minimizing point of problem (VI).

(c) From she assumption we deduce that X^* satisfies the contrainst. Then

$$F(X^*, V^*) = f(X^*). \tag{3.46}$$

For every feasible point $X \in W_1(X^*)$ we have

$$F(X^*, V^*) \leq \max_{v} F(X, V) = f(X)$$
 (3.47)

From (3.46) and (3.47) we deduce

$$f(X^*) \leqslant f(X) \tag{3.48}$$

and hence X^* is a locally minimizing point of problem (III).

REFERENCES

- [1] E. M. L. BEALE, "On quadratic programming", Naval Research Logistics Quaterly, Vol. 6, 1959, pp. 2 27-243.
- [2] V. GINSBURGH et VAN PEETERSSEN A., Un algorithme de programmation quadratique en variables binaires, Revue Française d'Informatique et de Recherche Opérationnelle, vol. 3, 1969, pp. 57-73.

- [3] P. L. HAMMER and S. RUDEANU, Boolean methods in operations research and related areas, Springer-Verlag, Berlin-Heidelberg-New York, 1968; Dunod, Paris, 1970.
- [4] H. P. KUNZI and W. OETTLI, « Integer quadratic programming », in Recent Advances in Mathematical Programming, Edited by Wolfe and Graves, McGraw Hill Book Co., N. Y., 1963, pp. 303-308.
- [5] A. A. RUBIN and P. L. HAMMER, « Quadratic programming with 0-1 variables », Mimeograph Series Nº. 53, Faculty of Industrial and Management Engineering, Technion-Israel.
- [6] P. WOLFE, "The simplex method for quadratic programming ", Econometrica, vol. 27, 1959, pp. 382-398.