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SOME REMARKS ON QUADRATIC
PROGRAMMING WITH 0-1 VARIABLES

by Peter L. Hammer (1), and Abraham A. Rusin (2)

Abstract. — The aim of this paper is to show that (1) every bivalent (0,1} quadratic
programming problem is equivalent to one having a positive (negative) semi-definite
matriz in the objective function ; (2) to establish conditions for different classes of local
optimality ; (3) to show that any problem of bivalent (0,1) programming is equivalent (a)
to the problem of minimizing.a real valued function, partly in (0,1), and parily in non-
negative variables, (b) to the problem of finding the minimax of a real valued function in
bivalent (0,1) variables.

INTRODUCTION

Numerous problems in various fields of operations research (invest-
ment problems, graphs; etc.) lead naturally to problems of quadratic
programming with variables which can take on only the values 0 and 1,

The available methods for solving mathematical programs in
0-1 variables, are either dealing only with the linear case (and hence
unapplicable for our problems), or dealing with the most general cases
(and hence not taking into account the particularities of a quadratic
program). Specific methods for the solution of quadratic bivalent pro-
grams have been studied by H. P. Kunzi and W. Oettli [4], V. Ginsburgh
and A. Van Peeterssen [2] and the present authors [5].

Our aim in this paper is to study some general properties of quadratic
0-1 programs. We shall deal here with :

a) The relationship between a quadratic 0-1 program and the asso-
ciated continuous program ;

b) Conditions for different types of local optima ;

c) Possibilities of reducing a quadratic program to

c.1) an unconstrained quadratic minimization problem,
¢.2) an unconstrained quadratic minimax problem.

(1) Present address : Université de Montréal, Centre de recherches mathématiques.)

(2) Technion-Isreal Institute of Technolooy Faculty of Industrial and Management Engi-
neering.
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*
* %
A Boolean vartable z; is a variable which takes its values from the
two element Boolean algebra B, = {0, 1}.
A vector X with n Boolean components will be called a Boolean
vector. The set of these vectors will be denoted by Bj.

A mapping f(X) from Bj into the field R of reals will be called a
pseudo-Boolean function.

We define the distance d(X, Y) of two vectors X and Y belonging to
Bj by putting :

n

X, Y) = ) (@ —y)*; (0.1)

i=1
d(X, Y) represents the number of different components of X and Y.

We define the k-neighbourhood Wx(X) of X in Bj as the set of those
vectors Y belonging to Bj which are at distance k from X :

WyX) = { Y € Bl d(X, Y) = k } 0.2)
f(X*) is a (globally) minimizing point of the pseudo-Boolean function f(X)

if

f(X*) < f(X) forany X € Bj. (0.3)
X* is a locally minimizing point of fif
HX*) < f(X) for any X € W,(X*), (0.4)
and more generally X* will be a k-minimizing point of fif :
f(X*) < f(X) for any X € Wi(X*). (0.5)

Given a real valued n by n matrix Q = (7;;) and a real valued n
vector p we define the pseudo Boolean quadratic function f(X) as :

f(X) = X'0X + p'X (0.6)

Remarking that 2? = z; for every i, i = 1, ..., n we add the component
p; of the vector p to the i-th diagonal element of the matrix Q. Let us

denote by Q = (g,;) the new matrix defined by :
TS
95+ p: =]
From now on we will represent a pseudo-Boolean quadratic function
stmply by :

9

f(X) = X'QX. (0.7)
The matrix Q will always be assumed to be symmetric. otherwise as
X'0X = -% X'(Q + Q') the matrix% (Q + Q') is symmetric, showing that

our assumption is not restrictive.
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1. THE ASSOCIATED CONTINUOUS PROGRAM

By a problem of quadratic pseudo-Boolean programming under linear
constraints we shall mean the problem of minimizing

X'0X
subject to
AX <b (1.1)
and to
X € B3, (1.2)

where A is a given m X n matrix, Q is a given symmetric n X n matrix,
b is a given m-vector, and X is an n-vector to be determined.

This problem will be called Problem I. To Problem I we associate the
following Problem 11 :

Minimize
X'0X
subject to
AX £ b (1.3)
and to
0<z; <1 j=1,..,n). (1.4)

Numerous procedures are available for solving Problem II when Q
is @ positive semidefinite matriz (see, e.g. [1], [6], etc.).
Obviously, by a rounding procedure we can obtain from the optimal

solution of Problem II a certain « approximation » of the optimal solution
of Problem 1.

In order to make use of this remark, we have to solve Problem II;
the simplest way seems to utilize the following :

Theorem 1. Given a symmetric n X n matriz Q, there exists a positive
definite n X n matriz R and an n-vector d such that 1f

f(X) = X'9X
g(X) = X'RX + dX,
then,
f(X) = g(X) for every X € Bj.
Proof. Let v be an arbitrary real number, and let

BAX) = XQX + v 3 (af —a)

or

8(X) = X'(Q + DX —y 2. o
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From the fact that 27 = z; for any z; € B,, it follows that f(X) = g,(X)
for any X € Bj.

Q being a symmetric matrix, its eigen-values are reals. Let A denote
the smallest of these eigen-values. The smallest eigen-value of Q + yI
will hence be A + vy. Choosing vy such that A 4 vy should be positive, we
assure the positive definiteness of Q + vI, thus proving the theorem.

In order to make a reasonably good choice of the vy, let us remark the
followings. If y; and vy, are two reals (y; < vy,) satisfying the conditions
A+ yn > 0(h =1, 2),and if P — k denotes the problem of minimizing g,,
under constraints (1.3) and (1.4) (assumed to be consistent), then let us
denote by X» the optimal solution of P — h. Let us further denote the

center of the hypercube B} by C = 11 1), and let the distance

223
d(V,, V,) between two real vectors V, = (V,,, ..., VJand V, = (V,y, ..,
V2n) be

d(Vy, Vy) = Z:l (Vii— V2i)2'
The following result holds :
Theorem 2, Ifvy, < vy, then d(X,, C) > d(X,, C).

Proof. From the fact that X, is an optimal solution of P.— 1, and X,
is a feasible solution of the same problem, it follows that

g1(Xy) < g1(Xp).

82(X3) < ga(Xy)-

These relations can be rewritten as

Analogously,

n n

X;0X, + 11 Z (@ —2;) < X30X, + 1 Z (@3 —ap)  (1.5)

X30X, + v2 2, (i — ) < Xi0Xy + v X, (sl — @) (16)

Adding (1.5) and (1.6) we get
n n
(Y1 —v2) Z:l (af: — 213) < (v1—72) Z (235 — @2:).
As v, < v,, it follows that

(xfi — @) = Z" (xgi — Zy;)- (1.7)

Hence
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or
d(X;, €) > d(X,, C), (1.9)
proving the theorem. :

It follows from Theorem 2, that in order to get a good starting solution
of PI from the rounded optimal solution of PII it is advisable to choose v
as small as possible.

2. CONDITIONS FOR k-MINIMALITY
A vector X is a k-minimizing point for the function f if :
X)) < {(Y) for any Y e We(X). (2.1)

Let us denote by J the set of the indices of the k differing components
of Xand Y :

— i¢J 2.2
@ =1—uy; 1eJ (2.3)
Jc{t,..,n} and |J| = k.

Condition (2.1) is expressed by
10 — 1) = 3, 3. qimia; —
Using (2.2) and (2. 3) we get

f( _l Y) z z qux,x z Z quylyj

> gy < (2.4)

1j=1

M:

i€k jeEy i€EJ jeEJ

+ 2w Z 2q,0; + 2. 4;%:%;
ie]  jE€EI i€J jeJ

- 2 yn z 2quy) Z z Qijyiyja (25)
ieJ jeks i€J jeJ

or,
HX) —HY) = Z (2z; — 1)[2 2,57 + Z ‘Iij], (2.6)

ieJ

Hence, X is a k-mlmmlzmg point for the function f iff for every set of
indices J, ‘such that |J| = Fk, the following relation holds :

(22, — 1) [229., + qu,-]K 0 (2.7)
le‘J j€J

In particular

for J = {1, 2, ..., n}, (2.7) simplifies to

Z (22, — 1)( Z qij) <0; (2.8)
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for J = {1}, (2.7) simplifies to

(22, — 1)(2 2q,x; -+ ‘Zu) <0; (2.9)
J€EL
for J = {1, 2, ..., n}, — {I} (2.7) simplifies to
Z (2xj — 1)(2%1'33! -+ Z qu) <0 (210)
J*EL J#l

Remark. We point out that a 1-minimizing and 2-minimizing point X*
is not necessarily a globally mmlmxzmg point. Consider for this, the

following example in B3 :

Let
5 0 —3
Q=< 0 5 —3>
—3 —3 5

The point (1, 1, 1) 1s both 1-minimizing and 2- mmlmxzmg, but 1t is
not globally minimizing ; the globally minimizing point is (0, 0, 0), as it
can be seen from Table 1.

TasLe. 1

X4 X2 X3 X'QX
0 0 0 (o)

1 0 ¢] 5

(o) 1 0 5

Q Q 1 5

1 1 o 10

1 0 1 4

0 1 1 4

1 1 1 3
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3. MINIMIZATION UNDER CONSTRAINTS

The problem (I1I) we shall consider in his section is the following :
Minimize : f(X) = X'0X

under the following constraints :

e{X) <0 j=1..,m (3.1)
X)) =0  jomtl
X ehBj;

here ¢,(X) are pseudo-Boolean functions of X. We shall assume that
these functions ¢ (X) are integer valued. As X has to satisfy the set of
constrains (3.1), we have to define the concept of locally minimizing
points of a pseudo-Boolean function under pseudo-Boolean constraints.

X* 1s a locally minimizing point for the function f(X) under the set
of constraints (3.1.) it

1) X* fulfills the set of constraints (3.1.)
2) for every Y ¢ W (X*), either f(X*) < f(Y) or Y violates at least
one of the constraints (3.1) (j = 1, ..., I).
A. Introducing slack variables.
We introduce the slack variables u;(j = 1, ..., m), and reformulate (IV)
the program (III) :
Minimize f(X) = X'QX
so that
ei{X)+u;=0, j=1,..,m
;X)) =0, J=m+4+1,..,1 (3.2)
XeBy;u; 20 j=1..,m
We can use « Lagrangean multipliers » (as defined in [3]) and formulate
the program as one without constraints. For this sake, let us denote by

B* and B—, an upper and a lower bound of f(z) in B} (for example the
sum of all its positive and all its negative coeficients). We have :

Theorem 3. (See [3)).

(@) If X* = (af..., %), is an optimal solution of problem (III), then
there exists a vector U* = (uy; ..., u}), such that (X*, U¥) is an optimal
solution of the following problem (V) :

Minimize

Flzy, ..., 2y uq,y ooy uy) = fl2q, ...y z,)

J=m+

+ (B* _B+ 1)(:21 (@;(X) + u)* + Zlcp’}(X)); (3.6

z;€{0,1}; i=1,.,n; u; >0, j=1,.., m

J
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(8) If (X*, U*) ts an optimal solution of problem (V) and F(af, ...,

z¥ ul, ..., uk) < BT, then the constraints (3.1.) are consistent and X* is an
optimal solutwn of problem (111).

(v) If (X*, U*) is an optimal solution of problem (V), and F(z¥, ...,

2%, uf, ..., uk) > B™, then the constraints (3.1) are inconsistent.

Proof. Let us first notice that
B- < f(X) € B* (3.7)
(«) Given an opimal solution X* of problem (III), we have :
Pi{(X*) =0 J=m4+1,..,1
P;(X*) <0 =1 .,m
We define the vector U* by
uf = —oi(X*) 20 I=1..,m

Let us suppose that there exists a vector (Y*, V*), (Y* € B} ; V* > 0)
such that
F(Y*, V*) < F(Y*, U*%). (3.8)

It follows that Y™ fulfils the system (3.1). Indeed, if not, then there
exists an index j, such that either

Jo €(1, ..., m) and 9;0(Y*) =21 (3.9)

or

Jo€(m+1,..,1) and  @;(Y*) £ 0 (3.10)
In the first case, ¢;0(Y*) > 1and v}y > 0imply
(@50(Y*) +v%)*
In the second case, we see that
eio(Y*) > 1. (3.11)

In both cases we deduce that

_Z (9; (Y*) +0})? + Z P Y*) > (3.12)
Jj=1 m+1
and =
F(Y*, V¥) > (Y*) +~B* —B- 41> B* 4+ 1 (3.13)
On the other hand
F(X*, U*) = f{(X*) < B* (3.14)
From (3.13) and (3.14) we get
F(X*, U*) < F(Y*, V*) (3.15)

which contradicts (3.8.) Hence Y* fulfils the constraints (3.1).
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As above we can also deduce that

vy = —oY*), j=1,..,m
hence :
F(Y*, V*) = {(Y*) (3.16)
From (3.16) and (3.8) we deduce that
F(Y*, V¥) = (Y*) < F(X*, U*) = [(X*) (3.47)
or

HY*) < {(X*),

contradicting the fact that X* is an optimal solution of problem (III).

() Conversely, let (X*, U*) be an optimal solution of problem (V). It
follows then, that X* satisfies the constraints (3.1) and

uf = — ¢;(X*), J=1.,m (3.19)
because if not, we could reason as above deducing
F(X*, U*) > [(X*) 4+ B* — B~ +1> B* (3.20)

Now it can be easily seen that X* is an opimalsolution of problem (III).

(Y) If the constraints (3.1) are consistent, let Y* be a vector satisfying
them and let us put

loj = — @;(Y*) j=1,..,m (3.21)
Hence,
F(Y*, V*) = {(Y*) < B* (3.22)
which contradicts the assumption (vy).
*
* ¥

B. Minimax formulation

Let us consider the following problem (VI) :

Find the minimum over all X € B} of the maximum over all V € B?,
of F(X, V), where

F(X,V)

m 1

= f(X) + (B — B~ +1 (Z (X)) + Zﬂtpf(X)) (3.23)
Jj=1 j=m

and where X = (%4, oory T,) €BY (3.24)

(vl, .y vm) G BZ- (3.25)‘

X*, V*) will be called a minimazing point of problem (VI) if :
F(X*, V*) > F(X*, V), for any V € B}

(3.26)
F(X*, V*) < ax F(X,V), forany X €B;
VeB™:
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and (X*, V*) will be called a locally minimaxing point of problem (VI) if

F(X*, V*) > F(X*, V), for any V € By
(3.27)
F(X*, V*) < Max F(X, V), for any X € W (X*)
vVeBy

Theorem 4. Every pseudo-Boolean program under linear constraints is
equivalent to a mintmazx problem without constraints. The relations between
the optimizing points are the following :

() If X* = (a%, ..., 2.5 is a globally minimizing point of problem (111),
then there exists a V* € B such that (X*, V*) is a minimazing point of
problem (VI).

(8) If (X*, V*) is a minimazing point of problem (VI) and
F(X*, V*) < B+ then X* is a globally mintmizing point of problem (111).

(v) If (X* V*) is a minimazing point of problem (VI), and
F(X*, V*) > B* then the constraints (3.1.) are inconststent.

(8) If X* is a locally minimizing point of problem (III) then there
exists V* € BY, such that (X*, V*) is a locally minimazing point of problem

(VIi).
(e} If (X*, V*) is a locally minimaxzing point of problem (VI) and
F(X* V*) < Bt

then X* ts a locally minimizing point of problem (I1I).

Proof.
() If X* is a globally minimizing point of problem (III), then
P{X*) <0 I=1.,m (3.29)
Pi(X*) =0 Jj=m+1,..,1 (3.30)
Let us take V* such that
v; = O’ j = 17 ) m ’
then,
F(X* V*) = Max F(X*, V)
V€EB™
and
F(X*, V*) = f(X*). (3.31)

Let suppose that there exists a vector Y € Bj such that
Ma't,x F(Y,V) < f(X¥% (3.32)

It follows from (3.32) that Y fulfils the set of constraints (3.1). Indeed,
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if not, then at least one constraint is violated. There exists either an
index j, € (1, ..., m) such that ¢;,(Y) > 1 implying ¢;o = 1, and

Vjoe(Y) 2 1, (3.33)
or an index j, € (m + 1, ..., I) such that ¢;,(Y) # 0, implying
cpj%(Y) =1 (3.34)
Every term of the sum
Zl v,9,Y) (3.35))
=

will be non-negative following the choice of V :
p(Y)< 0 implies ;=0
9,(Y)> 0 mmplies v;=1

oY) =0 (v free
From (3.33), (3.34) and (3.35) we get
Max F(X,V) > {Y)+ B*—B~ +1> B" + 1. (3.36)
v

From (3.31) and (3.36) we obtain
F(X*, V*) < Max F(Y, V) (3.37)
v

which contradicts (3.32). Hence Y fulfils the set of constraints (3.4).
As above, we deduce that

Max F(Y, V) = f{(Y), (3.38)

so that relation (3.32) becomes
HY) < f(X*) (3.39)
contradicting the fact that X* is a minimizing point for problem (III).

(B) Conversely, let (X*, V*) be a minimaxing point of problem (VI) ;
then, X* satisfies the constraints (3.1). If not, we could reason as above
deducing

F(X* V¥ = ax F(X*, V) > {(X*) + B*— B~ +1 > B*.
1 4

Now it is obvious that X* is also an optimal solution of problem (III).

(y) If the constraints (3.1) are consistent, let us denote by Y a vector
satisfying them. We get

Max F(Y, V) = f(Y) < B* (3.40)

which contradicts the assumption in (y).
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(8)X* satisfies the constraints (3.1). Let us take V* such that v} =0
7 =1, .., m); then,

F(X*, V*) = Max F(X*, V)

VEB"

F(X*, V*) = f(X*) < B* (3.41)

For every X € W (X*) one of the following alternatives holds :
(1) X satisfies the contraints and

HX*) < f(X) (3.42)
It follows then, that

Max F(X, V) = f(X) (3.43)
From (3.41), (3.42) and (3.43) we get
F(X*, V*) < axF(X,V)
v

(2) X does not satisfy the constraints and hence
Max F(X, V) > B* (3.44)
v
It follows then that

F(X*, V*) < Max F(X, V) (3.45)
1 4

and X* is a locally minimizing point of problem (VI).

(¢) From she assumption we deduce that X* satisfies the contrainst.
Then

F(X*, V*) = f(X*). (3.46)
For every feasible point X € W (X*) we have
F(X* V*) < Max F(X, V) = f(X) (3.47)
v

From (3.46) and (3.47) we deduce
H(X*) < (X) (3.48)

and hence X* is a locally minimizing point of problem (III).
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