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R.I.R.O.
(5e année, V-3, 1971. p. 3-18)

RANDOM PAYOFF GAMES
WITH PARTIAL INFORMATION :

ONE PERSON GAMES AGAINST NATURE

by R. G. CASSIDY O, C. A. FIELD and M. J. L. KIRBY (2)

Abstract. — In this paper we analyze the game situation in which the player has incomplete
or partial information concerning the random payoff from the game. Several criteria for
such a décision maker are formulated with solutions based on the techniques of linear pro-
gramming. Our results extend considerably the previous results which had been obtained for
the solution of random pay off games with partial information, and give the optimizing player
a higher expected payoff from the game.

I. INTRODUCTION

By a random payoff game with complete information we mean a two-
persön, zero sum game with mxn payoff matrix A = { atj}, where A is a
random variable with known distribution function F(A). atJ represents the
payoff from player II to player I when player I plays row i and player II plays
column ƒ Since atJ is a random variable, the actual payoff on any play of the
game will be aiS{w) where w is selected from the domain of a y according to the
known marginal distribution of atj.

Since atj is a random variable a player does not known with certainty what
the outcome of a particular play of the game will be even if he knows what pure
strategy his opponent will use on that particular play. Thus, because of the
randomness of the payoff matrix, both players are, in essence, forced to gamble.
Under these circumstances it may be reasonable to use an optimality criterion
other than the minimax criterion of deterministic zero sum games. For this
reason several different concepts of optimality were introduced in [2] and [3].

One optimality criterion considered in [2] is for a player to maximize the
probability, oc, of his attaining a given, or prescribed, payoff level, (3, no matter
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4 R. G. CASSIDY, A. C. FIELD ET M. J. L. KIRBY

what strategy his opponent plays. If this is players Ps objective, then the pro-
blem of finding his optimal mixed strategy X can be formulated as the following
linear programming problem.

max a

S.T. £ XlP{au > P) > a V/

m

( i n y X' = ï

3cf ^ 0 V i

where Pfay ^ (3) is the probability that the random variable atj is greater than
or equal to p. [2] contains a detailed analysis of model (1.1).

One generalization of (1.1) which we use below consists of having player I
specify a range [p t , p2] of desired payoff levels, p, and a weight function w(P)
which assigns an « a priori » weight to each payoff level p in [p l s p2], Using
this model the player détermines his optimal mixed strategy X by solving the
problem :

max a

(1.2) S.T. £ x, ƒ P(ay > t)w(t) dt> a V/

jc, > 0 Vi

In [2] we have shown that if all atj have a finite range then p l f p2
 c a n be chosen

so that w(t) = — for all t in [p1? p2] and (1.2) becomes the expected
P2 Pi

value game, that is? the deterministic-zero sum game in which each atj is repla-
eed by its mean.

In both models (1.1) and (1.2), the fact that the distribution function F(A) is
known by the players means that the marginal distribution functions of each
ai} can be computed, and hence P(aij ^ p) is known for any given value of p.
However, in many problems the distribution function of the payoff matrix A
may not be known and hence P(ai} ^ p) cannot be computed. In this chapter
we consider the problem of solving random payoff games when the players
have only partial information about the distribution function of the payoff
matrix.

We begin by assuming that the payoff matrix A has only a finite number of
possible states of nature. Thus we are assuming that each a y is a discrete

Revue Française d*Informatique et de Recherche opérationnelle



PARTIAL INFORMATION 5

random variable which can take on only a finite number of values. We let
A(k\ k = 1, 2,... K be the kth possible state of nature of A. Thus A(k) is an
mxn matrix. We define P(k) by P(k) = P(A = A(k)).

Assumptions must now be made concerning the type of information the
players have about the distribution function of A.

We consider the following degrees of information in a random payoff game :

à) The players have no information about the distribution function F(A).

b) The players have a partial ordering on the probabilities of the states of
nature of A.

c) The players know bounds on the probabilities of the various states of
nature. That is, the players know that ak < p(k) ^ bk where afc, bk are given,
k = 1, 2,... K.

d) The players have complete information about the distribution F(A).

Cases (a) and (d) represent the extrêmes with respect to the amount of
information available to the players. The standard method of solving (à) is to
play a normal minimax game against nature (see [5] and [7] for exampie).
This provides a conservative method of décision making when faced with
total uncertainty. Case (d) can be solved in several different ways depending on
the goals of the players. This has been the subject of study in [2] and [3], Case (b)
was introduced by Fourgeaud et al in [5]. There the case of a one person random
payoff game against nature is analyzed and a method of solution for such a
game is given. The results of [5] are generalized in section II below. Case (c)
represents another type of partial information available to the players which
we feel is very realistic in some settings. This case is also analyzed below. In
addition we give an analysis and outline methods of solution for problems
where the partial information is a combination of cases (b) and (c).

EL SUMMARY AND EXTENSION OF EXISTING RESULTS

Consider a one person random payoff game against nature with mxl payoff
matrix A = { a% }. A is assumed to be a random matrix which has K possible
states of nature, A(k\ k = 1, 2, ...5 K. Let a^k) be the ith element of A(k).

Following the development in [5], we assume that each player has some
information about the probability that A takes on the value A(k) and that this
information takes the form of a partial ordering on the states of nature of A.
The partial ordering can be expressed in the following way :

state k ^ state k' (or k ^ k') if the state of nature k has at least as great a
probability of occuring as the state of nature k'.

Let P be any probability measure on the states of nature of A. Then P can
K

be expressed as the vector P = 0(1), ...,/?(X)) withp{k) ^ O and ^ p(k) = 1.
k=i

n° V-3, 1971.



6 R. G. CASSIDY, A. C. FIELD ET M. J. L. KIRBY

We say that the probability measure P is compatible with the given partial
ordering if :

k > k' => p(k) ^ p(k')

for all partially ordered pairs k and k\ We define the set of compatible proba-
bility measures to be :

II = { P [ P is a probability measure and compatible with ^ }

Since the partial ordering results in a finite number of inequalities of the
form p(k) ^ p(k')9 II is a convex polyhedron.

In [5] it is assumed that the player's optimality criterion is to maximize
the expected value of his payoff. This means that the player would play the
deterministic game with payoff matrix { E(at) } if he had enough information
to calculate the expected values E(at). The question then arises as to how the
player should play the game when he does not have enough information to
calculate E(at). In [5] the authors assume that in this case the player will play
as conservatively as possible. This latter assumption means that in place of
E(a^)9 the player will use the minimum possible value of E(aty over all proba-
bility measures P € II. Thus the player replaces E(at) by Mt where

K

Mt = min £ p(k)at(k)
pen k=i

The player's optimal strategy is then that pure strategy i09 for which Mio

represents a lower bound for the player's expected payoff. By using the model
developed below, the player will be able to improve this lower bound on his
expected payoff.

To develop our model we use the optimum criterion of (1.2). Thus we
suppose that the player would solve (1.2) if he had enough information to
calculate the probabilities Pia^ ^ p) for all p in [p^ p2).

That is, the player wants to maximize his probability of attaining a payoff
in the interval [(3l5 p2] where he assigns each payoff p in the interval the
a priori weight w(P). Since n = 1 we can ignore the second subscript which
appears in (1.2). Thus the problem the player wants to solve can be written as :

(2.1)

max

S.T.

a
m

y x
m

y x-

X:

= 1

^ 0

1
!i ̂  0^(0 àt\ > a

Vz
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Ho wever, for any choice of [$u p2]

sh ( fPa \
P(a{ ^ t)w(t) et = 2^ <Ptt('M0 d* /?(&)

, . r i if aXfc)
where cpijk(f) = ^ n *u •T"cv y 1 0 otherwiseotherwise

and Sf is a random variable which on the kth state of nature, takes on the value

at(k) = 9,-k(0w(0d' w i t n probability /?(/:). Thus (2.1) can be considered

to be an expected value problem with E(a^) in place
Moreover since (2.1) has the same form as an expected value problem, the

techniques developed in [5] can be carried over directly to (2.1). In particular
if we assume, as in [5], that when the player does not have enough information
to calculate E(at) he will play as conservatively as possible, then in place of
the unknown £(a£) in (2.1), the player will use the minimum possible value
of E(at) over all probability measures P € Ü . Thus in (2.1), E(at) would be
replaced by K

Mt = min ]T p{k)ai(k)
P€TL k = l

As stated in the introduction, an appropriate choice of p l 9 (32 and the
1 ~

choice W{t) = — for ail t € [ p l s p2] gives Mt = Mt so (2.1) is a direct
P2 — Pi

generalization of the model considered in [5].
In order to summarize the results from [5] concerning methods of compu-

K

ting Mt = min ^ p{k)at{k), we must introducé the définition of an admissible
pen k=i

support S(P) of a probability measure P. We define

S(P) = {k\p(k)>0}
and

S(II) is called the set of admissible supports for Ü, and there are.2* — 1 of
them. Then from [5, p. 15] we have the following theorem :

Theorem 2.1
K

Mt = min /] PifyajÇk)
P€U k=l

1 v1

where | S(P) | = cardinality of S(P).

n°V-3y197î.
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This theorem carries directly over to (2.1) and we have the result that

== min

S(P)€SOJ)

f3

In [5] theorem (2.1) is used as the basis of a numerical procedure for sol-
K

ving (2.2) max min ]T p(k)at{k) S.T. P € II. We now show that this theorem
i P fc=l

results from the fact that the optimal solution to the linear programming pro-
blem (2.2) must occur at one of the extreme points of the convex set of feasible
solutions II.

Theorem 2.2

If 5(11) contains N admissible supports Su S2, ..., SN where N ^ 2k — 1
then the set of probability measures Pj

n / n f lf\SA if keS;
j = l,2,...N where J»/fc) = { < / ' ' ' j f ^

contains the extreme points of II.

Proof : In order to prove this we show that any probability measure P € II
other than Ppj= 1, 2,..., N is not an extreme point of II.

Consider an arbitrary measure P e Tl, P # Pj9j = 1,..., TVand such that P
has n ^ K non zero éléments. By relabelling the states if necessary we can
assume that/>(1) ^ P(2) ^ •» ^ /'(w) > 0. Since

Let z\ be the smallest integer such that

PQ) > p(h + i)

Choose
€ = min (1 —p(l),p(n),p(l) —p{ix + 1))

By the définition of il9 s > 0.

Let

e =(p( i ) -

We now show that Q e II. To see this, note that any relation of the partial
ordering which holds between p(ï) and /?(ƒ) with i ^ z, and y ^ /, or i ^ i,
and y ^ /, will still hold for Q since all éléments of Q in this range have been
changed by the same amount.

Revue Française d''Informatique et de Recherche opérationnelle
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If a relation of the partial ordering requires that p(i) ^ p(j) with i ^ iv

and j > *V then

since p(i)—p(j) ^ €. Also clearly #(0 ^ 0 and £ # ( 0 = 1 so that Q € II.

Let

Then if the partial ordering requires that p{ï) ^ p(j\ this relation will hold
for the corresponding components of R since we are adding a constant to the

larger p(i)'s and subtracting a constant from the smaller ones. Also, 2^ ri = 1

and rt ^ 0, so that R e II.
But P = 1/2 Ô + 1/2 R and hence is not an extreme point of II.
Since in calculating Mi9 we are solving a linear program and since in theo-

rem 2.2 we have shown that the probability measures Ppj = 1,..., N contain
the extreme points of the constraint set II, theorem 2.1 follows directly as a
corollary of theorem 2.2.

HL ALTERNATS SOLUTION PROCEDURES
FOR GAMES WITH PARTIAL ORDERING

In order to develop new models for the solution of a one person random
payoff game against nature in which the player knows a partial ordering on
the states of nature of the payoff matrix, we introducé the following défini-
tions and notation.

Let Sl9 S2,..., SN be the set of admissible supports. Let Pj be defined as
in theorem 2.2. From theorem (2.2), we know that the set of measures

contains the extreme points of n .

Let us now restrict our attention to the extreme points of II, say
{ Pu P2,..., PT }, where T ^ N. We will call { P l f ..., PT } the extreme pro-
bability measures of II. Define :

K

= E
n° V-3, 1971.



10 R. G. CASSIDY, A. C. FIELD ET M. J. L. KIRBY

Then for every extreme probability measure, Pj3 of the set II we have a corres-
ponding mxl vector expected payoffs :

We now show how the mxT payoff matrix B = { B(l),..., B(T) } can beused
to develop a new method of solution for a random payoff game.

In [5] the player used the objective function :

max min ^ cti(k)p(k)
i pen k=i

Thus the player was only permitted to use a pure strategy solution. If, instead,
we allow the player to use a mixed strategy solution then the player détermines
his optimum mixed strategy by solving :

max
X

m
min ^ ji

p i=i

/ *
)p(k)\

(3.1) S.TY P € l l

xt>0 V/

Since { Pj }9j = 1, 2?..., T are the extreme points of II, any probability
measure, P € n can be expressed as a linear combiuation of Ppj = 1, 2, ...5 T.
That is, there exist \}J = 1, 2,..., T, such that :

T T
p = Lé xjpj w h e r e S A/ = ^ \ ' > ° v *̂

By substituting this expression for P into (3.1) and interchanging the order of
summations in the objective function, we obtain the problem :

S.T. £ *, = i

max mm
x A

(3.2) Ë
xf ^ 0 Vi

Xj > o y/

But (3.2) is simply a deterministic two person zero sum game with mxT payoff
matrix

Revue Française d'Informatique et de Recherche opérationnelle
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where X is the mixed strategy for player I and X is the mixed strategy for
player IL Moreover, since a choice of X by player II yields a probability mea-

T

sure P € II via the relation P = J ] XjPp we can think of player II in (3.2) as

being nature, since in the development of the previous section P € II is selected
by nature. Thus (3.1) is equivalent to the player playing a deterministic two
person zero sum game with payoff matrix B with nature as his opponent.

To solve (3.2) we rewrite it (see [6]) as the linear programming problem :

max a

S.T. t xfiu > * Y/

(3.3) £ xt = 1

xt è 0 Vî

In solving the game whose payoff matrix is B, the player sélects the mixed
strategy X which maximizes his expected payoff when his opponent, nature,
is allowed to choose a mixed strategy P e u which is the most unfavourable
strategy from the point of view of the player. This is in contrast to the method
of solution given in [5] in which the player was only allowed to select a pure
strategy. This leads to the following conclusions :

Theorem 3,1

Let
T

Vi = max min £ b^Xj
i A j = I

and

v2 = max min 2, ZJ *AA
X A i= l j= l

Then vt ^ v2 and v2 gives a lower bound on the expected payoff which
the player will receive when he plays the random payoff game with partial
information.

The importance of this theorem is that it shows precisely why we believe
that the method of solution given in [5] is too pessimistic. It is assumed in [5]
that the player would choose i0 to maximize { E(at) } if he had enough infor-
mation to compute E(at) i = 15 2,... m. If the player has insufficient informa-
tion to compute E(at) and if he wishes to play conservatively then he should

n° V-3, 1971.



12 R. G. CASSIDY, A. C. FIELD ET M. J. L. KIRBY

adopt a minimax optimality criterion in which he chooses his strategy X so as
to maximize the worst possible expected payoff that the could get for any
P € II. Thus the problem he should solve is (3,1) or equivalenty (3.2). Moreover,
since vx 4, v2, it follows that vl9 the optimal value of the objective function
obtained from (2.2) gives a pessimistic or too conservative an estimate of the
actual expected value the player will receive.

This can be seen more clearly in two other ways. First note that vx is the
optimal value of (3.1) when the player is allowed to choose only a pure stra-
tegy solution rather than a mixed strategy solution. Thus vx will inevitably
give a worse estimate of the actual expected payoff than v2, since vt is obtained
by solving a more constrained problem.

Alternatively note how vx was obtained. For each i = 1,..., m the player
assumed nature would chose the P € II which gave the minimum value of

K

X #;(&)/?(&). This means the player assumes, in effect, that nature wiii change
fc=i

its strategy whenever the player plays a different pure strategy.

But a probability measure P €II applies to the whole vector A(k) not just
to the ith row of it. Thus, in a realistic model, the player should assume nature
chooses a strategy P € II which will hold for all rows of A, not just the ith row.
But the model in [5] acts as if nature could change P € II whenever the player's
mixed strategy required that he play a different row from the one he played
in the previous play of the game. This appears to be unduly pessimistic and,
in fact, not in keeping with the basic assumption of the model, which is that
there exists a true distribution P € II which holds for the whole vector A.

To illustrate the results of Theorem (3.1) more clearly we present an
example.

EXAMPLE 3.1

Consider a 4 x 1 game with four possible states of nature and the foliowing
partial ordering on the states of nature :

p{\) > p(2) ï p(4)9 p(3) ï p(4)

The admissible supports are :

{ 1 }, { 3 }, { 1, 3 }, { 1, 2 }, { 1, 2, 3 }, { 1, 2, 3, 4 }

The extreme probability measures are Pj = (1, 0, 0, 0), P2 = (0, 0, 1, 0),
P3 = (.5, .5, 0, 0), and P4 = (.25, .25, .25, .25).

Revue Française d'Informatique et de Recherche opérationnelle



PARTIAL INFORMATION 13

Suppose that the values of the states of nature at(k) are as given in the
following table :

STATESk= 1 2 3 4
TRUE PROBABILITY 5/12 4/12 2/12 1/12

ax{k)
a2{k)
a3(k)
a (k)

3
3
2
2

3
1
4
4

3
1
1
3

.68
4.32

5
3

The true or actual expected values for each state are : £(ax) = 2.98,
E(a2) = 2.11, £(a3) = 2.73, and E(a4) = 2.91.

Corresponding to the four extreme probability measures Pu P2, P3 and
P4 we have the following four vectors of expected payoffs :

3
3
2
2

5(2) = 4
1
1
3

5(3) = 3
2
3
3

5(4) = 2.67
2.33

3
3

We then form the matrix B = (5(1), B{2\ 5(3), £(4)) and solve the two
person zero sum game with payoff matrix B.

The optimal solution is xx — .75, x2 = 0, x3 = 0, x 4 = .25 and
a = 2.75 = ü2.However, if we use the solution method of [5] we findthat
v1 = 2.67 and the optimal strategy is xx = 1, x2 = 0, x3 = 0, x 4 = 0. Thus
the method of solution proposed in this section does indeed give a better
lower bound on the actual expected payoff than the method of solution given
in[l].

If we use the true probabilities to calculate the expected values E(ai), we
find that by playing the pure strategy X = (1, 0, 0,0) the player would have
an expected return of 2.98. Thuâ if the player had sufficient information to be
able to calculate { E(a() } he would play row one all the time.

In section II we showed that the expected value optimality criterion was a
special case of the optimality criterion in which the player tries to maximize
the probability of achieving a payoff in the interval [$l9 p2] when each payoff
level p in the interval is assigned an a priori weight w(p). Moreover we also
showed that the model with this generalized optimality criterion could be
solved as an expected value model if we replaced at by the more gênerai random
variable àt. We can now make this same generalization of the model considered
in this section and consider instead of btj. the quantity Cy where

-y = É 7 — 1 2 T

/ = 1, 2,..., w

n» V-3, 1971.



14 R. G. CASSIDY, A. C. FIELD ET M. J. L. KIRBY

Thus instead of a payoff matrix B we can consider a deterministic two person
zero sum game with payoff matrix C = (C(l), C(2), ...9C(T)) = { C£j- }.

To illustrate this model we solve example (3.1) with (3 = 3, that is
iv(f ) = 1 if * = 3 and 0 otherwise.

EXAMPLE 3.2

Using the data of the previous example and

0(2) = C(3) =

= 3 we calculate C to be

0(4) = .75
. 5
. 5
.75

To see how these values were obtained note that C13 ^ P3(ax ^ 3) where
P 3 = (.55. 55 05 0) and hence C13 = .5 + .5 = 1. In a similar manner we cal-
cuiate the remaining entries.

We then solve the two person zero sum game with payoff matrix C. The
optimal solution is xt = 1, x2 = 0, x3 = 0, xA = 0 and a = .75. This optimal
strategy will result in the player obtaining a payoff of 3 with a probability of
75 °/
/ j / 0 .

It is important to note that, in the above development, the matrices B and
C could be enlarged to include columns B(i) and C(j) for each admissible
support S(Pj)j= 1,2,..., N and their respective probability measures. That
is, augmenting B and C by additional columns obtained by using all the pro-
bability measures Pu P2, —, ?N rather than just the extreme probability
measures Pu P2,..., PT does not in any way change the above results. This is
because the essential property we have used, namely that any probability
measure P € II can be expressed as a convex combination of the extreme
points of II, continues to hold as long as the set of points considered contains
all the extreme points as a subset. This is a well known game theory result
that a payoff matrix can be increased by adding columns which are linear
combinations of existing columns without changing the optimal strategy or
value of the game. The only rationale for augmenting B and C in this way
is that it avoids the computational problem of selecting the extreme probability
measures, Pu P2,..., PT> from the set Ply P2,..., PN.

We now consider the effect of additional information in the solution of a
random payoff game.

IV. FURTHER INFORMATION ON STATE PROBABILITTES

Suppose the players knowledge of the random matrix A consists of a partial
ordering on the states of nature (as in the previous section) and of bounds on

Revue Française d'Informatique et de Recherche opérationnelle



PARTIAL INFORMATION 15

the probability of state k occuring. These bounds are assumed to be given in
the form :

fk < P(state k occuring) = p(k) < gk

In [5] and in sections II and III above the only case considered is the one
in which fk = 0 and gk = 1 for ail k. Note ho wever that if fk = gk for ail
k = 1, 2,..., K9 then we are in the situation of having complete information
about the distribution of the random matrix A. The solution of this problem
was discussed in [2] and [3].

Therefore the addition of the information on bounds on p(k) enables us
to consider the cases ranging from no information (fk = 0, gk = 1 ail k) up to
complete information (fk = gk, k = 1, 2,..., K) about the distribution of A.

We assume that the bounds and the partial ordering information are
compatible. That is, if p(k) ^ p{k') then gk ̂  fk.. Let II be defined as before
and let

We adopt the same optimality criterion as in section III. Thus the player
assumes that nature will choose the most unfavourable distribution from its
feasible set of probability distributions P e II D <D and then the player maxi-
mizes his expected payoff against this probability distribution. Thus the player
uses a maximum optimality criterion. This means that the player seeks a stra-
tegy X' such that :

mm } . i^ xfijjcypyk) — max mm 2_
= i x penn® i=i k=i

Thus he wants to find the optimal solution to :
m K

max min ̂  ^ x^^pik)
X P i= l fc=l

(4.1) s.T. p^nno
m

xt ï 0 V/

This is a problem of exactly the same form as (3.1) and so could be solved
by the same techniques of it were possible to find the extreme points of the
convex polyhedron II H O. Unfortunately no simple way of finding the extreme
points of II H O, or of finding a set of points which contains the extreme
points appears to be available except in the special case discussed in section III
where II fl O = II. Thus an alternate approach is needed.

n° V-3, 1971.



16 R. G. CASSIDY, A. C. FIELD ET M. J. L. KIRBY

One such approach is to regard (4.1) as a constrained deterministic two
person zero sum game. In this game the two players have stratégies X and P
respectively, with player II, nature, having additional constraints on his set
of possible mixed stratégies. These additional constraints are in the form of
linear inequalities since P € II (10 can be written as a set of linear inequalities.
This same constrained game approach could have been used for the solution
of (3.1) in section III but we did not do so since it is easier to solve (3.1) by
first finding the extreme probability measures of II and then solving (3.3).

A method of solution for constrained games is given in [7] (§ 3.7) and [4].
We let the set of linear inequalities P € II fl <I> be denoted by PE ^ F where E
and F are a matrix and vector of constants respectively, with the vector F
containing the values fk, gk, k — 1,..., K. Then the linear programming pro-
blem which is the equivalent to (4.1) is ([7]) :

max ZFT

(4.2) S.T. ZE— XD < O

Z, X > O

Where D — { a{(k) }, and FT is the transpose of F.

An interesting feature of (4.2) is that it indicates how a procedure for eva-
luating the value of perfect information might be developed by using a para-
metric programming analysis of the vector F and seeing how the optimal
value of the objective function changes as fk and gk get close together.

It is interesting to note also that because the optimal strategy is found by
solving a linear programming problem, linear constraints may be added to
(4.2) without substantially increasing the difficulty of obtaining a solution. The
following constraint which is linear in the p(k) and involves the expected payoff
against pure strategy / might be useful ;

(4.3) £ frMk)

where [it is the known mean for the distribution of af. In actual problems both
the mean and variance of nature's distribution may be known, but to involve
the following variance constraint :

(4.4) f p(k)a\{k) -

would make the problem non-linear in the p(k) 's and increase the computa-
tional difficulty substantially.
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