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CONSERVATION METHODS IN QUEUING THEORY

par M. KRAKOWSKI

Abstract. — We apply a procedure,, the method of invariants or conservation method,
to dérive severaî classical and new (as far as could be ascertained) results pertaining to the
operating characteristics of stationary queuing Systems. Thus, the relation Po = 1 — p for
single channel Systems is a special instance of the Principle of Customers Conservation*
This principle applies to each catègory of'customers separately. The well known relation
L = xjy expresses the conservation of Total System Seniority, i.e. the cumulated time
within the System of all present customers* A similar formula applies to each type of customers,
The above conservation principles are applicable also to Systems with reneging. A quantity
whose conservation is examined is the sum ofthe squares ofthe sojourn times ofthe customers
within the System. The conservation method is also^ applied to the service System. The steady*
state équations of balance across suitable cuts are interpreted as conservation rules.

NOTATION
(excluding several symbols used in a single section)

X = frequency of arrivais
y. — frequency of servicing in a single channel under full-load conditions ;

l/[jt is the average service time

a = reneging propensity within a queue; cf. section 3
Sk = state of the system in which there are k customers
Pk = probability of Sk

r.v. = abbreviation for « random variable »
L = number of customers within the system (r.v.)
L =E(L)
ï == number of customers in the queue (r.v.)

W = sojourn of a customer in the system from entry till departure (r.v.)
W = E(W)
w = sojourn of a customer in the queue (r.v.)
w = E(w)
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64 M. KRAKOWSKI

Tk = seniority of incumbent # k (r.v.) ; cf. section 2
f = S F*, Total System Seniority (r.v.) ; cf. section 2

r = (̂r)
§ = Total Seniority Within Service Channels (r.v.); cf. section 4

jf == service time (r.v.); E(X) = l/jx,
J> = remaining service time of the eustomer in a given channel at a

random instant; defined for busy channels only (r.v.)
R = E(R) ; R is also equal to the average sojourn time of the serviced

customer at a random instant, as can be shown
c = number of channels* may be a random or a control variable
Q = probability that a given service channel is occupied.

The term « queue » in this paper refers to the part of the queuing system
awaiting entry into the service channel(s).

The Këndall notation for the description of queuing Systems is frequently
used in this paper.

INTRODUCTION

Conservation principles have played a fundamental rôle in physical sciences,
engineering, and économies. Conservation of mass, energy, momemtum,
charge» etc. often provide first intégrais to a system of équations. Where the
équations are few in number the conservation laws alone may suffice to find
the solution.

In stationary queuing Systems there are obviously quantities which satisfy
a conservation rule. A customer entering the system must leave it. The accu-
mulated sojourn times of the customers must fluctuate so that an expected
change during a random interval is zero. The same is true about many other
system functions.

This paper attempts to systematize and exploit the basic conservation rules
in order to dérive gross characteristics of queuing Systems and first intégrais
to the équations of state.

Several classical results are shown to be conservation statements or their
conséquences, e.g. Po = 1 — p, L = "kW, and the Pollaczek-Khinchine formula
for the queue length in an M/G/l system. Extensions of these results and
several others are also derived. A more flexible way to set up the équations of
balance for Markovian Systems is shown in section 6.

No effort was made at mathematical rigor the stress being on the intuitive
and perceptible even if this means that the status of some proofs is that of
plausibility arguments to the purists.

Revue Française d*Automatique* Informatique et Recherche Opérationnelle



CONSERVATION METHODS IN QUEUING THEORY 65

SECTION 1. CONSERVATION OF CUSTOMERS

An assumption made more often implicitly than explicitly in the treatment
of queuing Systems is that a customer entering the service booth eventually
leaves it, when the service is completed. Under stationary conditions the
somewhat weaker statement that the frequency ofentries into a service channel
equals the frequency ofdepartures out of this channel will be more suitable for
our exposition.

The above statement will be referred to as the Principle of Customer (or
entry) Conservation. Where a distinction is useful, one can refer to the préser-
vation of individual customers as the Strong Principle of Customer Conserva-
tion, whereas the equality of entry and departure frequencies is the correspon-
ding Weak Principle of Customer Conservation. In this paper only the weak
form of the Principle will be used and the adjective « weak » will be omitted.

A remarkable thing about this principle is that, to the best of my
knowledge, it has not been formally stated in any of the common références or
text-books. This despite the fact that conservation principles play such a
prominent rôle in physics, engineering, économies, and other branches of
learning and of the arts.

The ease of application and insight provided will be elucidated by the
considération of several examples.

Unless otherwise specified, it will be assumed that no server is ever idle when
there is an unserved customer in the System.

EXAMPLE 1.1. For a G/Gfl queuing system the frequency of arrivais is X and
the frequency of departures is the full-load frequency y» multiplied by the
probability that the system is not empty, i.e. 1 — Po. Therefore, our conserva-
tion principle yields

(1.1) X = ( l -P 0 ) (x ,

and

(1.2) p o = i _ V | i . = l - . p .

The same resuit is usuaîly obtained for M/M/l by expressing each Pn in
terms of Po and then summing all the state probabilités to one.

EXAMPLE 1.2. Consider now a System G/Gfc, a i l channels being identicaL
The frequency of entries into a given channel is p/c ; the frequency of departures.
out of this channel is the full-load service frequency y* multiplied by the proba-
bility Q that this channel is in service. Therefore, under symmetrical operating
conditions,

(1.3) yc - (XÔ
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and the probability of a given server being occupied is

(1.4) Ô = V * = P/c

Note that Q can also be interpreted as the expected number of customers
in a given service booth since this number is a zero-one random variable.

Therefore the expected number of busy servers is cQ;

(1.4 a) expected # of busy servers = cQ = p.

We can easily write down the probability that (under symmetrie operating
conditions) a given service station.is free :

(1.5) 1 —.Q = Po + ^ - A + ^~Pz + - + ^ c - i -

It follows from (1.5) and (1.4) that

(1.6) p = c ( l - P 0 ) - ( c

Whenc = 1 weget(l.l).

The principle of conservation of customers applies separately to each
category of customers, e.g. when these are classified by age or gender.

EXAMPLE 1.3. Let there be n types of customers, the kind k arriving with
the frequency \ and its service time being of average duration l/^&. In a G/G/l
system we can write

and

(1-8) fi* == >*/{*•* = Pit

where Qk is the probability that the service booth is in state k, i.e. that it has a
customer of type k in it.

The probability that the system is empty is

(1.9) P o = 1 ™
k=l 1

EXAMPLE 1.4. We extend example 1.3 by having c identical channels operated
under symmetrical conditions. The input intensity of the A>th type of customer
to a given channel, say i, is \Jc.

Therefore

(1.10) \/c = Qik^k
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CONSERVATION METHODS IN QUEUING THEORY 6 7

and

(1-11) o * = -Pfc» Pk^hlV-k*

where
Qik = probability that i-th channel has a customer of type k.

Note that (1.11) is independent of L
The probability that a given channel is occupied is

n

(1.12) ô = E p*/c where p, = XJ^.
*=i

Since |2 can also be interpreted as the expected number of customers in a
given channel the expected number of customers in all the service stations is
cQ, and therefore

(1.13) the expected # of occupied service stations = X P*-
i

EXAMPLE 1.5. Consider three service booths in tandem, with a common
server, the service in each booth requiring on the average l/[x£ time units,
i = 1, 2, 3. The intensity of arrivais is X.

Applying the principle of conservation of customers to each booth separa-
tely, and denoting by Qt the probability that booth # i is occupied, we obtain

(1.13) X = ö i • Hi = 02 • H2 = 03 • [*3.

Therefore

(1.13 a) Qi =: X/|A| with i = 1, 2, 3.

The probability that the server is idle is

(1.14) Po - 1 - x K - X/H2 — Vus-

Of course, instead of three booths with a common server we could have one
opération, in one booth, composed of three successive phases each of duration

EXAMPLE. 1.6. As in example 1.5 there are still three serviceb ooths in tandem
but now each booth has its own server and waiting lines may form between
the booths. Now the service system may contain up to three customers in
service, although at most one in each booth.

If Qi is the probability that booth i is occupied, i = 1, 2,3. then the principle
of customer conservation, applied to each booth, gives

(1.15) X - ö i • Hi = 02 • Hz = 03 • Ha,

similar in form to 1.13, despite the different servicing system.

n° mars 1973, V-l.



68 M. KRAKOWSKI

EXAMPLE 1,7. Consider now a queuingsystem Af/Cr/csymmetrically operated.
A customer of rank n is defined» in an ad hoc manner, as one who encountered n
other customers in the system upon arrivai. Question : What is the probability
ô« that a given service channel has a customer of rank n ?

Solution. The total frequency of arrivais of rank-» customers is XP„» and out
of these XPn/e reach the given channel, as follows from the symmetry of opéra-
tions. The frequency of departures of rank-« customers out of our channel
is Qn*\i. Therefore» applying the principle of customer conservation to those
of rank n 9 we get

(1.16) x/yc

and

(1.17) Qn =

The dérivation of (1.17) by other means would be more laborious.

EXAMPLB 1.8. In this example we will show how the Principle of Customers
Conservation can be used to reduce the recursion base. Consider a queuing
system where the customers arrive in a Poissonian manner with frequency X
but are served only in couples. Thus, the server is idle when the system is in
state zero or one. The service duration per couple is expected to be 1/^ and is
exponentially distributed.

The équations of balance are

(1.18) ÉA=1
0

(1.19) XP0 - iiP2

(1.20) Ai*! = XP0 + ̂ LP3

(1.21) (\ + iL)Pk = 'kPk-ï + VLPk+2 for k>2.

It can be easily verified that the above system of équations has a recursion
base Po and Pt ; in other words given Po and Pt the remaining state proba-
bilities can be computed recursively. This recursion base can be reduced to Po

only, using the Principle of Customer Conservation. We have namely

(1.22) X = (1 — Po — PO (x, Le. Pt = 1 — Po — p.

The réduction of the recursion base to Po simplifies the numerical work
connected with the détermination of the state probabilities from the équations
of balance.

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



CONSERVATION METHODS IN QUEUING THEORY 69

SECTION 2. CONSERVATION OF SYSTEM SENIORITY

We define the Total System Seniority, or briefly System Seniority, as the
cumulative time spent already in the System by ail customers present there at
the survey instant. Denoting this r.v. by T9 and the time spent within the system
by incumbent customer # k, as of the survey instant, by tki we have

(2.1) f= Iitk (summing over all incumbent customers)

T = 0 when the system is in state 50 .

Let L and W be the average number of customers in the system and the
average completed sojourn time of a customer, respectively. The sojourn càn be
terminated by completion of service, by reneging, or by any termination of
service prior to its completion.

The expected change in the seniority rduring dt due to aging equals Ldi;
the expected decrease in 7"due to departing customers is \Wdt. The contribu-
tion to T of new customers, arriving during dt is of the order dt2, as is easy
to verify. Ünder stationary conditions the net change in Tshould vanish, on
the average. Therefore

(2.2) Ldt = \Wdt and L = \W.

The dérivation of

(2.3) / = Xw

where / is the average queue length and where w is the expected time of sojourn
in the queue, is analogous to that of (2.2) and will be omitted hère.

(2.2) and (2.3.) are often referred to as Little's formulas ; cf. Bibliography.

It can be immediately recognized that (2.2) and (2.3) are valid for each type
of customer separately when there are several such types. Then, forthe k-th type
of customers

(2.2 a) Lk = \kWk,

where Xfc is the arrivai frequency of the customers of type k, and

(2.3 a) /*

The proofs of (2.2 a) and of (2.3 a) follow from the conservation of the
seniority of the type-A: customer. They are virtually identical to those of (2.2)
and (2.3) and will be omitted. We have proved the special case k = 1 instead of
the more gênerai one for the sake of clarity in exposition.
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70 M. KRAKOWSKI

The physics and économies of (2.2), (2.3), (2.2 a), and (2.3 a) are perfectly
clear. These formulas make still sensé when the number of service channeîs, c,
is a random or a control variable in a system G'/G/c and reneging causes no
difficulty. Ail that is needed is stationarity in some very weak sensé. The
underlying physical interprétation, namely the conservation of the accumulated
sojourn time, explains the wide validity of the formulas discussed in this section.

It is clear that L — / + expected number of occupied channeîs. Taking
into account (1.4 à) we have

(2.4) L = / + p, where p = X/JA.

(Note that in our notation [i, is the full-load frequency for a single channel.)

The same reasoning relating expected changes in S?ft to expected changes
in JFcan be applied to changes in S f(îk) where ƒ( ) is an arbitrary differentiable
function. We then have

(2.5) E\Lf'Çtk) = E[f(W)-f(Q)]

the summation being over all incumbent customers. In section 5 we will treat
the case/(0 = t2 in more detail.

EXAMPLE 2.1. Consider a system M]Mie where the c channeîs have expected
service times 1/fx,-, j = 1, ..., c. Under full-load conditions the interdeparture

times are exponentially distributed with frequency

The expected time, w which a neweomer spends awaiting service is com-
posed of :

a) the expected time till a channel becomes available for the customer next

in line ; this is equal to P(n^ c)/^jLJf P (n ̂  c) = £ Pn being the proba-
1 c

bility that ail channeîs are occupied.

b) the expected service time of the customers encountered by the neweomer

in the queue ; this time is l/^jij.
i

We assumed in a) and b) that a neweomer encounters n other customers
in the system with the probabilty PH and finds a queue of expected length / ;
cf. Réf. 3 for a proof that this holds in M/G/c.

It follows from a) and b) that

i i

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



CONSERVATION METHODS IN QUEUING THEORY 7 1

This equality aiong with / = Àw resuits in

(2.6) / = —™— P (n S* c) = P (n > e), where p = ——.

The transitions from Sk to Sft+1 bèing as frequent as ff om Sk+l to Sk (cf.
Section 6) it follows that

and

In order to express Pc (and the othér state probabilitïes) in terins of X, ^ j ,
and c it is necessary, ünless all the y.j are eqiial, to know the server discipline,
i.e. the precedence, preempave or otherwise» among the servers of different
working speeds. In the case where only the speediest servers are occupied
when some channels are empty (a slower server will always turn over his job
to an idle speedier one) we have a birth-and-death process which can be easily
handled with the method of Section 6; This is also the case when ail servers
are of equal skill, i.e. when we have a system M/M/c.

When c = 1, i.e. when we deal with the case M/M/l, (2.6) becomes

(2.6 a)

since Pt = pP0 = p (l — p) implies P (n ^ c) — p.

EXAMPLE 2.2. We will extend now the case MjMjl to the System M/G/l.
The argument for the duration of w runs as bef ore in example 2.1 but the
expected time interval for the service channel to be cleared, conditional upon its
being occupied, is now designated as R (R == Ifa in example 2.1, for the
negative-exponential holding times). R is a holding time characteristic and we
will have more to say about it in section 4.

We have now therefore for M/G/l

(2.7) w= PH + / - = /)x

and

(2J) 7 7

1 — p
This is the well known Pdllaczek-Khinchine formula in its linear form

cf. réf. [3]. (Substituting (4.6) into (2.8) we get the usuàl quadratic form,)

ïiö mars 1973, V-l.



7 2 Mu KRÀKOWSKI

It is easy to verify that for exponentiai holding times (2.8) beeomes (2.6).
For constant holding times of duration a we have R = a/2 and (2.8) becomes

(2.9) / = ~aXp/( l -p) ; M/D/l.

The dérivation of the PoUaczek-Khinchine formula in this section provides,
in my opinion» a clearer intuitive grasp of the dependence of the waiting time
upon the déviation of the holding time from a constant value than do the usual
dérivations of the quadratic form.

EXAMPLE 2.3. A customer of rank n is defined as in example 1.7. Let L„ be
the expected number of rank-w customers in the queuing System. The problem
is to détermine Ln for M/M/c.

The solution is simple if one uses the formula (2.2 a) the rank-A: customer
playing the rôle of type k. The frequency of arrivais of rank-fc customers is
obviously XPk. The sojourn time of a rank-fe customer is expected to be

(2.10) Wh = l/p. when k < c

= (it — c -f- l)/cp + l/{* = (k + l)/c{Jt» when k > c.

Therefore, with Lk = \Wk = ^PkWk we get

(2.11) Lk = ç>Pk when k < c

= (k + 1) • p • Pkfc when k ^ c.

For k < c we have, as known from the balance équations (cf. section 6),
l and

F o r k ^ CWQ haveXPft = c(i.Pfe+ lf i.e. PA + !

Therefore,

(2.12) Lk=*(k + l)Pk+i for fc^O.

Note that (2.12) is independent of c, the number of channels.

SECTION 3. CONSERVATION OF CUSTOMERS
AND OF SENIORITY UNDER CONDITIONS OF RENEGING

We modify now the System G/G/c by introducing a reneging propensity of
Poissonian intensity oc for customers in the queue. That is, each customer in the
queue (but nof in a service channel) has a probability ad/ of reneging within the
time d£.

The expected number of new arrivais during the interval àt is X àt. The
expected number of customers reneging during àt is h dt. The expected number
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CONSERVATION METHODS IN QUEUING THEORY 7 3

of customers to enter the service channels during dt is therefore (X — la) dt;
in other words, the frequency of entries into the service System is X — /oc. The
frequency of departures out of the service systetn is cQp, where Q is the proba-
bility that a given channel is occupied. Therefore,

(3.1) X — fa=*

and

(3.2) / -

where cQ is the expeeted number of occupied channels.
Q can be expressed in terms of the state probabilities Phi < c — 1, as was

done in (1.5).
Thus, again a first intégral was obtained Connecting / and the state proba-

bilities Po, Pu ... Pc^v

During d* the expected increase in the total queue seniority due to aging is
Idt; the expected decrease due to entries into the service booths is (X — /a)wi dt ;
the expected decrease due to customers reneging out of the queue is faw2dtf

where wx and w2 are the expected sojourn times in the queue of customers
who reach a service channel and those who reneg, respectively,

Therefore,

(3.3) / = (X

Eliminating / from (3.2) and from (3.3) we get

(3.4) *cQy.wt = (*w2 — 1)(X —

a relation Connecting wu w2, and Q.
For a System M/M/c modified by the reneging propensity a as defined

above the transitions form a birth-and-death process, as can be easily seen.
In particular, one finds that for M/M/l with the reneging propensity a there is
a recursive relation (cf. example 6.3)

(3.5)

This allows us to détermine, algorithmically or explicitly, Q = 1 — PQ

Denoting by w the expected sojourn time of a customer in the queue,
terminated by entrance into the service station or be reneging, we have

(3.6) / = Xw,

w is a weighted average of wt and of w2 and it is clearly

(3.7) w = [cQpw, + (X — cQy.)w2Vk

n° mars 1973, V-l.



7 4 M. KRAKOWSKI

Note that the above relations do not allow to solve for wt and for w2 in
terms of the state probabilities and of ƒ (which itself is so expressible).

Equation (2.3 a) enables one to relate, under wide conditions, say G/G/c,
the expected number lt of successful customers (those who wiU be serviced
eventually), to their expected waiting time for service wt. Similarly one can
relate the average number l2 of unsuccessful customers in the queue to their
average sojourn before reneging, w2. The arrivai rate of successful customers
equals the departure rate out of the service channels, cQ\i, and the arrivai rate
of the unsuccessful customers is X — cQ[i = a/. Therefore, for G/G/c

(3.8) lt =

l2 = (X — CQ\L)W2 =

SECTION 4. CONSERVATION METHOD
ÀPUED TO THE SERVICE SYSTEM

Let the random variable S (total channel seniority) be the cumulated time
spent already in the service channels by ail customers who are being serviced
at the survey instant.

The expected increase in S during a « random » At is <jdt9 G being the average
number of occupied channels; this increase is due to aging. The expected
decrease during a «random» dt9 due to departures, is the overall rate of
departures (equal to the overall rate of arrivais = X) multiplied by the average
duration of a completed service span, i.e. l/[i, and by dt. Other contributions
are of the order dt2, as is easy to see.

Therefore

(4.1) 0 = x - = p (same as (1.4a))

This resuit was derived by using the principle of customer conservation
in section 1. lt is interesting to note that the conservation of different physical
quantities may lead to the same resuit.

Similar considérations apply to the case when there are several types of
customers. We then have a conservation rule for each type of customers.
This wiU, in the case of seniority conservation, lead to results already obtained
in section 1.

Consider now the random variable Sn
9n > 1? and its expected change

during dt. Let the random variable X be the holding time in a channel;
E0C) = 1/^, of course. Then, the expected increase in Sn due to aging is
nE(Sn~x)dts and the expected decrease due to departures is XE(X*)dt. Other
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CONSERVATION METHODS IN QUEUING THEORY 75

contributions are of the order d/2. Therefore, stationarity implies the balancing
of the two expected changes, and we have

(4.2)

In particular, for n = 2 we get, with S = E(S)

(4.3) 2S = X (var X + X2) ; X = E (X) = 1/jz.

(Note that S = 0 when the System is empty. We require n > 1 to assure
5"- 1->0 as S-^0.)

Consider now a râgfe channel under full-load conditions. The successive
service intervais form now a renewal process. Let X be defined as above, and
let the random variable R be the sojourn time of the incumbent customer as
of the survey instant. Let R — E(R). How does now R" change during a ran-
dom d/? The increase due to aging is clearly expected to be nE{Rn~l)dî\
the decrease due to departures is expected to be yJ5(Xn) dt. (Note that under
full-load conditions the rate of departures is pt, and no.t X.)

Therefore, with « > 1,

(4.4)

For n — 2 we get

(4.5) 2E(R) = 2R =

and

(4.6) R = (var 1 +

The expectation i?, like X and var X, is a characteristic of the random
variable X, of the corresponding renewal process, or of the corresponding
stationary population, and not of the complete queuing System along with its
discipline. The relation (4.6) can be applied to other renewal processes and their
completed and uncompleted intervais, e.g. where j^is the total sojourn time in
the queuing System of a departing customer and R is his sojourn time as of a
random survey instant. (Or, J e a n be the interarrivai time and R the time
length since last arrivais as of a random survey instant). In a stationary popu-
lation the random variable Xis a complete life-span and R is the age. Note that
the random variable « remaining lifespan » has the same distribution as R under
stationary conditions.

There is a close relation between the probabîlity density functions of the
random variables X and R. It can be derived from (4.4) but we will infer it
from slightly more gênerai considérations.

n°mars 1973, V-l.



76 M. KRAKOWSKI

Let
p(t) = probability density function of R

(4.7)
ƒ(/) = probability density function of X.

Let g{î) be differentiable and not increase too rapidly with increasing t;
it will suffice if g(t)p(t) tends to zero as t tends to infinity. Otherwise g(t) is
arbitrary. During dt the change in g(R) is expected to be E[g'(R)] dt, as a
resuit of the aging; the change due tp departures is expected to be

V-E[g(X)-g(0)]dt.

Other contributions being of order d*2 the balance équation is

(4.8) E[g'(R)] =

(The multiplier y. is used because we still refer to fulHoad conditions).
Taking into account (4.7) we get from (4.8)

(4.9) f V(*)/<*) àx = (i f "W(x) dx -
Jo Jo

The first intégral can be written p(x)g(x) — «(*)/»'(*) dx. Since
Jo

p(x)g(x) is assumed to tend to zero as x tends to infinity (4.9) becomes

(4.10) —p(p)g(0)— rg(x)p'(x)dx = (t f7 (*M*)dx-^(0) .
Jo Jo

Since g(x) is arbitrary (apart from a mild infinity and dififerentiability
conditions) (4.10) can be satisfied only if

(4.11) {i

and

(4.12) />'(') +H/W = 0.

SECTION 5. TOTAL SENIORTTY
AND VARIANCE OF SOJOURN TBWDES

Consider a queuing system G/G/c where c can be a random or a control
variable and where reneging of waiting customers is possible. The random
variables tk and t are defined as in section 2, the numbering of the customers
being for definiteness in order of descending seniority. When there happen to
be m customers in the system then 7a = 0 for a > m.
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Let's define

(5.1) T~E(T)

and the random variable

(5.2) f(2) = Sf/ ,

summed over the present customers ;

when the system is empty.

The expected increase in fi2) during d* due to aging is 2Tdt. The expected
decrease in Jr(2) due to departing customers is XE(W2) dt where the r.v. W is the
completed sojourn time of a customer within the system; this sojourn may
terminate due to completion of service, to dismissal, to reneging, or to quitting
by the servers. Other contributions are of the order dt2. Stationarity requires
that EldT*2*] = 0 and we get the balance équation

(5.3) 2T = \E(W2) = X[var W+W2] ; W = E(W).

Let the random variable */fc be the remaining sojourn time of customer # k;
let * r = S *ïk (summed over incumbent customers) ; let * j l ( 2 ) = 2*tk

2 (summed
over incumbent customers). Then it is clear from symmetry (and is easy to
prove directly) that

(5.3 à) E[2(*T)] = \E(W2) - X [var W + W%

Case G/G/l (no reneging)

Let Th be the expected remaining total service time at a « random » instant,
conditional upon there being k customers in the system. It is easy to see that

(5.4) Tk = kR + ^—^ + ^ ^ + ... + I - kR

The term kR is the expected remaining time R of service of customer # 1
(inside the booth), multiplied by the number of customers present in the
system; the term (k — l)fy. is the expected service time of the customer # 2
(first in the queue) multiplied by the number of customers not ahead of him
(this includes himself); etc. Therefore, denoting by L the random variable
« # of customers in the system », we get

(5.5) T=tw = trk\kR + ^]=ia +
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Combining (5.3) and (5.5) we get

(5.6) \E(W2) = - E(L2) + LV2R — - J.

Multiplying (5.6) by X we can write it in dimensionless form :

(5.6 a) E[{kW)2] - pE(L2) + 2kRL — 9L

or

(5.7) var (kW) + L2 = p var L + 9L
2 +2XRL — 9L

and hence

(5.8) p var L — var (kW) = (1 — p)L2 — L(2kR — p).

Corresponding to (5.6 a) there is an expression in terms of the queue
length 7 and the waiting time for service w :

(5.9) E[(kw)2] = 9E(l2) — p/ + 2klR ; ! = EQ) and w ^E(w).

Corresponding to (5.8) we have an expression in ƒ and w :

(5.10) p var T— var (kw) = (1 — p)/2— l(2XR — p).

For a System G/D/l we have 2X.R = p, and therefore (5.6 à) and (5.9)
become respectively (5.11) and (5.12) :

(5.11) E[(\W)2] = PE(L2), (G/D/l)

(5.12) E[ÇKw)2] = pJSf/2), (G/D/l).

For holding times other than deterministic 2XR > p and we have inequa-
lities corresponding to (5.11) and to (5.12) :

(5.11 à) EK\iV)2] > PE(L2), (G/G/l)

(5.12 a) E[(lw)2] > PE(72), (G/G/l).

Consider now the average remaining sojourn time for a customer, condi-
tional upon the System G/G/l being non-empty, i.e. upon L > 0. That is,
consider the expression

m,x J f T k I f f A r - l l - . 1 / 1

a most plausible resuit since //p is the average queue size, conditional upon the
System being non-empty, i.e. upon L ^ 1, at a random survey instant.
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SECTION 6. CONSERVATION OF THE FLOW
OF TRANSITIONS

Consider the birth-and-death process whose transition diagram appears
below.

Figure 1

Notice the eut separating the « left » states from the « right » ones. It is
clear, that under stationary conditions thefrequency of transitions across the eut
from left to right must equal thefrequency of transitions across this cutfrom right
to left. This statement is an instance of the Conservation ofthe Transition Flow
or more briefly, ofthe Conservation ofFlow. We can imagine a jumper moving
from state to neighboring state, in the above diagram, in accordance with the
history of the System. This jumper crosses a given eût in any of the two direc-
tions with equal frequency. This is a weak version of the property that across
any eut, over any period of time, the left and right jumps are equal in number
or differ by one.

In order to express the Conservation of Flow symbolically note that

(6.1) Xkdt = probability that the System will jump to Sk+1 within ât conditional
upon its being in Sk\ k ^ 0

and

(6.2) [ik dt — (conditional) probability that if the System is in state k + 1
it will jump within dt to the state k — 1 ; k > 1.

The conservation of flow states therefore that

(63) pk.x

and

(6.4) Pk+1 =

Our conservation rule leads directly to a recursion relation whereas the
customary dérivation produces a différence équation with three arguments.
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It follows from (6.4) that

o î
00

and this along with J ] Pk = 1 yields all the state probabilities.
o

When X* = X and y>k = y. for ail fc, and using X/(JL = p, (6.5) becomes

(6.5 a) Pk = ?k- Po-

Since the transitions from left to right must be as frequent as transitions
from right to left, we have for the birth-and-death process the parity condition

6.6)

This gives norhing new informationally as it can also be obtained by
summation from (6.3) but is convenient for the case of (6.5 a); (6.6) then
becomes

(6.6 a) X = |i(l — Po) and Po = 1 — p,

The statement (6.6 à) expresses also the conservation of customers. Thus
there is a close relation between the geometry of the diagram and the mechanics
of the queuing opération.

The above described procedure, the method of cuts, can be stated more
generally for stochastic Systems describable by means of « states », not cecessa-
rily Markovian discrete Systems.

. Conservation of Transition Flow. Divide all states of the system into two
non-overlapping groups A and B. Then, under stationary conditions, the
frequency of transitions from group A into group B equals the frequency of
transitions from B to A.

When, in a queuing system, A consists of a single state (and B of the remai-
ning ones) the above conservation rule yields the usual balance équations.
Thus, in place of the recursion relation (6.3) we would have

Limiting one of the two groups of states to a single point (in more gênerai
Systems it may be a neighborhood in the phase space) may be referred to as the
local conservation of flow. Informationally the gênerai and local forms are
equivalent but the gênerai statement often allows a more skiilful sélection of
the cuts and of the corresponding différence équations. The proof of the équi-
valence, in its basic outline, is quite simple. It starts with the observation that
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the flow out of (a U b) and the flow into it are equal, a and b being tWo groups
of states, in particular non-overlapping groups. We will not pursue this topic
hère.

EXAMPLE 6.1. Customers arrive with frequency X in a Poissonian manner
but are served only in groups of size n. There is a single channel and the service
time is exponentially distributed. Define the (super)state Sk as the situation
where there are mn -f- k, 0 < k < n, customers in the system. Since departures
don't affect the state S* of the system it is clear that the transitions and their
frequencies are represented by the following diagram, where n = 4.

Figure 2

With Ak denoting the probability of the (super)state Sk the three cuts give
the équations

((L Q\ \ A "k A * \ A — W . \ A \ A

and therefore

(6Q\ A A A A X

More generally

(6.10) Ak = lfn , 0 ^ k ^ n — 1.
00

Note that Ak = J ] Pni+k and that therefore

(6.11) P0 + Ptt + P2n + P,

?1 + ^n+l + ^2n+l + Psn+1 + + = l/«

etc.

EXAMPLE 6.2. Consider the Markovian transition diagram below. A queuing
scenario can be made up, if desired, without difficulty.
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CUT 1

Figure 3

The balance équations are, in addition to ]>] Pk = 1,
o

(6.11) (X + a)P0 = \iP1 + (*P2, for eut # 1

(6.12) (X + oL)Pt + aP0 - fci + (B)P2 + pP3, for eut # 2

(6.13) (X + a)Pfc + ocP,^ = (y. + £)Pfc+1 + (3Pfc+2.

(6.12) is a spécial case of (6.13), namely when k = 1.
The recursion base of the above System of équations is Po and PlB This

recursion base can be reduced to Po by adding the parity équation (left-to-right
transitions are as frequent as right-to-left ones), or, equivalently, the équation
of customer conservation in a queue scenario. This équation is

(6.14) (X + a) = ((x + Pk + txPx = (fx + p)(l - Po - Pi) +

EXAMPLE 6.3. A System M/M/l is modified by a reneging propensity a on
the part of the customers in the queue (but not in service). Thus a customer in
the queue will reneg with probability a dt during df. The transition diagram
is shown below.

The balance of transitions across a eut separating the states Sk and Sk+1 is

(6.15) P*X = P&+ JLOJL + Ara) , k > 0,

and therefore the recursion relation is

(6.16) P*+i=P*VÛ* + *a).
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Along with S Pk = 1» (6.16) allows to détermine numerically all the state
probabilities.

The rule of conservation of customers results in

(6.17) X = /a + (1 — JP0)^,

relating the expected queue size / to Po.

The generalization to MfM/c is an easy exercise (cf. section 3).
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