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THE LABELING METHOD
ON TWO-DIMENSIONAL NETWORKS

par B. GABUTTI (!) et A. OSTANELLO-BORREANI (2)

Abstract. — The Ford-Fulkerson labeling method has been extended, for solving the
max-flow problem on two-dimensional networks, Le* on networks with directed arcs on a
cartesian plane R2. Computationally, the algorithm has a good efficiency for networks with
at least one node ofdegree < 3 or with some symmetries.

1. INTRODUCTION AND DEFINITIONS

I X A two-dimensional network Gj* =. (Z, A ; (bj)) is defined by a set
X, \x\ = n9 of nodes x0 a^set A, \A\ = m + 1? of arcs as = (xi9 xfc), and a

family of m + 1 directions fy = (ai5 ^ ) , one for each arc, i.e. of vectors of R2

such that a? + pj = 1 Vj5 [2].

The node-arc incidence matrix of G? is the 2n, (m + 1) real matrix

(1) M={aij}9

whose gênerai entry is defined as

bj if üj leaves xâ

— bj if (tj enters xt

(o) if Qj is not incident to x(

where 6' is the transposed of è.
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18 B. GABUTTI ET A. OSTANELLO-BORREANI

1.2. Suppose that each are (x, y) e A has a given capacity c(x9 y) > 0 and
that two nodes of X, say s and d, are respectively the source and the sink for
a flow « entering » G% with a given direction bh of the return are (d, s) = Ö,.

A flow f on G£ is any vector of

R"1 9 ƒ = (fufzf •••>ƒ*>/l)>

satisfying the conservation équations (or of static equilibrium) at the nodes

(2) M f = 0.

Any node JC, where (2) holds, is equilibrated. ft is the va/we of the flow ƒ,
which isfeasible if and only if

(3) -c(x,y) <f(x,y) ^ c(x,y) V (x,y) € ^ - { a z }
Cj = + OO

An obvious feasible flow is ƒ = 0. The problem of finding the maximum
value of ft is the analogue of the max flow problem for the topological graph
G = (X, A).

The simplex method can obviously be used, since

(4) «max/i
such that (2) and (3) hold »

is a linear program.

1.3. The motivation of this problem comes from the study of optimum
condition for the static equilibrium of planar pinned trusses with concentrated
loads (see for example [9]).

An optimization problem, on such kind of structures, is that of evaluating
the maximum loads supported by the structure under equilibrium conditions,
given that the internai stress of any single bar cannot be greater then a known
value.

For different kinds of structures, with different kinds of constraints and
loads, the problem is reducible to a linear program (see for example [3], [5]).

1.4. A graph-theoretical approach of the problem has been performed
in [2] and [8], and some classical results, such as the flow-path décomposition
and the max flow-min eut theorem, have been found using a suitable définition
of elementary path on G£, or Z?-path.

In this paper we intend to present an extension of the Ford-Fulkerson
labeling method, [6], using the notion of é-path (or simply path in this context).
For the paper be self-containing, we shall report the définition given in [2].
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THE LABELING METHOD ON TWO-DIMENSIONAL NETWORKS 19

2. A-PATH

2.1. A £-path of G£ from s to d is a subset P £ ^4, Connecting J to d
and satisfying the rules given below.

Dénote by X(P) the set of nodes incident to the arcs of P.
Start : the return are enters s; ax Ç P.
Rule (a) : If one are as € P enters the node x and the set, co(x), of arcs

incident to x, contains either
1) one are ak || ap ak $ P, or
2) two arcs akl \ aH

 {{ aj9 akl and ak2 $ P,
then x € X(P). The path leaves x through ak or both akl and ak2.

Rule (b) : If two or more arcs not pairwise parallel of P enter x and co(x)
contains either

1) one are ak $ P, parallel to none of them, or
2) two arcs akl || ak% \ ap V as -> as e P H CO(A:), a&1 and afcs ^ P, then

x e X(P) and the path leaves x through ak or akl and üfc2.
If x = d the case (a. 1) and (b. 1) also hold, but then the condition ak$P

must be dropped when ak s ax.
Rule (c) : If (only) two parallel arcs of P enter x, then x € X(P) and the

corresponding branch of the path ends at x.
Rule (d) : If several arcs enter x and <o(x) — P = 0 , then x € X(P) and

the corresponding branch of P ends at x.
End: when none of the rules can be applied or when dçX(P) and all

nodes, incident to the arcs of P? belong to X(P).

2.2. A path-flow f(k) = (ff}) is any flow whose support is a path Pfc.
The « support », || /(fc)||, of a vector f(k) on 4̂ is usually defined as the subset
of arcs of A for which ƒ j f c ) 7̂  0.

Using the définition of flow and the rules of 2.1, it's easy to show that,
ifit exists, the support of a path-flow is minimal Thus any path, support of a
flow, is called elementary path,

3. THE LABEIING METHOD

3.1. Following the method of Ford-Fulkerson, [6], the present algorithm
consists of two Routines :

Routine À for the labeling of nodes at the search of a flow augmenting path
Pk from s to d;

n° mai 1974, V-2.



20 B. GABUTTI ET A. OSTANELLO-BORJŒANI
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Revue Française d'Automatique, Informatique et Recherche Opérationnelle



THE LABELING METHOD ON TWO-DIMENSIONAL NETWORKS 21

Routine B for increasing the flow through Pk and evaluating the residual
capacities or for concluding that the present flow is maximal.

The algorithm can start with the zero flow.

The present state of any are (x, y) is indicated by the label

(5) [f(x,y)Ics(x,y)l

where f(x9y) is the present flow, ƒ < 0, and cs is the conformed capacity,
referred to f(x, y), positive iff(x, y) ̂  0, négative if /(x, y) < 0.

Since any incrémental flow ƒ(ft) can have are flows ƒ j & ) ^ 0, any are has
two residual capacities c% defined as

f c\x,y)-Ax,y) if flk\x,y).f(x,y)>0

(6) <*=s\-c'{x,y)—f(tx,y) if fik\x,y) • f(x,y) < 0.

If ƒ(*, y) = 0, then c°r(x, y) • fm(x, y) > 0, \c°r\ = c.

3.2. Routine A

During this routine a node can be in one of the thxee states : a) unlabeled
b) labeled and unscanned, c) labeled and scanned (or equilibrated).

Initially it is ƒ = 0 and all nodes are unlabeled.

The source receives the label [/, z{s% where e is an arbitrary positive reaj
number; s is now in state b), and all other nodes in state a).

In gênerai, let x be any node in state b), having a label oftheform \y±
9 e(x)],

with s(x) ̂  0.

We can meet different cases, corresponding to the various rules of the
définition of Pk.

Case I : only one are « enter » x9 with direction b [see rule (a)].

Here and in the following, the expression « are entering x » is for arc
belonging to the support of f{k\ and « are leaving x » is for arc € <Ù(X) — Pk.
Moreover / dénotes the set of indices of the choosen leaving arcs, I = { 1 }
for case (a. 1), I = { 1, 2 } for case (a. 2).

The source s is always in this case ; starting from s, a maximal incrémental
flow is sent through Pk9 consistent with the residual capacities c% following
the rules given below. Such a flow cannot be augmented along Pk9 but only
reduced.

n° mai 1974, V-2.
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THE LABELING METHOD ON TWODIMENSIONÀL NETWORKS 2 3

If rule (a) holds, then the incrément t(x) at the node x is distributed along
the leaving arcs in the portions si9 i € /, following a conservation équation
of kind

(7) ± (bXx) + £ ± (bfa = 6.
i€I

In both cases there exists one and only one solution with s£ ^ 0.

i) Correspondingly to the ei9 evaluate the relative residual capacities vt ;

(8) Vi = jklZli v/€/.
s i

The partial flows et are or not consistent with the capacities, according to
whether it is vt > 0 or vt < 0.

If vt = 0 the are at will result saturated.

ü) If x — s, for any vt V i,

or if x ^ s and 3 k € / such that vk < 0,

then go to iv).

iii) If x ^ s and V i elvt > 0,

then go to v).

iv) Select

(9) ^
S * k eJfe

If x ^ 0, reevaluate all the incrémental arc-flows on Pk with

(10) e{ = Xs£ VöjePfc

(and dénote then again sf).

Then go to v).

If X = 0, then cs
rt = 0 and the Path is saturated.

In this case go back along Pk searching for another breakthrough path
not using the are at in the same « direction » as Pk.

v) The node x is scanned.

Assign to the adjacent nodes Xj the labels

(11) [x^tiixj)]

. _ increase of I f À
where + indicates an , „ . '.

~ decrease of | / ; |
n° mai 1974, V-2.



24 B. GABUTTI ET A. OSTANELLO-BORREANI

and

(12) ««(*,)= ± min[|e,|, | 4 | ]

with + if e(. > 0, — if e£ < 0.

Case II : two or more arcs of Pk enter x and there exists one or two leaving
arcs [rule (b)].

The node x has been assigned several labels, sf(x).

The vector-sum, z*b*, of the feasible entering flows must satisfy the
conservation équation (7) with the leaving arcs (for the existence of Pk).

If so, then x is labeled and unscanned. Procède to the discussion of Case I,
with b = b*.

If not, then Pk does not continue after x :

(13) go back along Pki searching for another node y e N(Pk), if it exists, from
where another path Pk ^ Pk proceeds from s to d ; if it doesn't then
go to vi).

Case III ; two or more arcs of Pk enter x and none is leaving [rules (c)
and (d)].

The equilibrium condition must be satisfied, for the existence of Pfc. If not,
go to (13).

vi) STOP :

Routine A ends when the sink d has been labeled (and scanned) and all
other nodes of Pk are in state c) [breakthrough], or when either d has been
labeled (and unscanned) and 3 x € Pk in state b)> or rfhas not been labeled (non-
breakthrough).

In the first case go to Routine B.

In the letter cases, GO TO 3.4.

3.3. Routine B

The sink has been marked with one or more labels and the total incrément
is S Zi{d)bi = e,6z.

Then go back on Pk for a flow change : if y is labeled by [x1, e^)] V /,
replace on the are at = (x, y)

(14) ƒ (x, y) by f(xf y) =f(x, y) + s^).

Then change the labels on arcs. Discard the old labels on nodes, and start
again with ROUTINE A.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



THE LABELING METHOD ON TWO-DIMENSIONAL NETWORKS 25

3.4. Stop
When the non-breakthrough occurs, the present flow is maximal. It can

be/ m a x = 6 .

3.5. Block diagram

See fig. 1.

3.6.

The algorithm is finite since, at any new path Pk, at least one are is satu-
rated, and the arcs are at most m + 1.

Moreover it's finite the number of combinations of 2(m + 1) arcs, taken /
at a time, / = |P&|.

The proof of the algorithm is contained in the following theorem, which
is an extension of a known theorem on ordinary networks, [4],

Theorem : A flow ƒ an G£ is maximal if and only if it is /*m a x = 0, on
an associated network Gf" obtained from G? by replacing the capacities ± ct

by c? = ± Ci— ft.

4. COMPUTATIONAL EXPERIENCE

For many networks, see [2], the application of the foregoiög algorithm
can present considérable difficulties. These are essentially due to the impossi-
bility of stating « a priori » if a given succession of arcs constitutes or not an
elementary path of Gj>. More precisely, in order to proceed to a node labeling,
the program must test if any of the rules of 2.1 holds. If none of them holds,
at some node x, we are not allowed to deny the existence of au elementary
path, bef ore all the combinations (according to the rules of 2.1), of the arcs
leaving all the labeled and unscanned nodes, are tried.

The Program, in FORTRAN IV, has been tested on a computer IBM
360/44. The computer times run around 60 secs for networks with \X\ s 10,
\A\ s 20.

The Program consists of the three following parts.

4.1. Network memorization

The memorization of the network has been performed introducing, for
every arc, a record of kind :

NP(i) NA(J) ALFA (J) c(f)(15) NP(i) NA(J) ALFA(J) c (ƒ) I = l,..., M,

n° mai 1974, V-2.



26 B. GABUTTI ET A. OSTANELLO-BOKREANI

where NP (/) = initial node of are ƒ,

NA (ƒ) = terminal node of are I,

ALFA (I) = inclination (degrees) of the directed are ƒ, referred to the
return are,

c (ƒ) = arc capacity (positive).

The return are is taken as directed in the usual way, i.e. from sink to source,
and it's defined by a record in similar way. The network is consequently
characterized, independently from the frame of référence.

4.2. Routine A

Whenever we get the décomposition of the entering résultant flow at a
node N9 in state b), every are leaving N take a record of kind :

(16) NP(J) NA(J) ALFA (/) c(J) FK(/)

where FK (/) = are flow on as along Pfc.

The path Pk is singled out from the computer, memorizing, for any are,
the order index in the succession defined by the record (15).

Figure 2
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THE LABELING METHOD ON TWO-DIMENSIONAL NETWORKS 2 7

Such a device is necessary either to reduce the are flows, conforming to
(10), or to assign the are flow in Routine B.

At the nodes, where more then two leaving arcs exist, the entering flow is
first decomposed on any two arcs.

Nodes of this kind cannot be considered definitively equilibrated, i.e. in
state c), but they are memorized as nodes in a « special state »; precisely : if
the path Pk does exist from s to d, then they enter in state c) ; if doesn't, the
last met node must be rescanned in search of another combination of leaving
arcs, for the equilibrium of the entering flow.

For some networks, with many nodes in state b), the détermination of the
elementary path can require rather long times of calculation. We have partially
obviate such a truble, by choosing, when possible, the strategy of turning
about the nodes with more then two leaving arcs. That has been realized by
imposing the priority of the scanning of nodes with only two leaving arcs.
Often such a device allows to avoid a combinatorial analysis.

For example, in the case of the sample problem exposed in 4.4, the Program
singles out the elementary path, following the node succession 1, 3, 2, 4, 5, 6.
Without the mentioned priority, at node 2, we should have done a choice
between couples of arcs 4, 5, 6.

4.3. Routine B

Any are, belonging to the completed path Pfc, is assigned, beside the
record (16), the label

FA(J) ƒ = ! , . . . , \Pk\

where FA (/) — present are flow.

Then FK (/) is set equal to zero and the Program goes to 4.2.

4.4. Sample Problem

In the network of fig. 2, it does exist only one elementary path; on it is
optimal the flow reported in tab. 2. The features of the network are reported
in tab. 1 (input of the Program).

n° mai 1974, V-2.
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TWO - D I M E N S I O N A L NETWORK C A S E N. 1

N. NODeS ~. 6

N. ARCS ,- 10

SOURCE - 1

SINK

RETURN

ARC N.

ARC N.

ARC N.

ARC N.

ARC N.

ARC N.

ARC N.

ARC N.

ARC N.

_- 6

ARC

2

3

4

5

6

7

8

9

10

LEAVES

LEAVES

LEAVES

LEAVES

LEAVES

LEAVES

LEAVES

LEAVES

LEAVES

LEAVES

6

1

3

2

2

2

4

4

5

6

ENTERS

ENTERS

ENTERS

ENTERS

' ENTERS

ENTERS

ENTERS

ENTERS

ENTERS

ENTERS

1

2

1

3

5

4

3

•5

6

4

INCL.

INCL.

INCL.

INCL.

INCL.

INCL.

INCL.

INCL.

INCL.

INCL.

0.0 IDEGREES)

45.00 (DEGREEE)

= -120.00 (DEGREES)

90.00 (DEGREES}

= - 45.00 (DEGREES)

0.00 {DEGREES}

.-= 135.00 (DEGREES}

= - 90.00 (DEGREES)

= - 56.65 (DEGREES)

= 100.00 (DEGREES)

CAPACITY .- 1.00000

CAPACITY = 1.00000

CAPACITY -- 1.00000

CAPACITY - 1.00000

CAPACiTY - 1.00000

CAPACITY - 1.00000

CAPACITY = 1.00000

CAPACITY = 1.00000

CAPACITY = 1.00000

TABLE 1

R E S U L T S

FLOW P A T H N. 1 C O M P L E T E

ARC

ARC

ARC

ARC

ARC

ARC

ARC

ARC

ARC

ARC

N.

N.

N.

N.

N.

IM.

N.

N.

N.

N.

1

2

3

4

7

5

6

8

9

10

MAX.

MAX.

MAX.

MAX.

MAX.

MAX.

MAX.

MAX.

MAX.

MAX.

FLOW =

FLOW -

FLOW =

FLOW =

FLOW =

FLOW =

FLOW =

FLOW «

FLOW =

FLOW =

0.2679487

0.8965754

- 0.7320511

0.1000000

- 0.5176360

0.5176407

0.2679466

0.1901358

0.6658026

0.5647412

E

E

E

E

E

E

E

E

E

E

00

00

00

01

00

00

00

00

00

00

TABLE 2
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