A convergence proof of a special version of the generalized reduced gradient method (GRGS)
Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, Volume 8 (1974) no. V3, pp. 105-114.
@article{RO_1974__8_3_105_0,
     author = {Smeers, Yves},
     title = {A convergence proof of a special version of the generalized reduced gradient method {(GRGS)}},
     journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Recherche op\'erationnelle},
     pages = {105--114},
     publisher = {EDP-Sciences},
     volume = {8},
     number = {V3},
     year = {1974},
     mrnumber = {451727},
     zbl = {0322.90059},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1974__8_3_105_0/}
}
TY  - JOUR
AU  - Smeers, Yves
TI  - A convergence proof of a special version of the generalized reduced gradient method (GRGS)
JO  - Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle
PY  - 1974
SP  - 105
EP  - 114
VL  - 8
IS  - V3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1974__8_3_105_0/
LA  - en
ID  - RO_1974__8_3_105_0
ER  - 
%0 Journal Article
%A Smeers, Yves
%T A convergence proof of a special version of the generalized reduced gradient method (GRGS)
%J Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle
%D 1974
%P 105-114
%V 8
%N V3
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1974__8_3_105_0/
%G en
%F RO_1974__8_3_105_0
Smeers, Yves. A convergence proof of a special version of the generalized reduced gradient method (GRGS). Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, Volume 8 (1974) no. V3, pp. 105-114. http://archive.numdam.org/item/RO_1974__8_3_105_0/

[1] Abadie J. and Carpentier J., « Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints » in Optimization, Academie PressInc., London, 1969. | Zbl

[2] Abadie J. and Guigou J., « Numerical Experiments with the GRG Method » in Integer and Nonlinear Programming North-Holland Publishing Companyand American Elsevier Publishing Company, 1970. | MR | Zbl

[3] Abadie J., Private Communication, June 1973.

[4] Berge C., Espaces Topologiques et Fonctions Multivoques>, Dunod, Paris, 1959. | MR | Zbl

[5] Colville A. R., A Comparative Study on Nonlinear Programming Code, IBM - New York Scientific Center, Report No. 320.2949, June 1968. | Zbl

[6] Gochet W., Loute E. and Solow D., Comparative Computer Results of ThreeAlgorithms for Solving Prototype Geometric Programming Problems, (to bepublished in CERO). | Zbl

[7] Shaftel T. L., Smeers Y. M. and Thompson G. L., A Simplex-Like Approach for Nonlinear Programs with Nonlinear Constraints,MSR Report No. 285.Carnegie Mellon University, Pittsburgh, July 1972.

[8] Smeers Y. M., A Convergence Proof for Shaftel and Thompson's Modular Design Algorithm, C.O.R.E. Discussion Paper No. 7332, Université Catholique-de Louvain, August 1973.

[9] Zangwill W., The Convex-Simplex Method, Management Science, Vol. 14,pp. 221-238, 1, 1967. | MR | Zbl

[10] Zangwill W., Nonlinear Programming : A Unified Approach, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1969. | MR | Zbl