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(8e année» novembre 1974, V-3, p. 51 à 71)

THE TECHNIQUES OF LINEAR
MULTIOBJEGTIVE PROGRAMMING

par P. L. Yu (0 and M. ZELENY (2)

Abstract. — In this article we dérive a generalized version of the simplex method-Multi-
criteria Simplex Method, used to generate the set of all nondominated extreme solutions for
linear programming problems with multiple objective functions. A simple nondominance
subroutine is developed for testing the nondominance ofany extreme solution.

We discuss an important interaction between Multicriteria Simplex Method and multi-
parametric linear programming. In f act we show that the décomposition of a multiparametric
space (or a set of weights) into its optimal subsets can be obtained as its natural by-product.

Theoretical resultsy numerical examples and flow diagram as well as some computer
expérience are reported.

1. INTRODUCTION

We are concèrned with linear programming problems involving multiple
(possibly noncommensurable) objective functions. To résolve this type of déci-
sion problems, we could use the concept of domination structures (See Réf. 1-3)
or linear multi-parametric programming (See Réf. 4-5). We propose a simple
technique, Multicriteria Simplex Method, to generate the set of all nondomina-
ted extreme point solutions and show how the direct multiparametric approach
(Réf. 6) turns out to be computationally inefficient. It is also redundant because
the décomposition of the parametric space is a by-product of Multicriteria
Simplex Method.

Though, in gênerai, the solution to a multicriteria problem does hot have
to be an extreme point, the en tire set of all nondominated solutions can be
effectively generated from the set of all nondominated extreme points (see
Réf. 3 or 5).

Linear Multiobjective Programming represents a part of a broader field
of study, Multiple Criteria Décision Making. We refer interested readers to
some recent woçks summarizing up-to-date state of the arts (see for example
Réf. 7, 8, 13).

(1) Department of General Business, University of Texas, Austin, Texas 78712.
(2) Graduate School of Business, Columbia University, New York, New York 10027.
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52 P. L. YU AND M. ZELENY

Before going further, for convenience, let us introducé the following nota-
tion. Let x = (xu ..., xn) and y = (yls ..., yn). Then

(i) x = y if and only if xi = j ^ for ail y' = 1, ...5 TÏ.

(ii) x ^ j> if and only if JCJ ^ yj for ail j = 1,..., n.

(iii) x > .y if and only if Xj >, yj for ail y = 1, ..., n and x =£ y.

Usually we shall dénote a set or a matrix by a capital character. Given
a matrix A, we will find it convenient to use Ai and Ai to dénote its Zth row
and yth column respectively, and fly its element in the ith row and the jth
column.

In order to simplify the présentation, let us assume that we have a compact
décision space defined by

X = { x € Rn | Ax < b, x >, 0 } , A is of order m X n. (1)

Let C = C/ xn be a matrix with / rows (C1, ..„ Cz)r so that Ckx, k = 1,..., /,
is the Ath objective function of our problem. Given a domination cône A (which
is assumed to be convex) and xl

9 x2 € X, we say that x1 is dominated by x2

if Cx1 € Cx2 + A and Cxl # Cx2. A point x € JST is a N-point if it is not
dominated by any other feasible point of X; otherwise it is a Z>-point.

For simplicity, the sets of ail JV-points and ail Z)-points will be denoted
by N and D respectively.

If we dénote the set of all extreme points of X by Xex = { x1,..., xr }, then
let Nex .= N H Xex be the set of all nondominated extreme points. We see
that Nex is finite because X is compact.

Given X € R\ let

X°(k) = {x°€X\ XCJC0 :> XCx, x € Z }. (2)

Thus, X°(k) is the set of ail maximum points of \Cx over X.
Note that ACx is bilinear in X and x.
Given a cône A, we define its polar cône

A* = { X | X d 4 0, for ail </€ A }.

If A = { x | Z>x ^ 0 } is sipolyhedral cone9 we see that A*— {y D \ y ^ 0}.
It can be shown that (Remark 5.9 of Référence 1) the relative interior of A*
is given by (A*)J = {yD\y > 0 }.

(It is understood that x is a column vector; y a row vector, Both represent
vector s of RK)

We present a theorem describing necessary and sufficient conditions for
a point to be nondominated. Its proof is given in Réf. 3.
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THE TECHNIQUES OF LINEAR MULTIOBJECIÎVE PROGRAMMING 5 3

Theorem 1.1. Suppose that A is a polyhedral cone. Then

(i) i \rcU{X°(X)|A€(A*)'}

(ü) if Int A* ̂ O , then N = U { X°{\) | X € Int A* }.

The theorem holds even if X is not bounded.

We may and will assume that A^{d^Rl\d^0} = A- to simplify
the présentation.

Using the results of Theorem 1.1, we shall dérive Multicriteria Simplex
Method which may be regarded as a natural generalization of the simplex
method. With this method we study the « connectedness » of Nex and dérive
an algorithm to locate the entire set Nex.

2. SIMPLEX METHOD AND X°(X)

Recall that since we limit ourselves to the domination cone A = A=, it
follows that

IntA* = {d€Rl\d> 0 } = A>,

where Int stands for an interior.

Recall from (2) that X°(k) is the set of maximum solutions of XCx over X.
Treating AC as a row vector, we see that to find X°(k) is essentially a series
of linear programming problems.

REMARK 2.1. Since X is compact, an optimal solution to XCx exists.
We can generate the entire set of all basic feasible optimal solutions, say

X^x = { x1,..., xk }. Then the set of all optimal solutions to XCx is given
by X°(X) = H(X°X) (the convex huil generated by X°ex) (See Ref. 10 or 11).
By varying X over A > , we can locate the entire set N via Theorem 1.1.

Although this method seems reasonable, it is by no means the best way
to locate N, because how to vary X over A > (See Ref. 4 and 6) is still unresolved
and the computational work may be quite demanding. Thus, instead of this
direct approach we shall use Multicriteria Simplex Method to locate Nex.
The method also indicates an efficient way to vary X over A > in order to get
the set Nex.

Without loss of generality we can assume that b ^> 0 in (1). (See Ref. 10
and 11 for the extension to other types of è.)

From (1), by adding slack variables, the décision space could be defined by
the set of all x e Rm+n, x % 0 and

(A,ImXJx = b. (3)

n° novembre 1974, V-3..



54 P. L. YU AND M. ZELENY

Our new C becomes (C, 0mXm).

Given a basis B which is associated with columns / = {JuJi* >»>jm }> we
shall dénote the remaining submatrix and columns with respect to (3) by B'
and J' respectively.

Let us introducé a simplex tableau corresponding to some basic feasible
solution, say x = (xB, XB) — 0>0, 0), associated with B (and / ) :

r

1

m

BASIS

X

* .

1

Ô

0

...0

L i

...0

xm+l

J'lm+l

>W+1

... JC, .. . Xm+„

-ym-ymm+n

•

TABLEAU 1

By the simplex method, we can systematically change /, one column at
each itération, so that at each itération y0 = B~lb ^ 0 is maintained and the
value of the objective function is improved until an optimal solution is obtained.
For later référence, let us summarize some relevant results of the simplex
method as follows (see Ref. 10). Observe in Tableau 1 that

Y =s { jy }*=!,.„,„, = (I, B~XB') (4)

(5)

(6)

and

where XCB are criteria coefficients associated with B.

(7)

Lemma 2.1. Given a feasible basis J so that y0 = B lb >, 0, there are two
possible cases which can occur in the simplex tableau :

Case L Each ij >> 0 for ail j e J\ Then xB = y0 = B~ xb and X'B = 0 is a
maximum solution. If each zs > 0 forj € / ' , then the optimal solution is unique.
Otherwise there may exist infinitely many optimal solutions.
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THE TECHNIQUES OF LINEAR MULTIOBJECTIVE PROGRAMMING 5 5

Case 2. There is at least one; € / ' so that zj < 0. Let

1). (8)

Then by introducing theyth column into the basis, by Gaussian élimination
technique we get the pth column of the identity matrix in the next tableau,
(the element ypj is called the pivot element), and we obtain a new basic feasible
solution with an increase of the value of the objective function by — QJZJ.

REMARK 2.2. Given a simplex tableau corresponding to a basis Jlt suppose
we introducé theyth column, j € / i , into the basis as described in Case 2 of
Lemma 2.1. We thus produce a new basis J2, J2 — A U {j } — UP } where

jp € Jx is the column associated with Ip in the simplex tableau of the basis Jx.
Observe that there is exactly one element in J2 which is not in JX9 and vice
versa. Two bases such as Jx and J2 which enjoy the above property are known
as adjacent to each other. The corresponding extreme point solutions are called
adjacent extreme points of X.

3, MULTTCRITERIA SIMPLEX METHOD

Observe that given a basis B, the row vector z in Tableau 1 is given by
X(CBY—C). Let

Z^(CBY-C) (9)

Then
z = XZ. (10)

From (9) and (10), we see that given X the corresponding z can be easily1

computed whenever Z is known.

Observe that (CBY-^ C) = (CBY— C1,..., Cl
BY— Cl)T. Each Ck

BY—C\
k= 1,...,/, can be obtained from the last row of the simplex tableau if we
replace XCJC by Ckx as the objective function.

For a given basis B (or / ) , let us construct Multicriteria Simplex Tableau
as Tableau 2 (for simplicity, we have again rearranged the indices so that /
appears in the first m columns).

Note that { yu } is defined exactly as in (4) while V = (i?1,..., vl) = CBB~1b.
Note that vk, k = 1,..., /is the value of the Ath objective function at the current
basis.

(1) Suppose there is no r so that yr$ > 0. We have an unbounded solution. Since X is
assumed compact, this cannot happen. Thus 6; is well defined.

n° novembre 1974, V-3.



56 P. L. YU AND M. ZELENY

r

1

m

BASIS

*I

xm

xt

1

b

0

0

• • •

•

0

i

0

0

xm+l

yim+i

ymm+1

. . .

• • •

Xj

yij

ymj

z)

*J

...

. . .

xm+n

yim+n

X

y%o

ymo

V1

TABLEAU 2

Then for k = 1, ..., / we see that (*)

(0,..., 0, z*+ 1, ..., 4 + - )

Let us define M as

- Cft) = Z*.

(m+Ï)x(m+»)

Observe that M enjoys the following properties,
(i) the submatrix { yj j j € / }» when its rows are properly permutated»

forms the identity matrix of order m x m. (12)
(ii) The submatrix { Zy | j € / } is a zero matrix of order l x m. (13)
For each nonbasic column ƒ e / ' , we shall define 6y as in (8).
By introducing the jth column into the basis we convert Mj into Ep in the

next tableau, where Ep is the/?th column of the identity matrix of order m + l
and p is such that ypJ is the pivot element. At each such itération, M can enjoy
the properties (12)-(13) and F, Z can be easily computed.

REMARK 3.1. The row Z\ k = 1, ..• /is associated with a linear program-
ming problem with objective function Ckx. In view of Lemma 2.1. if at a basis / ,
Zk ^ 0, then x(J), the basic feasible solution of / , is an optimal basic solution
for Ckx. If Zj > 0, for all j € /'» then x(J) is the unique optimal solution for

and clearly is an iV^-point.

(1) Recall that Zk (or Zj) dénotes the kth row (or the jth column) of matrix Z, Simi-
larly for matrix M in (11).
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THE TECHNIQUES OF LINEAR MULTIOBJECTIVE PROGRAMMING 57

REMARK 3.2. Given a basis / and j € / ' , by introducing jth column into
the basis we produee an adjacent basis Jx (see Remark 2.2). Then the values
of the objective functions increase by — QJZJ. That is V{JX) — V{J) — — QjZp

where V(J) = (v1,..., vl) at the basis / . This observation yields :

Theorem 3.1. Given a basis / 0

(i) If there isj € Jr
0 so that QJZJ ̂  0, then x(/0) e D.

(ii) If there is j 6 JQ SO that QJZJ ̂  0, then x{Jx) € D9 where Jt is the new
basis obtained by introducing the jth column into the basis.

(iii) Let j , k €/ó an (ï Jj an(ï «4 be the new bases obtained by introducing
respectively the jth and kth columns into the basis. Suppose that QJZJ ^ §kZk.
Then x(Jj) € D.

Theorem 3.1. and Remark 3.2., although obvious, will be useful in our
later computation of Nex.

4. OPTIMAL WEIGHTS AND A NONDOMINANCE SUBROUTINE

Now, given a basis / , let Z be the matrix associated with / . We can then
uniquely define.

{ X | X Z ^ 0 } . (14)

Note that A(/) is a polyhedral cone and 0 € A(/).
In view of Lemma 2.L, (10) and Theorem LI. we state

Theorem 4.1.
(i) x(J) maximizes XCx over X for all X € A(/).
(ii) x(J)€Nexïï and only if A=" n A ( / ) # 0 .

REMARK 4.1. Given / , A(/) is its associated set of optimal weights, because
whenever our objectives Cx are linearly weighted as XCx for some X € A(/),
x(J) maximizes XCx. In the final decision-making, this is very valuable infor-
mation.

REMARK 4.2. Given a basic feasible solution, we could use Remark 3.1,
(i) of Theorem 3.1, and (ii) of Theorem 4.1 to detect whether it is an iVex-pomt
or not. However, although the results are useful, they cannot cover all possible
cases. In the remaining part of this section, we shall dérive a simple algebraic
method, called the nondominance subroutine, so that we can test whether an
extreme point is an iV-point for all possible cases.

Let x° = x(J) represent a basic feasible solution with basis / . Let
e = (el9..., et) and t

w = max ]T et (15)

n° novembre 1974, V-3.
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Theorem 4.2.

(i) *0 is an iV-point if and only if w = 0.

(ii) JC° is a /)-point if and only if w > 0.

Proof. Observe that (x°, 0) € X. Thus w => 0. It suffices to show (i). Howe-
ver (i) is another way to define an iV-point with respect to the domination
coneAi . Q.E.D.

Corollary 4.1. If w > 0, then the corresponding maximum solution
xl € Xy Cxx > Cx°, is an iNT-point.

Observe that finding whether w = 0 or not in Theorem 4.2 usually does
not require too much extra work. In order to see this, let B be the basis asso-
ciated with x° or / . The problem of (15) in a block simplex tableau can be
written

(16)

(17)

(18)0lx„

*mXm

0/xm

o 1 X m

0mx,

- l i x ,

Cx°

0

where = (1, 1, ..., 1).

In the above matrix, the first and second columns are the coefficients
associated respectively with the original variables and the added slack variables,
the third column is the coefficients associated with the new variable e 'm (15).
Note that (16) is the constraint that x € X, (17) is the constraint that Cx-e >, Cx°,
and (18) corresponds to the objective of (15).

We could rewrite (16)-(18) as follows :

(19)

(20)

(21)

Note that (19) = B~l • (16), (20) - CB(19)-(17) (observe that
CBB~ lb = Cx% and (21) = l l x f - (20) + (18).

Observe that (19)-(21) supply a feasible simplex tableau for Problem (15)
with the basic feasible solution (x, e) = (x°, 0).

B~lA

CBB~lA — C

ll,l[CBB-iA — C]

B~l

CBB-i

0mx,

/,x,

Oix;

B- xb

0 (xl

0

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



THE TECHNIQUES OF LINEÂR MULTIOBJECTIVE PROGRÂMMING 5 9

Comparing (19) and (20) with (4), (9) and (12) we see that (*).

B-t

CBB- i I -\Z
(22)

From (19)-(22) we see that to construct a simplex tableau for Problem (15)
does not require much extra work. The conditions in Theorem 4.2 could be
easily verified. In particular, we have the following sufficiency condition :

Theorem 43. Given a basis J, suppose 11 x XZ ^ 0. Then x(J) is aniV^-point.
Proof. Because the first two blocks of (21), given by l1XfZ, 11X|Z ^ 0

implies that (x(J), 0) is an optimal solution to (15) with value w = 0 (see
Lemma 2,1). The assertion follows immediately from Theorëm 4.2.

REMARK 4.3. Suppose that the condition in Theorem 4.3 is not satisfied.
Because of the special structure of (19)-(21)5 the problem of (15) usually can be
simply solved in a few itérations. In order to use the results of (19)-(22) and
Theorem 4.2-4.3» one can append an extra row, corresponding to the objective
function 11 x jC, to the simplex tableau. (See the example discussed in Section 6.)

5. DECOMPOSITION OF A> AND CONNECTEDNESS OF N,ex

Given a basis / , we could define its set of optimal weights A(/) as in (14).
Now suppose that for some k € J\ Zk ̂  0, 0fe < oo. Let us introducé the kth

column into the basis. Suppose that ypk is the pivot element. Then we will
produce an adjacent basis K so that

K' = J'U{jp}-{k}

Without confusion (rearrange the indices, if necessary), let p = j r Then

(23)

Let W dénote Z(K) (the submatrix Z associated with K).
We want to study the relation between A(/) and A(K). Toward this end.

observe that by Gaussian élimination technique,

0 if j € K

— Zkfypk if j = p € K' (24)

Zj — yPJZJypk if/ € Kf -

(1) Note» Cj — 0 if i is an index associated with a slack variable,

n° novembre 1974» V-3.



60 P. L. YU AND M. ZELENY

Since it is the pivot element, ypk > 0 (see Lemma 2.1).

Let Hk = { X I XZ* = 0 }. (25)

Since ypk > 0, X(— Zk/ypk) ^ 0 if and only if lZk ^ 0. We see that

A(K) C { X j XZ* ^ 0 }. (26)

But,
| (27)

We see» from (25)-(27), that Hk is a hyperplane in R\ which séparâtes the
polyhedral cônes A(K) and A(/).

Next» since X € Hk implies that XZft = 0, we have

j y * n À G O = { x | xz* « o , x z , . ^ o , . / € / ' — { * } } (28)

and from (24) we also have

J (29)

However from (23), we have K' — {p } = / ' — {k }. Thus (26>(29)
imply that

i/fc n A(/) = Hk n A(z) = A(/) n A(^). (30)

We summarize the above results into

Theorem 5.L Given a basis /? suppose that Zk^Q and 8fc < oo. Let K
be the adjacent new basis obtained by introducing the kth column into the
basis. Then Hk as defined in (25) séparâtes A(J) and A(K). Furthermore, the
equalities of (30) hold.

RBMARK 5.1. Given A(/) and A(K)9 we say that A(/) and A(K) are adjacent
if (26), (27) and (30) hold. Theorem 5.1 says that by introducing the column k
with Zk=£0 and 0fc < oo, into the basis, the new adjacent basis K will pro-
duce A(K) which is adjacent to A(/). However, it is possible that
A(J) n A(K) = { 0 } and A(̂ T) 0 A= = { 0 }. If this case occurs, introducing
the kth column into the basis does not help solve our problem. This case can
be avoided if Hk n A(/) i f l À ^ { 0 } (thus the intersection contains more
than the zero point). A column k £jf with this property will be called an
effective constraint of A(/). Note from Theorem 5.1 that by introducing an
effective constraint Zk of A(/) into the basis, we will produce A(̂ T) which
has a nonempty intersection with A ~ — { 0 } .

Now observe that for a given X, XCx will either have an unbounded or
optimal solution over X. In either case, by simplex method, X will be contained
by some A4 or A(/fc). (Observe that Ai, identifies A(/) for Qk = 0). Since
we have a finite number of bases and each basis has only finite number of

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



THE TECHNIQUES OF LINEAR MULHOBJECTIVE PROGRAMMING 61

columns, we know that there are finite number of A i and A(/fc) which form
a covering of A . More precisely.

Theorem 5.2. There are { A i | j = 1, ...,p } and { A(Jk) | Ar = 1,.,., q } so
that each A i or A ^ ) has a nonempty intersection with A - and

(i) A = C U { A i | j = 1, „.,ii } U { A(Jk) \k=h ..., q }

(ii) U { A(/fc) | Ar = 1»..., q } fl A - is a closed convex polyhedron. In fact
it is a polyhedral cone.

Proof. (i) is clear from the previous discussion. In order to see (ii), observe
that XCx cannot simultaneously have an optimal solution and an unbounded
solution. Thus { A i } and { A(Jk) } are mutually disjoint, and

= n { Comp A i | j = 1, ...,p } n A - ,

where Comp désignâtes a complement to a set. (The first equality comes from (i)
and mutual disjointness which implies that X € A - is in some A(Jk) if and
only if it is not in some Ai.)

We see that each Comp A i is a closed half space. Our conclusion of (ii) is
clear from (30). Q.E.D.

REMARK 5.2. Theorem 5.2 states that there are finite number of A i and
A(Jk) that will cover A- , Such A i and A(Jk) can be located by Multicriteria
Simplex Method. Theorem 5.1 and Remark 5.1 provide a way to generate adjacent
« nonoverlapping » polyhedral cônes in the parametric space. It is not reaso-
nable to adopt a method of direct décomposition of A - to résolve our pro-
blem. The method starts with a A(/) so that A(/) H À M 0 , then uses Theo-
rem 5.1 to generate the adjacent A(Jk) or A i . The procedure is repeated
until A ï is completely covered by { A(Jk) } and { A i }. This method was
discussed in [6]. For a detailed discussion of its shortcomings and inefficiency
see Réf. 4.

REMARK 5.3. Once J is found to be an JVcx-basis (Theorem 4.2), Eq. (14)
can be used to find its related set of optimal weights A(/) at no extra work
from the multi-criteria simplex tableau. Thus our remaining crucial task is to
find the set Nex by Multicriteria Simplex Method.

Let E = { x(i) | Ï = 1,..., p } be a set of extreme points of X.

We say that E is connected if it contains only one point or if for any two
points x{ï)y x(k) in E9 there is a séquence { x(it),..., x(ir) } in E so that JC(Z'J)

and x(il+ x% 1=1, ..., r — 1, are adjacent and x(ix) = JCQ, x(ir) = x(k).

Following a similar proof as in [5], we have

n° novembre 1974, V-3.



6 2 P. L. YU AND M. ZELENY

Tfaeorem 5.3. The set Nex is connected.
Proof. Let x(i), x(j) € Nex. Suppose Iand /are the bases associated with x(i)

and x(j) respectively. Then, by (ii) of Theorem 1.1, both A(7) f lA > and
A(7) fl A > are not empty. Let X( €A(/) n A> and X, € A(J) D A > . SinceA> is
convex the line segment [kit X̂ ] C A > , From Theorem 5.2, we can find a finite
séquence { A(Jk) \ k = 1,..., r } so that [X£, X,] fl A{J^ ^ 0 and

In view of (ii) of Lemma 2.1 and Theorem 1.1, we see that we can find a séquence
of iVeJC-points { xiU ..., xir } so that xn is adjacent to xa+ u l — 1,..., r — 1,
and xn = x(i), xir = *(ƒ). Q.E.D.

REMARK 5.4. In view of Theorem 53 we can construct a connected
graph (A,, CÜ) for Nexi where SJ is the set ofallverôœscorrespondingtoiV^,
and yfc is the set of all arcs in the graph. Given (!) x1, x2 € Nex the are a(xl, x2)
which connects x1 and x2 is in A if and only if xl and #2 are adjacent. With
this définition we see that the graph (&> cü) is connected.

6. A MEIHOB TO GENERATE THE ENURE SET Nex

AND AN EXAMPLE

In order to generate the set Nex, we can first find a basis Jx for an iV^-point,
if Nex =£ 0 . In view of Remark 5.4, if there is any other JV^-point, we must
have an iV^-basis J2 adjacent to Jv Thus we could use results of this section
to search for such a J2. If there is no such J2> J\ is the unique iVex-point.
Otherwise, we consider all adjacent, but unexplored feasible bases to { Ju J2 }
to see if there is any other iV^-basis among them. If there is none, { Ju J2 }
represents the set Nex. Otherwise, we add a new iV^-basis to { Ju J2 } and
continue with the procedure until the entire set Nex is located.

We shall use Flow Diagram 1 to explain our procedure more precisely. In
the diagram, we have used the following notation :

(i) For each basis / , we use 2)(/) to dénote the set of all « obviously »
dominated bases which are adjacent to / . That is, those dominated adjacent
bases which can easily be checked by Theorem 3.1. We also use A(J) to dénote
the set of all adjacent bases to / which are not in 3)(/) and their nondominance
have not been checked before. Thus A(J) dénotes the set of all adjacent bases
to / o f which the nondominance must be checked by nondominance subroutine.

(ii) At each step i9 Nt and Dt are the sets of all checked nondominated and
dominated extreme points respectively, while Wt is the set of all possible bases
of which the nondominance must be established by the nondominance subrou-
tine.

(1) It is convenient, without confusion, for us to use x\ x% to represent thèir bases
Ju J% and the resulting basic feasible solutions x(/i), x(J%) as well.
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(1

(2)

(0)

)

Pind an N
ex

START

Basis J.,P(J.), A(J.)
A l I

(5) i » 1

(111

(8 )
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We briefly describe Flow Diagram 1 as follows :

Box (1). From our assumption that X is compact,- we know that Nex ^ 0 .
Since 1 ± x t € A > » the maximum solution to 11 x tCx over X is an iV^-point.
We may use this iV^-point te start with.

©(/j) and A(Jt) are to found by Theorem 3.1.

Box (2) and (3) are clear.

Box (4)-(6). Suppose W% = 0 . Since Nex is connected (Theorem 5.3 and
Remark 5.3), we know that we have already located all JV^-points.

Thus we stop at Box (6). Otherwise, we go to Box (5).

Observe that if Nex = Ni9 then there are i iST -̂points.

Box (7)-(ll). In Box (7) weusenondominancesubroutine to verify whether K
is an iNTex-basis or not. If it is, we get one more TV -̂point and go through
Box (9)-(ll). Note, in Box (9), again we use Theorem 3.1 to find 3)(Z). To
find &{K) we need to use the record of Nt and Dt. Once 3D(Z) and &{K) are
found, Box (10) and (11) are clear. Suppose that K is not an JV^-basis. We go
to Box (8). We see that Dt is increased by one, while Wt is decreased by one.

An Example (Problem 1)

The objective functions :

Cx =

1 2 —1

0 1

1 0

3 2

2 3

0 1

1 — 1 0 — 1 — 1

The constramts

Ax =

1

— 2

—— 1

•

2

— 1

0

1

0

1

1

1

0

2

2

2

1

0

0

2

1

— 2

/ xt )

-

•

Xj /

/ 16 \

16

16

^ 16 /1 2 — 1 1 —2 —1

Xj >, 0 , i = l,..., 7

We set up the initial multicriteria simplex tableau as in Tableau 2. Observe
that the last row of the tableau is corresponding to the row of 11 x tCx (see
Remark 4.3).
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* 8
x9

V1

V2

v'

w

xx

1
- 2
- 1

0

- 1
0

- 1

- 2

* 2

2
- 1

0
1

- 2
— 1

0

- 3

1
0
1
2

1
- 1
- 1

i

1
1
0

- 1

- 3
- 2

1

- 4

(2)
2
2
1

- 2
- 3

0

- 5

1
0
0

- 2

0
- 1

1

0

2
1
2

- 1

- 1
0
1

0

- 8

1
0
0
0

0
0
0

0

x9

0
1
0
0

0
0
0

0

x10

0
0

-1
0

0
0
0

0

Xxl

0
0
0
1

0
0
0

0

16
16
16
16

0
0
0

0

TABLEAU 3

Observe that 65Z5 < 0. In view of Theorem 3.1, the current basis is domi-
nated. By introducing column 5 into the basis (the circle indicates the pivot
element), we get Tableau 4.

X5
x9

* 1 1

V1

w

1/2
2

- 2
- 1 / 2

0
3/2

- 1

1/2

x2

1
2

- 2
0

0
2
0

2

* 3

1/2
- 1

0
3/2

2
1/2

- 1

3/2

x.

6/2)
(}

— 1
- 3 / 2

- 2
- 1 / 2

1

- 3 / 2

1
0
0
0

0
0
0

0

x6

1/2
- 1
- 1
- 5 / 2

1
1/2
1

5/2

x1

1
- 1
— 4
- 2 '

1
3
1

5

X%

1/2
- 1
- 1
- 1 / 2

1
3/2
0

5/2

Xg

0
1
0
0

0
0
0

0

0
0
1
0

0
0
0

0

0
0
0
1

0
0
0

0

8
0
0
8

16
24

0

40

TABLEAU 4

Now, Theorem 3.1 could not teil whether the current basis is nondominated
or not. We have to use nondominance subroutine. Observe that the last column
of (20) and (21) is 0. Thus each 0,- = 0 for the problem (15). To know whether
w > 0 or not, it may suflS.ce to check only (20) and (21). Also from Tableau 4,
we see Zj = 0 for j = 9, 10, 11. In checking (20) and (21) these columns
will never be changed. Deleting the first four rows and columns 5, 9-11 of
Tableau 4, we get the essential part of the simplex tableau associated with
(20)-(21) for verifying whether w > 0 or not as in Tableau 5. Observe that the
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last row is the criterion row for the subproblem (15). Going through the
usual simplex method, we find an optimal solution for (15) in Tableau 7.
Observe that since w = 0, the basis associated with Tableau 4 is nondominated.
Dénote its basic feasible solution by xK Then xl = (0, 0,0, 0, 8, 0, 0).

e l
e2

W

Xl

0
3/2

- 1

1/2

x2

0
2
0

2

* 3

2
1/2

— 1

3/2

xA

-2
- 1 / 2

ci>
- 3 / 2

x6

1
1/2
1

5/2

* 7

1
3
1

5

* 8

1
3/2
0

5/2

1
0
0

0

e2

0
1
0

0

e3

0
0
1

0

0
0
0

0

TABLEAU 5

e l
e2

w

- 2

CD

—1

* 2

0
2
0

2

* 3

0
0

- 1

0

x.

0
0
1

0

x6

3
1
1

4

* 7

3
7/2
1

13/2

* 8

1
3/2
0

5/2

e i

I
0
0

0

e2

0
1
0

0

*3

2
1/2
1

3/2

0
0
0

0

TABLEAU 6

w

xx

0
1
0

0

x2

4
2
2

4

Xl

0
0

- 1

0

x.

0
0
1

0

5
1
2

5

* 7

10
7/2
9/2-

10

4
3/2
3/2

4

1
0
0

0

e2

2
1
1

1

e3

3
1/2
3/2

2

0
0
0

0

TABLEAU 7

From (14) and Tableau 4, we get A(xx) to be the solution set of the folio-
wing system of linear inequalities

0 0 2 — 2 1 1 1

(Xi,X2,X3) 3/2 2 1/2 ^-1/2 1/2 3 3/2 ^ 0 (31)

— 1 0 —1 1 1 1 0
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In order to have a two dimensionàl graphical représentation, observe
that each ray of A - C- R3 is one-to-one corresponding to à point of the simplex

Thus, by setting Xx = 1 — X2 — X3 and deleting the redundant constraints

of (31) we get the set A(xl) in S as

A | X 3 ^ 0 , 3X2/2 + 3X3 = 2 } (32)

The set of A(xl) O 5 is given in Figure 1.

Figure 1

Observe that if we use y2s and y35 as pivot éléments we will get x1(1)

and x1(2), both of them are different bases associated with xl. However,

A(xUj))nS^0 , 7 = 1,2.

From the basis x1(1) we get another basis for xK We call it x1(3>. Note,

(= (r i
Following the procedure described ia- th&t previousr section, we get the

set Nex and its related
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CORRESPONDING BASIS

VALUES OF
OBJECTIVE FUNCTIONS

Clx

CORRESPONDING
SUBSET OF A

X1

X2

X3

X4

X5

{5,9,10,11}
{4,9,10,11}
{1,9,10,11}
{1,3, 9,10}
{3,4, 9,10}
{3,5, 9,10}

16
48
16.
0

16/3
16/3

24
32
0
3

64/3
64/3

0
- 1 6

6
16
16/3
16/3

M*4)

JC2<2>

{1,5,10,11}
{1,4,10,11}
{3,4,10,11}
{1,3, 5, 9}

16
48
48
16/3

24
32
32
64/3

0
- 16
- 1 6

16/3

TABLEAU 8

where x1 = (O, O, O, O, 8, O, 0) , x2 = (O, O, O, 16,0, O, Ó),

x3 ̂  (16,0,0,0,0,0,0) , x* = (8,0,8,0,0,0,0),

and x6 = (o, 0,^,0,^,0,0

Also, we get the foUowing subsets :

= { >• 3X3 3X3

A(*2) = { X I 4X3 ̂  2 ; 3X2 + 6X3 ̂  4 ; 3X2 + 6X3 ̂  4 }

= { X I 3X2 + 2X3 ̂  2 ; 4X3 ̂  2 ; — 3X2 + 2X3 ̂  O

= i X

A(x5) - \ X

= i X

2'
3X3 2' 3X3

— X2 + 2X3

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



THE TECHNIQUES OF LINEAR MÜLTiOBJECTIVE PROGRAMMING 69

and

- {
I = { X I 9X2 + 14X3 <: 10 ; 4X3 ̂  2 }

A(JC2(2)) = { X I 9X2 + 14X3 ̂  10 ; 3X2 + 6X3 ̂  4 ; 3X2. + 6X3 ̂  4

A(x6(1)) = \ X 3' 2J i;

0

7. A COMPUTER EXPERIENCE

We have coded Multicriteria Simplex Program in FORTRAN according
to Flow Diagram 1 (for details see Ref. 5). Our examples are executed on
IBM 7040 O-

It takes a total time of 2.881 minutes to get the set Nex for the problem
described in Section 6. Observe that the problem is by no means trivial becausë
of the existence of degeneracies and alternative solutions.

We then try the following problem :

The Objective Functions

2 5 1 — 1 6 . 8 3 — 2 fxx\

5 — 2 5

1 1

0 6 7 2

1 1 . 1 1 \x8/

The Constraints

1 3 —4
5 2 4
0 4 — 1

— 3 —4 8
12 8 — 1

—1 —1 —1
8 —12 —3

— 5 —6 12

1 —1
-1 3
-1 —3
2 3
4 0

-1 —1
4 . 1
1 0

1 1
2 7
0 1
5 —1
1 0

— 1 —1
0 0

— 1 1

/xi\

\x8)

f 40\
84
18

100
40

— 12
30

l 100/

1
7
0

-4
1

-1
0
0

?=1, . . . ,8 .

(1) The speed of IBM 7040 is much slower than that of the IBM 360. We will try in
the near future to exécute the same problems on the IBM 360 and report the expérience.
A useful computational expérience with an alternative algorithm is available in Ref. 15.
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Observe that this problem is intentionally complicated. For instance,
ç»3 __ — ̂ 6 (note3 C3 is the third row of the objectives, while A6, is the sixth
row for the constraints), also A3 — A2 — C2. Such dependencies willcer-
tainly make our computation more lengthy. Note that in this problem the

upper limit on the number of feasible bases is I I = 12,870. However, we

get only 3 7Vex-points. ït takes a total time of 0.814 minutes to exécute the
problem.

In the next problem we use the same constraints as in the previous one,
however we have five objective functions :

-7
5

•2

4
1

4
1
5
1
1

1 0
-1 6
0 6

-1 —3
1 1

-1
8
7
0
1

-1
3
2
0
1

8"
2
6
1
1

/ Y \

\X8J

The set Nex contains 70 points. It takes 15.65 minutes to carry out the com ,̂
putation. For details see référence 5.

Observe that our method for locating Nex indeed is a combination of a
modified linear program and an enumeration technique. The time required
to locate Nex consequently dépends on the size of the problem (the dimensio-
nality of A and C) and the number of total iV^-points (the interrelation among
the rows of A and C). One can easily imagine that when the dimensions of A
and C get large, it might become very difficult to incorporate the method
efficiently. To illustr^te how the number of iV*0JC-points can effect the computation
time, observe that our first problem has a lower dimensionality than the second
problem but it takes more time for locating Nex because its Nex contains
more éléments. Also, although the third problem has the same A as the second
one, it takes much longer to locate its Nex than it does for the second pro-
blem because its Nex contains 70 éléments while the second one contains
only 3 éléments.

8. CONCLUSIONS

We have shown that the set of ail nondominated extreme points can be
generated quite efïiciently. In complex multicriteria situations the final solution
can be any iV-point, not necessarily an iVex-point. Therefore we might be
interested in finding N rather than Nex. One method using Nex to generate
complete set iVis discussed in Références 3 and 5. This method produces the
set of nondominated faces of a convex polyhedron.

The nondominated solutions are essentially the first step toward good
décision making. Actual sélection of the final solution from N remains a chair
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lenging task, see Ref. 12 and 14. For an excellent review of possible ways of
resolution see Référence 8.
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