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R.ALLR.O.
(8¢ année, novembre 1974, V-3, p. 51 a 71)

THE TECHNIQUES OF LINEAR
MULTIOBJECTIVE PROGRAMMING

par P. L. YU (') and M. ZELENY (?)

Abstract. — In this article we derive a generalized version of the simplex method-Multi-
criteria Simplex Method, used to generate the set of all nondominated extreme solutions for
linear programming problems with multiple objective functions. A simple nondominance
subroutine is developed for testing the nondominance of any extreme solution.

We discuss an important interaction between Multicriteria Simplex Method and multi-
parametric linear programming. In fact we show that the decomposition of a multiparametric
space (or a set of weights) into its optimal subsets can be obtained as its natural by-product.

Theoretical results, numerical examples and flow diagram as well as some computer
experience are reported.

1. INTRODUCTION

We are concerned with linear programming problems involving multiple
(possibly noncommensurable) objective functions. To resolve this type of deci-
sion problems, we could use the concept of domination structures (See Ref. 1-3)
or linear multi-parametric programming (See Ref. 4-5). We propose a simple
technique, Multicriteria Simplex Method, to generate the set of all nondomina-
ted extreme point solutions and show how the direct multiparametric approach
(Ref. 6) turns out to be computationally inefficient. It is also redundant because
the decomposition of the parametric space is a by-product of Multicriteria
Simplex Method. ' '

Though, in general, the solution to a multicriteria problem does hot have
to be an extreme point, the entire set of all nondominated solutions can be
effectively generated from the set of all nondominated extreme points (see
Ref. 3 or 5). : : :

Linear Multiobjective Programming represents a part of a broader. field
of study, Multiple Criteria Decision Making. We refer interested readers to
some recent works summarizing up-to-date state of the arts (see for example
Ref. 7, 8, 13). -

(1) Department of General Business, University of Texas, Austin, Texas 78712, -
(2) Graduate School of Business, Columbia University, New York, New York 10027.
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52 P. L. YU AND M. ZELENY

Before going further, for convenience, let us introduce the following nota-
tion. Let x = (xy, ..., x,) and y = (¥4, ..., ¥,). Then

(i) x =y if and only if x; = y; forallj =1, ..., n.
(ii) x Zyifandonlyif x; > y;forallj=1, .., n.
(iii) x > yifand only if x; > y; forallj=1, ..., nand x # y.

Usually we shall denote a set or a matrix by a capital character. Given
a matrix 4, we will find it convenient to use 4* and 4, to denote its ith row
and jth column respectively, and g;; its element in the ith row and the jth
column.

In order to simplify the presentation, let us assume that we have a compact
decision space defined by

X={x€R|Ax <b,x20} , Aisoforderm X n. )

Let C = C,,, be a matrix with / rows (C%, ..., C))T sothat C*x, k = 1, ..., 1,
is the kth objective function of our problem. Given a domination cone A (which
is assumed to be convex) and x!, x2 € X, we say that x! is dominated by x?
if Cx'€ Cx2 + A and Cx!' s~ Cx2. A point x € X is a N-point if it is not
dominated by any other feasible point of X; otherwise it is a D-point.

For simplicity, the sets of all N-points and all D-points will be denoted
by N and D respectively.

If we denote the set of all extreme points of X by X,, = { x!, ..., x" }, then
let N,,=NNX, be the set of all nondominated extreme points. We see
that WV, is finite because X is compact.

Given A € R}, let
X)) = {x°€X| ACx® > ACx,x€ X }. ()]

Thus, X9(2) is the set of all maximum points of ACx over X.
Note that ACx is bilinear in A and x.
Given a cone A, we define its polar cone

A*= {A|[rd £0,foralldeA }.

If A = {x| Dx < 0 }isapolyhedral cone, we see that A*= {y D | y = 0}.
It can be shown that (Remark 5.9 of Reference 1) the relative interior of A*
isgiven by (A*Y = {yD|y>0}.

(It is understood that x is a column vector; y a row vector, Both represent
vectors of R%)

We present a theorem describing necessary and sufficient conditions for
a point to be nondominated. Its proof is given in Ref. 3.
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THE TECHNIQUES OF LINEAR MULTIOBJECTIVE PROGRAMMING 53

Theorem 1.1. Suppose that A is a polyhedral cone. Then
® NCU{X%0) | re@®}
(i) ifInt A¥#®, then N=U{X°()|relnt A* }.

‘The theorem holds even if X is not bounded.

We may and will assume that A = {d€R'|d £ 0} = A= to simplify
the presentation.

Using the results of Theorem 1.1, we shall derive Multicriteria Simplex
Method which may be regarded as a natural generalization of the simplex

method. With this method we study the « connectedness » of N,, and derive
an algorithm to locate the entire set N,,.

2. SIMPLEX METHOD AND X°(%)

Recall that since we limit ourselves to the domination cone A = AZ, it
follows that
IntA*= {deR'|d>0}=A">,

where Int stands for an interior.

Recall from (2) that X9(2) is the set of maximum solutions of ACx over X.
Treating AC as a row vector, we see that to find X9() is essentially a series
of linear programming problems.

REMARK 2.1. Since X is compact, an optimal solution to ACx exists.

We can generate the entire set of all basic feasible optimal solutions, say
X2 = {x',...,x*}. Then the set of all optimal solutions to ACx is given

by X°(\) = H(X?,) (the convex hull generated by X?2,) (See Ref. 10 or 11).
By varying A over A~, we can locate the entire set N via Theorem 1.1.

Although this method seems reasonable, it is by no means the best way
to locate N, because how to vary A over A~ (See Ref. 4 and 6) is still unresolved
and the computational work may be quite demanding. Thus, instead of this
direct approach we shall use Multicriteria Simplex Method to locate N,,.
The method also indicates an efficient way to vary A over A~ in order to get
the set N,,.

Without loss of generality we can assume that 5 > 0 in (1). (See Ref. 10
and 11 for the extension to other types of b.)

From (1), by adding slack variables, the decision space could be defined by
the set of all x € R"*", x > 0 and

(A, Lyxp)x = b. 3
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54 P. L. YU AND M. ZELENY

Our new C becomes (C, O,,xm)-

Given a basis B which is associated with columns J = {j;, j2, ..., jm }» WE
shall denote the remaining submatrix and columns with respect to (3) by B’
and J’ respectively.

Let us introduce a simplex tableau corresponding to some basic feasible
solution, say x = (x5, x5) = (¥, 0), associated with B (and J) :

r Basis X1 o X X1 e Xj e Xppip x
1 X1 1 ..0 Vim+1 o yh e Vim+n Y10
m Xm 0 ..1 Ymm+1 s+ Ymj <o+ Ymm+n Ymo
0 ..0 Zm+1 o Zj e Zyn v
TABLEAU 1

By the simplex method, we can systematically change J, one column at
each iteration, so that at each iteration y, = 87 !5 > 0 is maintained and the
value of the objective function is improved until an optimal solution is obtained.
For later reference, let us summarize some relevant results of the simplex
method as follows (see Ref. 10). Observe in Tableau 1 that

Y= {yij }i=1....,m = (I, B_IB') @
j=1,...,m+n
zZ= (zb seey Zm+n) = )‘(CBY_ C) (5)
Yo = (V105 +e0s ymo)T = B"'b (6)
and :
v=ACzB b, (M

where ACjy are criteria coefficients associated with B.
Lemma 2.1. Given a feasible basis J §Q that yo, = B~'5 2 0, there are two
possible cases which can occur in the simplex tableau :

Case 1. Each z; 2 0 for all j€J'. Then x5 = yo = B"'b and x; =0is a
maximum solution. If each z; > 0 forj € J', then the optimal solution is unique.
Otherwise there may exist infinitely many optimal solutions.
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THE TECHNIQUES OF LINEAR MULTIOBJECTIVE PROGRAMMING 55

Case 2. There is at least one j € J' so that z; < 0. Let

1

0= 22 = min { 225, >0} O, ®
Yy pi r hg rj

_ Then by introducing the jth column into the basis, by Gaussian elimination

technique we get the pth column of the identity matrix in the next tableau,

(the element y,; is called the pivot element), and we obtain a new basic feasible

solution with an increase of the value of the objective function by — 0;z;.

REMARK 2.2. Given a simplex tableau corresponding to a basis J,, suppose
we introduce the jth column, j € Ji, into the basis as described in Case 2 of
Lemma 2.1. We thus produce a new basis J,, J, = J; U {j } — {/j, } where
Jp €J is the column associated with 7, in the simplex tableau of the basis J;.
Observe that there is exactly one element in J, which is not in J,, and vice
versa. Two bases such as J, and J, which enjoy the above property are known

as adjacent to each other. The corresponding extreme point solutions are called
adjacent extreme points of X.

3. MULTICRITERIA SIMPLEX. METHOD

- Observe that given a basis B, the row vector z in Tableau 1 is given by
MCY — C). Let

= (CY—C) ®

Then
z = A\Z. 10)

-From (9) and (10), we see that given A the corresponding z can be easily’
computed whenever Z is known.

Observe that (CpY — C) = (CAY — C}, ..., CLY — CYT. Each CkY — C¥
k=1,..., 1, can be obtained from the last row of the simplex tableau if we
replace ACx by C*x as the objective function.

For a given basis B (or J), let us construct Multicriteria Simplex Tableau

_as Tableau 2 (for simplicity, we have agam rearranged the indices so that J
appears in the first m columns).

Note that {¥ij }1s defined exactly as in (4) whlle V= (@, ..., v") = CzB™'b.

Note that o*, k = 1, ..., /is the value of the kth objective function at the current
basis.

. (1) Suppose there is no r so that yy; > 0. We have an unbounded solution. Since X is
assumed compact, this cannot happen. Thus 6; is well defined.

n° novembre 1974, V-3, .



56 P. L. YU AND M. ZELENY

r Basis | x; - X | X1 e | X5 cor | Xmtn x
1 -T‘l 1 cee Y ).'1m+1 e }.’1,- %’lm-l-u J"lo
m| x| O | | 1 umar | oo | Fmp | e | Pmmin | Ym0
o | ... 0 | zlyyy | oo |2t | on | Zlpy, | O
0 | oo | 0 by | oozt | oo | Zhoen | O
TABLEAU 2

Then for k = 1, ..., I we see that ()
O,...,0,z5 . 4, .0, 2540 = (CEY — CH = Z%,
Let us define M as

=Y 11)
= > (
(m+1)x (m+n)

Observe that M enjoys the following properties,

(i) the submatrix {y;|j € J }, when its rows are properly permutated,
forms the identity matrix of order m X m. (12)
(ii) The submatrix { Z; | j € J } is a zero matrix of order I X m. (13)

For each nonbasic column j € J', we shall define 6; as in (8).

By introducing the jth column into the basis we convert M; into E, in the
next tableau, where E, is the pth column of the identity matrix of order m 4/
and p is such that y,; is the pivot element. At each such iteration, M can enjoy
the properties (12)-(13) and Y, Z can be easily computed.

REMARK 3.1. The row Z¥ k = 1, ... [ is associated with a linear program-
ming problem with objective function C*x. In view of Lemma 2.1. if at a basis J,
A = 0, then x(J), the basic feasible solution of J, is an optimal basic solution
for C*x. If zj > 0, for all j € J', then x(J) is the unique optimal solution for
Cix and clearly is an N, -point.

(1) Recall that Z* (or Zj) denotes the kth row (or the jth column) of matrix Z. Simi=
larly for matrix M in (11).
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THE TECHNIQUES OF LINEAR MULTIOBJECTIVE PROGRAMMING 57

REMARK 3.2. Given a basis J and j € J’, by introducing jth column into
the basis we produce an adjacent basis J; (see Remark 2.2). Then the values
of the objective functions increase by — 0;Z;. Thatis V(J,) — V(J) = — 6,Z,,
where V(J) = (v", ..., v') at the basis J. This observation yields :

Theorem 3.1. Given a basis J,

(i) If there is j € J§ so that 6,Z; < 0, then x(/,) € D.

(ii) If there is j € Jg so that 6,Z; > 0, then x(J,) € D, where J; is the new
basis obtained by introducing the jth column into the basis. _

(iii) Let j, k € J5 and J; and J,, be the new bases obtained by introducing

respectively the jth and kth columns into the basis. Suppose that 6,Z; > 6,Z,.
Then x(J;) € D.

Theorem 3.1. and Remark 3.2., although obvious, will be useful in our
later computation of N,,.

4. OPTIMAL WEIGHTS AND A NONDOMINANCE SUBROUTINE

Now, given a basis J, let Z be the matrix associated with J. We can then
uniquely define.
' A(J)={>\l)\Z;O}. (149)

Note that A(J) is a polyhedral cone and 0 € A(J).
In view of Lemma 2.1., (10) and Theorem 1.1. we state

Theorem 4.1.
(i) x(J) maximizes ACx over X for all A € A(J).
(i) x(J) € N, if and only fA”NAJ)# .

REMARK 4.1. Given J, A(J) is its associated set of optimal weights, because
whenever our objectives Cx are linearly weighted as ACx for some A € A(J),
x(J) maximizes ACx. In the final decision-making, this is very valuable infor-
mation.

REMARK 4.2. Given a basic feasible solution, we could use Remark 3.1,
(i) of Theorem 3.1, and (ii) of Theorem 4.1 to detect whether it is an N,,-point
or not. However, although the results are useful, they cannot cover all possible
cases. In the remaining part of this section, we shall derive a simple algebraic
method, called the nondominance subroutine, so that we can test whether an
extreme point is an N-point for all possible cases.

Let x% = x(J) represent a basic feasible solution with basis J. Let
e = (e, ..., ;) and

1
w = max Z e (15)
i=1

n° novembre 1974, V-3.



58 P. L. YU AND M. ZELENY

subject to :
X={(x,e)|xeX,Cx—e 2 Cxe=20}

=

Theorem 4.2.

(i) x° is an N-point if and only if w = 0.

(i1) x° is a D-point if and only if w > 0.

Proof. Observe that (x% 0) € X. Thus w > 0. It suffices to show (i). Howe-

ver (i) is another way to define an N-point with respect to the domination
cone A=, Q.E.D.

Corollary 4.1. If w > 0, then the corresponding maximum solution
x'e X, Cx! > Cx% is an N-point.

Observe that finding whether w = 0 or not in Theorem 4.2 usually does
not require too much extra work. In order to see this, let B be the basis asso-
ciated with x° or J. The problem of (15) in a block simplex tableau can be
written

Amxn Ime Omxl l bmxl ] . (16)
Cixn Oixm | —Iixy | Cx° (17)
Oyxn |'Ogxm| —1lixsl O (18)

where 1,,,=(, 1, ..., 1).

In the above matrix, the first and second columns are the coefficients
associated respectively with the original variables and the added slack variables,
the third column is the coefficients associated with the new variable e in (15).
Note that (16) is the constraint that x € X, (17) is the constraint that Cx-e > Cx9,
and (18) corresponds to the objective of (15).

We could rewrite (16)-(18) as follows :

B4 B! 0,x: | B™ 19)
CpB™ 14— C | CgB™1 I, | 050y (20)
11x1[CBB_1A“_C] lle[CBBﬂ] lel 0 (21)

Note that (19) = B~1:(16), (20) = Cg(19)-(17) (observe that
CgB~ b = Cx%), and (21) = 1., (20) + (18).

Observe that (19)-(21) supply a feasible simplex tableau for Problem (15)
with the basic feasible solution (x, e) = (x%, 0).
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Comparing (19) and (20) with (4), (9) and (12) we see that (}).

B~14 Bt Y
I
CyB Y4 —C I CyB™ ' | '

From (19)-(22) we see that to construct a simplex tableau for Problem (15)
does not require much extra work. The conditions in Theorem 4.2 could be
easily verified. In particular, we have the following sufficiency condition :

Theorem 4.3. Given a basis J, suppose 1; «,Z > 0. Then x(J) is an N,,-point.

Proof. Because the first two blocks of (21), given by 1,4,Z, 1;4,Z = 0
implies that (x(J), 0) is an optimal solution to (15) with value w =0 (see
Lemma 2.1). The assertion follows immediately from Theorem 4.2.

"~ REMARK 4.3. Suppose that the condition in Theorem 4.3 is not satisfied.
Because of the special structure of (19)-(21), the problem of (15) usually can be
simply solved in a few iterations. In order to use the results of (19)-(22) and
Theorem 4.2-4.3, one can append an extra row, corresponding to the objective
function 1, ,C, to the simplex tableau. (See the example discussed in Section 6.)

5. DECOMPOSITION OF A> AND CONNECTEDNESS OF N,

Given a basis J, we could define its set of optimal weights A(J) as in (14).
Now suppose that for some k € J’, Z, # 0, 6, < co. Let us introduce the k'
column into the basis. Suppose that y,, is the pivot element. Then we will
produce an adjacent basis K so that

K'=7rU{j,}—{k}
Without confusion (rearrange the indices, if necessary), let p = j,. Then
K=JrU{p}—{k} (23)

Let W denote Z(K) (the submatrix Z associated with K).

We want to study the relation between A(J) and A(K). Toward this end.
observe that by Gaussian elimination technique,

0 ifje kK
Wy= 3 —Zvm ifij=pek’ (24
Z; — VpiZilVox ifje K'—{p}

(1) Note, C; = 0 if j is an index associated with a slack variable.
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60 P. L. YU AND M. ZELENY

Since it is the pivot element, y,, > 0 (see Lemma 2.1).

Let H, = {A|AZ, =0} 5
Since y, > 0, M— Z/y,) = 0if and only if AZ, < 0. We see that
AKIC{r|2Z, <0} (26)
But,
‘ AN C{r|[2Z, 20} @n

We see, from (25)-(27), that H, is a hyperplane in R, which separates the
polyhedral cones A(K) and A(J).

Next, since i € H, implies that AZ, = 0, we have
HNAD)={r|2Z,=0 , 2Z;20 , jeJ'—{k}} (28)
and from (24) we also have
HNAK)={2|2Z,=0 , 2Z;20 , jeK'—{p}} (29

However from (23), we have K'— {p}=J"— {k }. Thus (26)-(29)
imply that
H . NAJ)= H NAK) = AJ) N A(X). (30)

We summarize the above results into

Theorem 5.1. Given a basis J, suppose that Z, # 0 and 0, < co0. Let K
be the adjacent new basis obtained by introducing the k™ column into the

basis. Then H, as defined in (25) separates A(J) and A(K). Furthermore, the
equalities of (30) hold.

REMARK 5.1. Given A(J) and A(K), we say that A(J) and A(K) are adjacent
if (26), (27) and (30) hold. Theorem 5.1 says that by introducing the column &
with Z, 7= 0 and 6, < 00, into the basis, the new adjacent basis K will pro-
duce A(K) which is adjacent to A(J). However, it is possible that
AN AK) = {0} and A(K)NAZ = {0 }. If this case occurs, introducing
the k' column into the basis does not help solve our problem. This case can
be avoided if H, N A(J) ZN A # {0} (thus the intersection contains more
than the zero point). A column k € J' with this property will be called an
effective constraint of A(J). Note from Theorem 5.1 that by introducing an
effective constraint Z, of A(J) into the basis, we will produce A(K) which
has a nonempty intersection with A Z —{0}.

Now observe that for a given A, ACx will either have an unbounded or
optimal solution over X. In either case, by simplex method, A will be contained
by some AL, or A(J,). (Observe that AL, identifies A(J) for 6, = 0). Since
we have a finite number of bases and each basis has only finite number of
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columns, we know that there are finite number of AJ, and A(J;) which form
a covering of A . More precisely.

Theorem 5.2. Thereare {AL, |j=1,..,p}and {A(J)) |k=1,..,9}s0
that each A’, or A(J,) has a nonempty intersection with A= and '

0 AFCU{AL]j=1,..p }U{AQG) |k=1,..,q}

() V{AW) |k=1,.,q}N AZ is a closed convex polyhedron. In fact
it is a polyhedral cone. ‘

Proof. (i) is clear from the previous discussion. In order to see (ii), observe
that ACx cannot simultaneously have an optimal solution and an unbounded
solution. Thus { AL, } and { A(J,) } are mutually disjoint, and

U{AUD|k=1,.,9}NAZ =Comp[U{AL |j=1,..,p}INAZ
=N{CompAL |j=1,.,p}NAZ,

where Comp designates a complement to a set. (The first equality comes from (i)
and mutual disjointness which implies that A € AZ is in some A(J,) if and
only if it is not in some AZ,.) ‘

We see that each Comp A’ is a closed half space. Our conclusion of (ii) is
clear from (30). Q.E.D.

REMARK 5.2. Theorem 5.2 states that there are finite number of A, and
A(J,) that will cover AZ. Such A/, and A(J;) can be located by Multicriteria
Simplex Method. Theorem 5.1 and Remark 5.1 provide a way to generate adjacent
« nonoverlapping » polyhedral cones in the parametric space. It is not reaso-
nable to adopt a method of direct decomposition of A2 to resolve our pro-
blem. The method starts with a A(J)so that A(J) N A2 54 @, then uses Theo-
rem 5.1 to generate the adjacent A(J,) or AL, The procedure is repeated
until AZ is completely covered by { A(J,) } and { A, }. This method was
discussed in [6]. For a detailed discussion of its shortcomings and inefficiency
see Ref. 4.

REMARK 5.3. Once J is found to be an N, -basis (Theorem 4.2), Eq. (14)
can be used to find its related set of optimal weights A(J) at no extra work
from the multi-criteria simplex tableau. Thus our remaining crucial task is to
find the set N,, by Multicriteria Simplex Method.

Let E = {x(i) | i =1, ..., p } be a set of extreme points of X.

We say that E is connected if it contains only one point or if for any two
points x(i), x(k) in E, there is a sequence { x(i,), ..., x(i,) } in E so that x(i))
and x(i;4 1), [ = 1, ..., r — 1, are adjacent and x(i;) = x(;), x(i,) = x(k).

Following a similar proof as in [5], we have
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62 P. L. YU AND M. ZELENY

Theorem 5.3. The set N,, is connected.

Proof. Let x(i), x(j) € N,,. Suppose I and J are the bases associated with x(¥)
and x(j) respectively. Then, by (ii) of Theorem 1.1, both A(/) N A> and
A(J) N A> are not empty. Let A; EAZ)N A~ and A; € A(J) N A>.Since A~ is
convex the line segment [A;, A;] © A~. From Theorem 5.2, we can find a finite
sequence { A(J) |k =1,...,r } so that [A, A] N A(J) # & and

D MCU AW |k=1,..,r}

In view of (ii) of Lemma 2.1 and Theorem 1.1, we see that we can find a sequence
of N,,-points { x;y, ..., X;, } s0 that x;; is adjacent to X4, I =1, .., 7 —1,
and X1 = x(i), Xip = x(j). Q.E.D.

REMARK 5.4. In view of Theorem 5.3 we can construct a connected
graph (#, U) for N,,, where U is the set of all vertices corresponding to N.,,
and + is the set of all arcs in the graph. Given (!) x!, x2 € N,, the arc a(x!, x2)
which connects x! and x2 is in # if and only if x! and x2 are adjacent. With
this definition we see that the graph (#£, <U) is connected.

6. A METHOD TO GENERATE THE ENTIRE SET N,
AND AN EXAMPLE -

In order to generate the set N,,, we can first find a basis J, for an N,,-point,
if N,, #* . In view of Remark 5.4, if there is any other N,,-point, we must
have an N, -basis J, adjacent to J,. Thus we could use results of this section
to search for such a J,. If there is no such J,, J, is the unique N, -point.
Otherwise, we consider all adjacent, but unexplored feasible bases to { J;, J, }
to see if there is any other N, -basis among them. If there is none, {J;, J, }
represents the set N,,. Otherwise, we add a new N, -basis to {J;, J, } and
continue with the procedure until the entire set N,, is located.

We shall use Flow Diagram 1 to explain our procedure more precisely. In
the diagram, we have used the following notation :

(i) For each basis J, we use D(J) to denote the set of all « obviously »
dominated bases which are adjacent to J. That is, those dominated adjacent
bases which can easily be checked by Theorem 3.1. We also use #A(J) to denote
the set of all adjacent bases to J which are not in D(J) and their nondominance
have not been checked before. Thus #A(J) denotes the set of all adjacent bases
to J of which the nondominance must be checked by nondominance subroutine.

(ii) At each step i, NV; and D; are the sets of all checked nondominated and
dominated extreme points respectively, while W is the set of all possible bases
of which the nondominance must be established by the nondominance subrou-
tine.

(1) It is convenient, without confusion, for us to use x!, x2 to represent their bases
J1, J2 and the resulting basic feasible solutions x(J1), x(J2) as well.
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We briefly describe Flow Diagram 1 as follows :

Box (1). From our assumption that X is compact; we know that N, # .
Since 1,,; € A”, the maximum solution to 1,,Cx over X is an N,.-point.
We may use this N,,-point te start with.

D(7,) and A(J,) are to found by Theorem 3.1.
Box (2) and (3) are clear.

Box (4)-(6). Suppose W; = @&. Since N, is connected (Theorem 5.3 and
Remark 5.3), we know that we have already located all N, -points.

Thus we stop at Box (6). Otherwise, we go to Box (5).
Observe that if N,, = N;, then there are i N,,-points.

Box (7)-(11).InBox (7) we use nondominance subroutine to verify whether K
is an N,_.-basis or not. If it is, we get one more N,,-point and go through
Box (9)-(11). Note, in Box (9), again we use Theorem 3.1 to find D(K). To
find A(K) we need to use the record of N; and D;. Once D(K) and A(K) are
found, Box (10) and (11) are clear. Suppose that X is not an N,,-basis. We go
to Box (8). We see that D, is increased by one, while W; is decreased by one.

An Example (Problem 1)

The objective functions :
12 —1 32 0 .1 {xl\
cx=|0 1 12310lf|
1 0 i-l()-——l —1 x-,}

The constraints :

1 21 12 1 2]/=x 16
—2 —1 0 12 0 1 16
Ax = g
—1 01 02 0 —2 16
| 0 12 —1 1 —2 —1|\x 16

We set up the initial multicriteria simplex tableau as in Tableau 2. Observe
that the last row of the tableau is corresponding to the row of 1,,,Cx (see
Remark 4.3).
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X3 X X3 X4 X5 Xg X7 Xg Xg X1o9 X1t
g 1 2 1 1 ® 1. 21 0 0 o 16
Xg -2 -1 0 1 2 0 1 0 1 0 0 16
Xyo —1 0 1 0 2 0o —2 0 0 1 0 16
X114 0 1 2 —1 1 -2 -1 0 0 0 1 16
v! -1 =2 1 -3 -2 0o —1 0 0 0 0 0
v? o -1 -1 —2 - —-3 —1 0 0 O 0 (1] 0
v —1 0 —1 1 0 1 1 0 0 0 0 0
w -2 -3 —-1 —4 -5 0 0 0 O 0 0 0

TABLEAU 3

Observe that 65Z5 < 0. In view of Theorem 3.1, the current basis is domi-
nated. By introducing column 5 into the basis (the circle indicates the pivot
element), we get Tableau 4.

X1 Xz X3 X4 X5 Xg . Xq Xg X9 X10 X11
xs 12 1 e @ 1 12 1 120 0o o] s
Xg -3 -3 —1 0 —1 —1 =1 1 0 0 0
Xo| -2 —2 0 —1 0 —1 —4 —1 0 1 0 0
x5, | —12 0 32 —32 0 —52 —2 —12 0 0 1| 8
! 0 0 2 -2 0 1 1 1 0 0 0|16
2 32 2 12 —12 0 12 3 32 0 O 0 |24
3 —1 0 —1 1 0 1 1 0 0 0 0 0
w 1/2 2 32 —312 0 5/2 5 52 O 0 0 40
TABLEAU 4

‘Now, Theorem 3.1 could not tell whether the current basis is nondominated
or not. We have to use nondominance subroutine. Observe that the last column
of (20) and (21) is 0. Thus each 6; = 0 for the problem (15). To know whether
w > 0 or not, it may suffice to check only (20) and (21). Also from Tableau 4,
we see Z; =0 for j=9, 10, 11. In checking (20) and (21) these columns
will never be changed. Deleting the first four rows and columns 5, 9-11 of
Tableau 4, we get the essential part of the simplex tableau associated with
(20)-(21) for verifying whether w > 0 or not as in Tableau 5. Observe that the
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last row is the criterion row for the subproblem (15). Going through the
usual simplex method, we find an optimal solution for (15) in Tableau 7.
Observe that since w = 0, the basis associated with Tableau 4 is nondominated.
Denote its basic feasible solution by x!. Then x! = (0, 0,0, 0, 8, 0, 0).

Xy X X3 X4 Xe Xq Xg €y ey ey
ey 0 0 2 -2 1 11 1 0 o 0
e, 32 2 12 —1/2 12 3 32 0 1 0 0
- eg —1 0 —1 1 1 0 0 0 1 0
w 12 2 32 —32 52 5 52 0 0 O 0
TABLEAU 5
xl xZ X3 X4 x6 x-, Xg €y e2 83
ey -2 0 0 0 3 3 1 1 0o 2 0
e, @ 2 o o0 1 72 32 0 1 12 0
X3 -1 0 -1 1 1 1 0 0 0 1 0
w -1 2 0 0 4 13/2 512 O 0 32| o
TABLEAU 6
X3 X3 X3 X4 Xg X7 Xg €3 € €3
ey 0 4 0 O 5 10 4 1 2 3 0
X3 1 2 0 O 1 712 32 0 1 12 0
X4 0 2 -1 1 2 9/2. 32 0 1 312 0
w 0 4 0 0 5 10 4 0 1 2 0
TABLEAU 7

From (14) and Tableau 4, we get A(x") to be the solution set of the follo-
wing system of linear inequalities

0 0 2 —2 1 11
gy Agy A3) 32 2 12 —12 12 3 32)=0 (31
—1 0 —1 1 1 10

Revue Francgaise d’ Automatique, Informatique et Recherche Opérationnelle



THE TECHNIQUES OF LINEAR MULTIOBJECTIVE PROGRAMMING 67

In order to have a two dimensional graphical representation, observe
that each ray of A= C R3 is one-to-one corresponding to a point of the simplex

8= {(A1, A2 A3) | Agp A3y A5 20 s MM+ A=1}
Thus, by setﬁng Ay = 1 — A, — A3 and deleting the redundant constraints
of (31) we get the set A(x!) in § as

A = {(ApsR3) [ 322/2—23 20 , 32,2+ 32, =2} 32)
7\2, 7\3 2 0

The set of A(x') N S is given in Figure 1.

ﬂ A3

A(xi (3))

AGSM)
A6S) = AGD)

A2

A2

Figure 1

Observe that if we use y,s and y;s as pivot elements we will get x!(
and x!'?, both of them are different bases associated with x!. However,

AXYNS£G , j=1,2
From the basis x! we get another basis for x!. We call it x1‘®. Note,
11 '
TO N L 1
A = (3 2) #= A(x).

Following the procedure described in. the: previous- section, we get the
set N, and its related { A(J,) fasin=Fableanw 8}
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VALUES OF ) ‘
Co ; ONDING BASIS OBJECTIVE FUNCTIONS ng;{:::o(;nr:(}
‘ Clx | C%x | Cx
am | x {5,9,10,11} 16 | 24 () AGxD)
EE | = {4,9,10,11 } 8 | 32 |-16 AG?)
L {1,9,10,11} | 16. 0 6 AGR)
é S ox {1,3, 9,10} 0 8 16 A(x%)
ZE | » {3,4, 9,10} 163 | 643 | 16/3]  AGS)
R E: {3,5, 9,10} . 16/3 | 64/3 163  A®X9).
EE | X {1,5,10,11 } 16 24 0 A(x13))
E 22| 22 {1,4,10,11} 48 2 | —16 A(x2(1))
g é 2| 22 {3,4,10,11} 48 32 | —16 AG2@)
g x50 {1,3, 5, 9} 16/3 | 64/3 163 - A@SM)
TABLEAU 8
where x' = (0,0,0,0,8,0,0) , - x*=1(0,0,0,16,0,0,0),
X = (16,0,0,0,0,0,0) , x* =(8,0,8,0,0,0,0),
3
xss(O’O,Tz’?’o,_o,O) and x6=(0,0,!3é,0,13—6,0,0)~

Also, we get the following subsets :

A(xl)-_s-{)\i;lz—j)\s ;o;%x2+3x3 ;2;%>\2+3)\3 §2}
A ={N]| 43 £2;30, +6A;"S 4330, + 603 S 4}
AG®) = {N |30 + 20 €2540 22;— 30, + 22,20}

AGH) = { A —.32.12 £ 1';';%x'2 I YOS 1;%x2'+ A =1 }

}
}

Revue Frangaise d’ Automatique, Informatique et Recherche Opérationnelle

A ={A | =t st M2

WiH WA

2
Ay ={a|—n+m sk 4oz




THE TECHNIQUES OF LINEAR MULTIOBJECTIVE PROGRAMMING 69
and

AE'®) = { 7\,212+§)\3 < 2;3

< 5

' 8 1 1
Az+§‘)‘3;2;5)\2 313;0}
AEPD) = {n| 9, + 142,

AE*P) = {1 ]| 9, + 142,

1054, £2}
10530, + 605 S 4330, + 613 < 4)

N
z

1 1 1 1 4\
A(xs(l))= { )\l-—ilz +7\3 ; 3';—5)\2 +)\3 § 3;)\2 + 2)‘3 ; §}

7. A COMPUTER EXPERIENCE

We have coded Multicriteria Simplex Program in FORTRAN according
to Flow Diagram 1 (for details see Ref. 5). Our examples are executed on
IBM 7040 (%).

It takes a total time of 2.881 minutes to get the set N, for the problem
described in Section 6. Observe that the problem is by no means trivial because
of the existence of degeneracies and alternative solutions. -

We then try the following problem :

The Objective Functions
251 =168 3 —2](x)
s —25 06272 6.
o111 111 1 x.s

The Constraints

1 3 —4 1 —1 1 1 1 40
5 2 4 —1 3 7 2 7 {xl\ 84
0 4 —1 —1 —3 0 0 1 18
-3 —4 8 2 3 —4 5 —1 <| 100
12 8 —1 4 0 1 1 0 40
_1 —1 —1 —1 —1 —1 —1 —1]|}. —12
8 —12 —3 4 —1 0 0 0|\x - .30
—5 —6 12 1 0 0 —1 1 100,

(1) The speed of IBM 7040 is much slower than that of the IBM 360. We will try in
the near future to execute the same problems on the IBM 360 and report the experience.
A useful computational experience with an alternative algorithm is available in Ref. 15.
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Observe that this problem is intentionally complicated. For instance,
C3 = — A5 (note, C3 is the third row of the objectives, while 45, is the sixth
row for the constraints), also 43 = 42 — C2. Such dependencies will “cer-
tainly make our computation more lengthy. Note that in this problem the

upper limit on the number of feasible bases is ='12,87('). However, we

16

8
get only 3 N,_.-points. It takes a total time of 0.814 minutes to execute ‘the
problem. ‘

In the next problem we use the same constraints as in the previous one,
however we have five objective functions :

3 —7 4 1 0 —1
2 5 1 —1 6 8
5 —2 5 0 6 7
0 4. —1" —1 —3 0 .
ll 1 1 1 1 1 Xg
The set N,, contains 70 points. It takes 15.65 minutes to carry out the com-,
putation. For details see reference 5.

Observe that our method for locating N,, indeed is a combination of a
modified linear program and an enumeration technique. The time required
to locate N,, consequently depends on the size of the problem (the dimensio-
nality of 4 and C) and the number of total N, -points (the interrelation among
the rows of 4 and C). One can easily imagine that when the dimensions of 4
and C get large, it might become very difficult to incorporate the method
efficiently. To illustrate how the number of N, -points can effect the computation
time, observe that our first problem has a lower dimensionality than the second
problem but it takes more time for locating N,, because its N,, contains
more elements. Also, although the third problem has the same 4 as the second
one, it takes much longer to locate its N, than it does for the second pro-
blem because its N,, contains 70 elements while the second one contains
only 3 elements.

8. CONCLUSIONS

We have shown that the set of all nondominated extreme points can be
generated quite efficiently. In complex multicriteria situations the final solution
can be any N-point, not necessarily an N,.-point. Therefore we might be
interested in finding N rather than N,.. One method using N,, to generate
complete set N is discussed in References 3 and 5. This method produces the
set of nondominated faces of a convex polyhedron.

The nondominated solutions are essentially the first step toward good
decision making. Actual selection of the final solution from N remains a chal-
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lenging task, see Ref. 12 and 14. For an excellent review of possible ways of
resolution see Reference 8.
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