Un algorithme pour les problèmes de recouvrement
RAIRO - Operations Research - Recherche Opérationnelle, Volume 9 (1975) no. V2, p. 33-51
@article{RO_1975__9_2_33_0,
     author = {Gondran, M. and Lauri\`ere, J. L.},
     title = {Un algorithme pour les probl\`emes de recouvrement},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     publisher = {EDP-Sciences},
     volume = {9},
     number = {V2},
     year = {1975},
     pages = {33-51},
     zbl = {0325.90043},
     mrnumber = {456455},
     language = {fr},
     url = {http://www.numdam.org/item/RO_1975__9_2_33_0}
}
Gondran, M.; Laurière, J. L. Un algorithme pour les problèmes de recouvrement. RAIRO - Operations Research - Recherche Opérationnelle, Volume 9 (1975) no. V2, pp. 33-51. http://www.numdam.org/item/RO_1975__9_2_33_0/

[1] Agard J., Arabeyre J. P, Vautier J., Génération automatique des rotations d'équipages, R.I.R.O., n° 6, 1967.

[2] Heurgon E., Un problème de recouvrement : l'habillage des horaires des lignes d'autobus, R.A.I.R.O., 6e année, n° V-l, 1972, ,p. 13-29.

[3] Garfinkel R. S. andNemhauser G. L., Optimal Political Distriucting by Implicit Enumeration Techniques, Management Science, 16, B 495-B 508. | Zbl 0195.22103

[4] Roy B., An algorithm for General Constrained Set Covering Problem, in GraphTheory and Computing, Academic Press Inc., p. 267-283. | MR 340061 | Zbl 0255.05006

[5] Auzet C., Un modèle de recouvrement sous contraintes : synthèse des principales applications possibles, , Direction Scientifique de METRA, note de travail n° 184,janvier 1973.

[6] Martin G., An accelerated Euclidean Algorithm for Integer Linear Programming, in Recent Advances in Mathematical Programming (Graves and Wolfe, éd.), McGraw-Hill, New York, 1963. | MR 157776 | Zbl 0129.34201

[7] Salkin H. M. and Koncal R. D., Set Covering by an All Integer Algorithm : Computational Experience, Journal of the Association for Computing Machinery 1973, vol. 20, n° 2, p. 189-193. | Zbl 0258.65067

[8] Gondran M., Un algorithme de coupes efficace par la méthode des congruences décroissantes, note EDF, HI 1234/02 du 11juillet 1973.

[9] Delorme J., Thèse de troisième cycle, à paraître.

[10] Lemke C., Salkin H. and Spielberg K., Set Covering by single branch enumeration with linear programming subproblems, Oper. Res., 19(1971), , p. 998-1022. | MR 418914 | Zbl 0232.90033

[11] Pierce J. F. and Lasky, All-zero-one Integer Programming Problems, ManagementScience 19, n° 5 (1973), p. 528-543. | Zbl 0254.90042

[12] Thiriez Z., Airline Crew Scheduling : a group theoric Approach, 1969, Rep. R-67 Flight Transportation Laboratory, Massachusetts Institute of Technology.

[13] House R. W., Nelson L. D. and Rado J. Computer Studies of a Certain Classof Linear Integer Problems, in Recent Advances in Optimization Techniques (Lavi and Vogl ed.), John Wiley and Sons, 1966. | Zbl 0146.41007

[14] Bellmore M. and Ratliff H. D., Set Covering and Involutory Bases, Management Science 18 (1971), p. 194-206. | MR 386684 | Zbl 0241.90036

[15] Roy B., Algèbre linéaire et théorie des graphes, Tome 2, Chap. 10, Dunod, 1970. | MR 260413

[16] Gondran M. et Laurière J. L., Un algorithme pour le problème de partitionnement, R.A.I.R.O., n° V-l, 1974, p.25-38. | Numdam | Zbl 0272.90045

[17] Garfinkel R. S. and Nemhauser G. L., Integer Programming, chapitre 8,John Wiley and Sons, 1972. | MR 381688 | Zbl 0259.90022

[18] Dantzig G. B., Fulkerson D. R. and Johnson S. M., Solution of a large Scale Travelling Salesman Problem, Opns. Res. 2 (1954), p. 393-410. | MR 70932

[19] Held M.and Karp R. M., The traveling-Salesman Problem and Minimum Spanning Trees, Opns. Res. 18 ( 1970, p. 1138-1162. | MR 278710 | Zbl 0226.90047

[20] Little J., Murty K., Sweeney D. and Karel C., An algorithm for the Traveling Salesman Problem, Opns. Res. 11 (1963), p. 979-989. | Zbl 0161.39305

[21] Hammer P. L., Booleau procedures for bivalent programming, in Mathematical programming theory and applications, North Holland, 1974. | MR 479387

[22] Balas E. et Padberg, M.W., On the set covering problem II. Opns. Res. 1974. | Zbl 0324.90045