@article{RO_1975__9_3_75_0, author = {Magnanti, T. L.}, title = {Non-linear programming and the maximum principle for discrete time optimal control problems}, journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Recherche op\'erationnelle}, pages = {75--91}, publisher = {EDP-Sciences}, volume = {9}, number = {V3}, year = {1975}, mrnumber = {398618}, zbl = {0341.90048}, language = {en}, url = {http://archive.numdam.org/item/RO_1975__9_3_75_0/} }
TY - JOUR AU - Magnanti, T. L. TI - Non-linear programming and the maximum principle for discrete time optimal control problems JO - Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle PY - 1975 SP - 75 EP - 91 VL - 9 IS - V3 PB - EDP-Sciences UR - http://archive.numdam.org/item/RO_1975__9_3_75_0/ LA - en ID - RO_1975__9_3_75_0 ER -
%0 Journal Article %A Magnanti, T. L. %T Non-linear programming and the maximum principle for discrete time optimal control problems %J Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle %D 1975 %P 75-91 %V 9 %N V3 %I EDP-Sciences %U http://archive.numdam.org/item/RO_1975__9_3_75_0/ %G en %F RO_1975__9_3_75_0
Magnanti, T. L. Non-linear programming and the maximum principle for discrete time optimal control problems. Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, Tome 9 (1975) no. V3, pp. 75-91. http://archive.numdam.org/item/RO_1975__9_3_75_0/
[1] Theory of optimal control and mathematical programming, McGraw-Hill, New York, 1970. | MR | Zbl
, and ,[2] Systems of inequalities involving convex functions, A.M.S. Proc, 8, 1957, pp. 617-622. | MR | Zbl
, and ,[3] A maximum principle of the Pontryagin type for systems described by non-linear difference equations, S.I.A.M. J. Control, 4, 1966, pp. 90-111. | MR | Zbl
,[4] On the maximum principle for non-linear discrete-time systems, I.E.E.E. Trans. Automatic Control, 4 1966, pp. 528-547.
,[5] Theory of a class of discrete optimal control systems, J. Electronics Control, 17, 1964, pp. 697-713. | MR
and ,[6] A linear approximation approach to duality in non-linear programming, Tech. Rep. OR 016-73, Oper. Res. Center, M.I.T., April 1973.
,[7] Non-linear programming, McGraw-Hill, New York, 1969. | MR
,[8] The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Analysis and Applic., 17, 1967, pp. 37-47. | MR | Zbl
and ,[9] Iterative solution of non-linear equations in several variables, Academic Press, New York, 1970. | MR | Zbl
and ,[10] The maximum principle for discrete control systems, Avtomatica i Telemachanica, 7, 1965, pp. 1177-1187. | MR | Zbl
,[11] Optimal control and convex programming, I.B.M. Symp. Control Theory Applic., Yorktown Heights, New York, October 1964, pp. 223-237. | MR
,[12] A duality theory for abstract mathematical programs with applications to optimal control theory, Math. Res. Lab., Boeing Scientific Research Laboratories, October 1967.
and ,