Non-linear programming and the maximum principle for discrete time optimal control problems
Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, Tome 9 (1975) no. V3, pp. 75-91.
@article{RO_1975__9_3_75_0,
     author = {Magnanti, T. L.},
     title = {Non-linear programming and the maximum principle for discrete time optimal control problems},
     journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Recherche op\'erationnelle},
     pages = {75--91},
     publisher = {EDP-Sciences},
     volume = {9},
     number = {V3},
     year = {1975},
     mrnumber = {398618},
     zbl = {0341.90048},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1975__9_3_75_0/}
}
TY  - JOUR
AU  - Magnanti, T. L.
TI  - Non-linear programming and the maximum principle for discrete time optimal control problems
JO  - Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle
PY  - 1975
SP  - 75
EP  - 91
VL  - 9
IS  - V3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1975__9_3_75_0/
LA  - en
ID  - RO_1975__9_3_75_0
ER  - 
%0 Journal Article
%A Magnanti, T. L.
%T Non-linear programming and the maximum principle for discrete time optimal control problems
%J Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle
%D 1975
%P 75-91
%V 9
%N V3
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1975__9_3_75_0/
%G en
%F RO_1975__9_3_75_0
Magnanti, T. L. Non-linear programming and the maximum principle for discrete time optimal control problems. Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, Tome 9 (1975) no. V3, pp. 75-91. http://archive.numdam.org/item/RO_1975__9_3_75_0/

[1] M. D. Canon, D. C Cullum and E. Polak, Theory of optimal control and mathematical programming, McGraw-Hill, New York, 1970. | MR | Zbl

[2] K. Fan, I. Glicksburg and A. J. Hoffman, Systems of inequalities involving convex functions, A.M.S. Proc, 8, 1957, pp. 617-622. | MR | Zbl

[3] H. Halkin, A maximum principle of the Pontryagin type for systems described by non-linear difference equations, S.I.A.M. J. Control, 4, 1966, pp. 90-111. | MR | Zbl

[4] J. M. Holtzman, On the maximum principle for non-linear discrete-time systems, I.E.E.E. Trans. Automatic Control, 4 1966, pp. 528-547.

[5] B. W. Jordan and E. Polak, Theory of a class of discrete optimal control systems, J. Electronics Control, 17, 1964, pp. 697-713. | MR

[6] T. L. Magnanti, A linear approximation approach to duality in non-linear programming, Tech. Rep. OR 016-73, Oper. Res. Center, M.I.T., April 1973.

[7] O. L. Mangasarian, Non-linear programming, McGraw-Hill, New York, 1969. | MR

[8] O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. Analysis and Applic., 17, 1967, pp. 37-47. | MR | Zbl

[9] J. M. Ortega and W. C. Rheinboldt, Iterative solution of non-linear equations in several variables, Academic Press, New York, 1970. | MR | Zbl

[10] A. I. Propoi, The maximum principle for discrete control systems, Avtomatica i Telemachanica, 7, 1965, pp. 1177-1187. | MR | Zbl

[11] J. B. Rosen, Optimal control and convex programming, I.B.M. Symp. Control Theory Applic., Yorktown Heights, New York, October 1964, pp. 223-237. | MR

[12] R. M Van Slyke and R. J. B Wets, A duality theory for abstract mathematical programs with applications to optimal control theory, Math. Res. Lab., Boeing Scientific Research Laboratories, October 1967.