
REVUE FRANÇAISE D’AUTOMATIQUE, INFORMATIQUE,
RECHERCHE OPÉRATIONNELLE. RECHERCHE OPÉRATIONNELLE

NICOS CHRISTOFIDES
The vehicle routing problem
Revue française d’automatique, informatique, recherche opéra-
tionnelle. Recherche opérationnelle, tome 10, no V1 (1976),
p. 55-70
<http://www.numdam.org/item?id=RO_1976__10_1_55_0>

© AFCET, 1976, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, in-
formatique, recherche opérationnelle. Recherche opérationnelle » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1976__10_1_55_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


R.A.I.R.O. Recherche opérationnelle
(voL 10, n° 2, février 1976, p. 55 à 70)

THE VEHBCIE ROUTIWG PROBLEEM (*)

by Nicos CHRISTOFIDES (*)

Abstract. — A set of customers with known locations and known requirements for some
commodity, is to be supplied from a single depot by delivery vehicles o f known capacity.
The problem of designing routes for these vehicles so as to minimise the cost of distribution
is known as the vehicle routing problem ( VRP). In this paper we catégorise, discuss and extend
both exact and approximate methods for solving VRP's, and we give some results on the pro-
perties offeasible solutions which help to reduce the computational effort invohed in solving
such problems.

1. INTRODUCTION

The vehicle routing problem (VRP) is a generic name given to a whole class
of problems involving the visiting of "customers" by "vehicles". These
problems dérive their name from the basic practical problem of supplying
geographically dispersée customers with goods using a number of vehicles
operating from a common goods depot. The problem is one of routing the
vehicles so that the total distance travëlled (or time taken, cost incurred, etc.),
is minimal. The VRP (also known in the literature as the "vehicle
scheduling" [11, 13, 14] «vehicle dispatching" [6, 12, 15, 25] or simply as
the "delivery" problem [2, 16, 26]) appears very frequently in practical
situations not directly related to the delivery of goods. For example, the
collection of mail from mail-boxes, the pickup of children by school buses,
house-call tours by a doctor, préventive maintenance inspection tours, the
delivery of laundry, etc. are ail VRP's in which the "delivery" opération
may be a collection, collection and/or delivery, or neither; and in which
the "goods" and "vehicles" can take a variety of forms some of which may
not even be of a physical nature. In view of the enormous number of practical
situations which give rise to VRP's it is not surprising to find that an equally
large number of constraints and/or objectives appear in such problems.
However, the basic VRP can be characterised as follows. (Other characteri-
sations can be found in [5].)

(*) Reçu mars 1975.
(*) Impérial College of Science and Technology, Department of Management Science,

Londres.
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56 H. CHRISTOFIDES

1.1. The problem

Let X = { xt | i = 1, . . . , N } be a set of N customers and lt be the location
of customer xf. A set of vehicles Y = { j * | & = 1, . . . , Af } is given, stationed
at a depot x0 at location/0. A customer x^has the foliowingbasic requirements:

Cl. A quantity qt to be delivered.
C2. A time wt required to unload the quantity qt,
C3. A set of time periods during which delivery must be made.

The p-th time period is defined by the two times B (p, i) and A (p9 i) before
and after which (respectively) the delivery to customer x( can begin.

C4. A subset Yt s F of vehicles that can deliver to customer xt.

A vehicle yk has the following basic characteristics or requirements:

VI. A capacity Qk for carrying goods.
V2. A total working time of Tk hours from departure to arrivai back at

the depot.
V3. A time Bk before, and a time Ak after which the vehicle must départ

from the depot.

There are two basic objectives in the VRP:

01 . Find optimal routes to be operated by available vehicles so as to
supply the customer requirements at minimum total variable cost.
or

02. Find the smallest possible number of vehicles and their routes which
can supply ail customer requirements.

Since the cost of vehicles in the vehicle fleet is usually considered as a fixed
cost, objectives Ol and O2 correspond to the minimisation of variable and of
fixed costs respectively (assuming that ail vehicles have the same fixed cost).
Quite obviously, the minimum variable cost routes do not in gênerai utilise
the smallest possible number of vehicles although on occation the two answers
may coinside [13].

In the above description of the VRP it is assumed that given two
locations lt and lj9 the distance d(i,j\ time of travel t (i,j) or total variable
cost c (i, j ) of going from l% to l» can be calculated for any i and y = 0, . . . , N.
If the locations are given in terms of coordinates, the distances can be calculated
as the Euclidean of rectanguiar distances (whichever is appropriate). If the
locations are on a road network they are calculated as the shortest distances.
Similarly, the times t (/, j ) may be calculated taking account of different
speeds in different régions or parts of the road network. In any case we will
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THE VEHICLE ROUTING PROBLEM 57

use c(iyj) to be the total variable "cost" and which may represent time,
distance, or some other composite measure.

The VRP defined above is by necessity a gross simplification of problems
found in practice. The most important ommissions which almost certainly
must be included in any computer code for solving practical VRP* are [10, 19] :

(i) Multiple trips operated by vehicles in a single work period.

(ii) Multiple periods (e. g. many days with intermediate ovemight stops)
needed for certain vehicle trips.

(iii) The VRP is most often encountered not as a single period (day) problem,
but as a problem over many periods (e. g. a week) with some customers requiring
delivery once a week others twice of three times a week, etc. In such multiperiod
VRP's the days on which a certain customer requires delivery may be comple-
tely unspecified or a cómbination of days is to be chosen from a number of
acceptable ones. Thus, for any one day, the set X of customers to be delivered
to must be decided from the total set of customers that must be supplied during
the whole period.

In this paper we catégorise, discuss and extend both exact and approximate
methods for solving VRP's, and we give some results on the properties of
feasible solutions which help to reduce the computational effort involved
in solving such problems.

2. THE STRUCTURE OF THE SOLUTION

Consider a set off routes (séquences of xt) given by Rr, r = 1, . . . , g each
one being of the form;

J\r = XQ9 X|X , Xf2, . . . , Xfm, XQ, (1)

so that each customer is on exactly one route.

In the above we take Rr to represent both an ordered séquence of customers
and also the (unordered) set of these customers.

Considering a route Rr such as given by équation (1) let r, be the time of
arrivai of the vehicle (yk say) at customer xir

If:

Bfaid>tt*A(p9id, (2)

for any one period p during which xit can accept delivery, then set r , the
time of starting the unloading, equal to ?*.

n° février 1976.



58 N. CHRISTOFÏDES

If condition (2) does not apply, then some waiting is involved before the
vehicle can begin unloading in which case set:

t{ = min\A{p, it){tt^Aip, *,)]• (3)

If the minimum in expression (3) does not exist then set t[ = oo.
The time of departure of the vehicle from xix is then t^+w^ so that the

arrivai at the next customer xii+i is ti+1 given by:

i+i)- (4)

Thus, given a starting time of vehicle yK from the depot x0 as
t0 (Akr ^ t0 S Bkr)> équations (3) and (4) can be used recursively to
calculate tx for any customer xit in the route Rr. (Here we take w0 — 0.)
A route Rr can then be feasibly operated by a vehicle yK starting at a specfic
time dk if :

(i) The total working time is satisfied, i. e.:

tm+1-dkr^ Tkr, (5)

where in calculating tm+l customer xim+i is taken as the depot x0. [If during
the calculation of the times tx and t\ the minimum of expression (3) does not
exist and v is set to oo, route Rr can obviously not be feasibly operated by a
vehicle starting at time dkr.]

(ii) The vehicle ykr is in the allowable subset Yf of vehicles of every
customer xt in the route Rr

and
(iii) The sum of the demands qt of the customers on route Rr is less than

the vehicle capacity Qk.

2.1. Définition

A set of routes Rr, r — 1, . . ,,g is called feasible if g distinct vehicles
ykr, r = 1, . . . , g can be found with departure times dkr so that routes Rr can
be operated by the corresponding vehicles yk according to conditions (i),
(ii) and (iii) above.

2.2. Dominated departure times

From what has already been said earlier, it is quite apparent that the
checking of a set of routes for feasibility is not a trivial task, since there is
an infinité number of departure times dkr in the allowable period
Bkr ^ dK ^ Akr. We will now show that all these departure times are totally
dominated by a (small) finite number of departure times as far as route
feasibility is concerned.
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THE VEHICLE ROUTING PROBLEM 59

Suppose that a route Rr given by équation (1) is being checked for feasibility
when operated by a vehicle ykr starting at some spécifie time dkr.

Suppose that at no stage during the calculation of the arrivai times tt [using
équations (3) and (4)], is condition (2) violated. It is then quite apparent
that if constraint (5) is satisfied for departure time dkr it is also satisfied for
any other departure time t in the range:

, i,)] è t S dkr+mm[B(pl9 i,)-*,], (6)
ii

where pt refers to the period which satisfies condition (2) for customer JC£|.
This is so because within the above range of departure times, condition (2)
would never cease to apply and a différence of time À in the departure
time dkr would lead to the same différence in time tm+l of constraint (5).

Suppose on the other hand that at some stage /* during the calculation
of arrivai times tt, condition (2) is violated and t{* is calculated according to
équation (3). In this case it is easily shown that all departure times t in the
range :

r [ { }
KI*

ûtûdkr+min[mm{B(pl9 *,)-<*}, {'£-*!•}], (7)
KI*

will leave the value of t^ calculated by équation (3) unchanged, and hence
as far as constraint (5) is concerned all such departure times are dominated
by the RHS of (7). In expression (7) we have used O - l ) j * to indicate the
time period just before period pl1t during which deliveries to customer jclf* are
allo wed.

The third possibility during the calculation of the arrivai times tx is when
condition (2) is violated but the minimal in (3) does not exist. It is then quite
obvious that the route being checked would remain infeasible for all starting
times greater than dkr.

Conditions (6) and (7) then provide means of determining departure periods
tbr vehicles operating a given route. All times within such a period being
either indistinguishable as far as route feasibility is concerned [condition (6)],
or dominated by a single departure time [condition (7)]. The problem of
checking for route feasibility withvarious departure times is then changed
from essentially one of infinité number of possibilities to one with only a
finite (and in the practical cases small) number of checks.

2.3. Checking a set of routes for feasibility

We have already described how constraint (5) can be used to check a route
for time feasibility. The other two conditions [(ii) and (iii) of section 2] can
be used directly to détermine the subset of vehicles which can feasibly operate
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60 N. CHRISTOFIDES

a route. Let an M-row, g-column matrix E = [<?l7] be formed with rows
corresponding to vehicles and columns corresponding to routes with e{j = 0
if vehicle i can feasibly operate route j and e^ = oo otherwise. The problem
of finding a feasible assignment of vehicles to routes is then one of simply
solving the assignment problem with the rectangular cost matrix E. [This
can be transformed into an ordinary square assignment problem by adding
another (M—g) columns with all—0 entries.]

3. METHODS OF SOLUTION

The VRP is qui te obviously an extension of the classical travelling salesman
problem (TSP) [3, 13, 23]. If the customer requirements C3 and C4 are
ignored and we take Qk = Tk = oo for the vehicle characteristics VI and V29
then the VRP with objective Ol becomes the TSP. Even with all the restrictions
of the VRP given in section 1.1, the nature of the problem is sufficently close
to that of the TSP to allow methods developed for the latter problem to be
used in "solving" the VRP. In this section we will discuss methods of "solving"
the VRP under three seperate headings:

(i) Exact direct methods.
(ii) Methods based on the TSP

and

(iii) Heuristic methods.

3.1 . Exact direct methods

The available algorithms which guarantee optimal solutions to VRP's can
oniy deal with the smallest size problems (see section 4). However, the most
important of these algorithms are mentioned here because of their theoretical
interest and because in certain industries the resulting VRP's are of a small
enough mathematical size (although very substantial sums of money may be
involved), to be amenable to solution by some of the exact methods. It should
also be pointed out here, that all the methods discussed in this section would,
if not taken to completion, produce approximate algorithms which mày
compete with the approximate algorithms described in later sections in both
the quality of the answers produced and the corresponding computing times.

Â. Algorithms based on single route enumeration [2, 13, 25]

These algorithms are really only suitable for VRP's in which all vehides-in
the available set Y of vehicles-are indistinguishable from each other, i. e.
Ôfc> Tfeï &k a n d Ak are all constants independent of k and Yt = F for all
customers xt e X. It is, however, possible to extend the algorithms to the more
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gênerai VRP's of section 1.1 albeif at the cost of even greater computational
complexity.

All these methods start by assuming that the totality of routes which a single
vehicle can operate feasibly can be generated. Thus, if S ç X is a subset
of the customers which can be supplied feasibly on a single route by a vehicle,
then it is assumed that the total variable cost associated with the optimal
way of routing the customers in S can be calculated. Since the problem of
routing optimally the customers in S is a TSP (with time constraints on the
arrivai times at various customers), this is not a trivial task if | S | happens to
be large. However, if these TSP's were to be solved by a branch and bound
method such as the sequential version of the algorithm of Little et al [23]
rather than one of the methods of Bellmore and Malone [3], Christofides [8]
or Held and Karp [17, 18] —which are more suitable for unconstrained
TSP's—then the delivery time restrictions help rather than hinder the compu-
tations, even allowing for the fact that various departure times have to be
checked as mentioned in section [2.2].

Once the feasible single routes for all Sj e X are calculated, two direct
methods of solving the VRP suggest themselves:

Set partitioning algorithm [2; 25]

Set up a matrix G = [g^] with row i corresponding to customer xt and a
column j for the feasible route through each Sj. Let gtj = 1 or 0 depending
on whether customer xt is an element of S, or not respectively, and let C (Sj )
be the cost of the TSP solution through the set of customers in Sj (including
the depot), and be associated with column ƒ The VRP with objective Ol then
becomes the problem of choosing a subset of columns with minimum total
sum of associated costs, so that each row has an entry of 1 under exactly
one of the columns in the chosen subset. This is the well-known set partitioning
problem and can be solved optimally for sizes involving several thousand
columns. [7, 24] Even so, it should be noted that for a problem with N
customers and an average of h customers per route, the number of columns
that would need to be generated is of the order of:

•[£(*)]•
which for a small problem involving, say, N = 20 and h = 5, becomes over
21,000 columns.

With this formulation, the VRP with objective O2 can be solved in an exactly
analogous manner by taking the cost associated with each column to be unity.

The extension of this formulation to the more gênerai case where a vehicle
fleet is composed of different vehicles is immédiate. In the gênerai case the
columns of the matrix [gy] are feasible route-vehicle pairs so that the total
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number of columns could now be up to M times as large as for the simpler
case. We would also now have to introducé M additional rows, ohe for each
vehicle, with I's under the columns in which the vehicle appears as part of
the route-vehicle pair and O's elsewhere. In these additional rows we would
now insist that there should be at most one entry of 1 in the subset of columns
chosen for the solution, since a vehicle can at most be used for one route.

Dynamic programming algorithm [13]

A dynamic programming algorithm could also be used to solve the VRP
once all the feasible single routes have been enumerated. In fact this method
could be considered as no more than a particular algorithm of solving the set
partitioning problem mentioned earlier and will not be discussed here further.
The interested reader is referred to [13].

B. Direct tree search algorithm ^

In addition to the algorithms described above where all feasible single routes
must be generated a priori, a depth-first tree search could be employed in
which feasible single routes are generated as and when required. Thus, let us
define a node of the search tree to correspond to a feasible single route Sj,
The state of the search at stage h can then be represented by an ordered list :

where SJr (x£r) is a feasible single route (the y>th) which includes a specified
customer xir and othercustomers which arenot alreadyincluded in the previous
routes Sji (x^), . . . , Sjr_i (xir_J). The state represented by list L is shown
diagrammatically in figure 1, where:

Fh = X-\JSJr(xir),

is used for the set of "free" (i. e. as yet unrounted) customers following stage h.
Once the bottom of the tree is reached, say at stage m when Fm = 0 , the

list L contains a solution to the VRP consisting of m routes. Backtracking
must then occur in order to consider the possibilities not yet considered.
A backtracking step at some gênerai stage h, involves the removal of the last
set from L [i. e. the removal of Sj (xt )] and its replacement by another
(as yet unconsidered) feasible single route (say the yj-th) passing through
customer xif% to form the new state L = { £;, (x£l), • • •> ̂ ( x ^ ) }. If no
feasible single route through xih remains unconsidered, the last-but-one set
in L is replaced to form L = { ̂ ( x ^ ) , . . . , S/h_t (xih_l) }, etc. Forward
branching is then continued from the new state.

A forward branching from some stage h involves the choice of a customer
xih+i e Fh and the génération of a list P(xih+i) of all feasible single routes
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passing through this customer. It is quite apparent that the smaller the number
of branching possibilities at any stage h the more efficient the tree search,
and it is therefore obvious that xih+i should be chosen from Fh so as to make
the list P (xih+i) as short as possible. This would tend to be the case if xih+i is
chosen to be an "isolated" customer far from the depot. Moreovcr, not all

1-* stage

2n-d stage N List P(xj2)of atl
Ifeasible single routes
| passing through XJ2 and

J other customers from Fy

ï-stage /

Sjh(x ih)

State représentée!
by hst L.

Figure 1.

Direct tree-search algorithm.

nodes produced by P(xih+i) need be kept, and in gênerai, it may be possible
to show that a spécifie node represented by Sj*+l (xih+i)e P(xih+t) can be
rejected. This could be done in the following circumstances.

(i) If the set of routes already in L together with route Sj«+i (xih+i) fails
the joint feasibility test of section 2.3.

(ii) Let Fl+1 be the set of free customers implied by the routes in list L
and route Sj*+1 (xih+4) and let LB (F*+ A) be a lower bound on the total variable
cost needed to supply F*h+V Then, if the total cost of the routes in L plus the
cost of S;«+1 (*ih+1) plus LB(Fl+l) is greater than the best answer so far.

(iii) If it could be shown that the remaining free vehicles i. e. those not used
for the routes in L or for route ^;;+I (*ih+1)> are not capable of supply ing the
customers in Fl+1 (e. g. because of insufficient capacity).
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(iv) Let UB(Fl+l) be an upper bound on the total variable cost needed
to supply the customers in F J + r Let S,-e+i (xih+i) e P (**h+1) be another node
of the tree produced by P (xih+1). If

C[S^> f c + 1 ) ] + W K i 1 + i ) ^ (8)
where C(5) is the cost of the single feasible route S, then node S^+i (xih+i)
dominâtes node Sj« (xt ) and the latter can be removed from the
list P(*Ifc+i).

In the above tests it was assumed that upper and lower bounds on the
remaining subproblem defined by the free customers could be calculated
at any stage. Upper bounds could be calculated by "solving" this subproblem
by one of the heuristic methods described in the next section. This provides,
m addition to the bound, a possibility of improving the best solution obtained
so far, and also other information which could aid the forward branching.
Lower bounds could be calculated by relaxing some or all of the constraints
and either solving the problem optimally or calculating a lower bound to the
solution of the relaxed problem. Any of the available lower bounds for theTSP
could be used in this respect [8, 13, 17, 19].

The tree search above has been described for a VRP with objective 01.
The applicability of the method to VRP's with objective O2 is obviovis and
will not be discussed here further.

3.2. Algorithms based on the TSP

If the depot JC0 is replaced by m "artificial" depots JCJ, x^ . . . , x£, all at
the same location as x0, then a system of m routes operated by m vehicles
starting from x0 could be considered as one single tour starting from x^
visiting some of the customers and returning to x*, visiting some more of
the customers and returning to x£, and so on until the tour finally arrives
back at x^. The m-route problem is thus converted into a single-tour TSP
through N+m points and with restrictions on each section of the TSP tour
between any two artificial depots imposed by the route constraints of the VRP.
This transformation is achieved quite simply by modifying the inter-customer
variable cost matrix [c(i,jX\ as shown below [6].

Blocks of m rows and m colums are added as shown with the top left hand
submatrix having all entries of X, all entries in the j-th column of the top
right hand submatrix being equal to c(O,j), all entries in the i-th row of
the bottom left hand submatrix being equal to c (/, 0), and the bottom right
hand submatrix being the initial cost matrix [c(/,y)].

Case (i) (X = oo)

If X is set to oo (i. e. direct travel between the artificial depots is prohibited)
then the TSP solution under the cost matrix of figure 2 and with the restrictions
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THE VEKICLE ROUDING PROBLEM 65

mentioned above will (if feasibie) contain exactly m individual routes starting
and finishing at a depot.

Case (ii) (X = - oo)

If X is set to — oo (and provided m is any number greater than the smallest
possible number of vehicles for which the VRP has a feasibie solution), then
the TSP solution will contain as many inter-depot direct trips as possible
thus "shorting out" routes until the minimum number of routes is used.
The TSP solution in this case is then the solution to the VRP with objective O2.

m
Artificial
depots

m

i—-i

• M

j
J

.0

; c (o . j )

Figure 2.

The modified matrix.

In particular, if X is a very large-but not infinité-négative number, then the
TSP solution will first minimise the number of routes (vehicles) in the solution
and secondly find the least variable cost routes using this number of vehicles.

Case (iii) (X = 0)

If X is set to 0 so that there is neither a gain nor a penalty in removing a
vehicle, the TSP solution will be the solution to the VRP with objective Ol .

Case (iv) ( * , = - £ )

If in financial term s, the fixed cost of a vehicle is equivalent to s fewer
miles being travelled per day (or per &-day period if the customérs are to be
supplied once every fc-days), then setting X =— e produces a TSP solution
which minimises the total cost (both fixed and variable) in the VRP.

Because of the restrictions on each section of the TSP tour between
artificial depots (imposed by the constraints of the VRP), the solution of such
a TSP is very much more difficult than that of an equivalent size pure TSP.
As a resuit, this method of solving VRP*s exactly-by using the known exact
algorithms for the TSP-is invariably worse than the direct methods described
in section 3.1. However, one such exact method based on the TSP is given
in [6].
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6 6 N. CHRISTOFIDES

The importance of transforming a VRP into a TSP with restrictions is
due to the fact that efficient (both computationally and in terms of the
quality of answer) approximate algorithms exist for the latter problem.
Particularly useful in this respect are the local optimisation procedures
developed by Lin [21], Lin and Kernighan [22] and Christofides and
Eilon [9], known as r-optimal methods. These methods start with an initial
TSP tour and continuously improve it by taking out r links at a time and
replacing them by another set of r links with smaller total cost so as to form
an improved tour. In the present context this would imply starting with a
set of m feasible routes to the VRP (obtained either at random or by the use
of a very simple heuristic) and checking {see section 2.3) before each exchange
of r links, if the resulting tour is composed of a feasible set of actual routes.

3.3. Heuristic methods

There are innumerable heuristic methods both published and unpublished
for solving VRP's with various degrees of success. All these methods have
as their common base a scoring system which détermines which link is to be
made or which customer is to be inserted into the routes being constructed.
These methods fall into two main catégories:

(i) Link-scoring Systems
and

(ii) Point-scoring Systems.

A. Methods based on link scoring

The best known of these heuristics is the "savings" method of Clarke and
Wright [11]. Suppose that two customers xti and xiz are supplied individually
by two vehicles one visiting xfi only and the other visiting xÏ2 only. The
total variable cost involved in supplying these customers is

c(05 it) + c(ii, 0) + c(0, i2) + c(i2, 0).

If the customers could be supplied on a single feasible route such
as (x0, xi%9 xi2, x0) using only one vehicle, the total variable cost involved
would be c (0, ix) + c (iu i2) + c(i2, 0) which is a saving of:

siii2 = c(iu 0) + c(0, iz)-c(iu i2). (12)

The method initially proposed by Clarke and Wright is to calculate the
saving siiÎ2 for every possible customer pair (x^ , xÏ2) and order these pairs
in a list in descending order of savings. Starting from the top of the list one
then picks links in séquence which when added to the links previously made
form a "feasible" set of routes. A link which violâtes feasibility is rejected

Revue Française d'Automatique et Recherche Opérationnelle
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and the next link in the.list is considered. One should note that each link
added joins two individual routes into one with a saving in mileage given by
équation (12) and a saving of one vehicle. Thus, links are added from the
list uritil no further link can be added feasibly in which case the existing routes
are taken to be the solution to the VRP.

The method has a number of shortcomings, the most impotant of which
is the fact that the initial "notional" set of routes (where one vehicle visits
one customer) is infeasible in most cases since usually M < N. This implies
that at no stage during the addition of links can total final route feasibility
be guaranteed and only individually can routes be checked for feasibility.
Thus, for a tightly constrained problem the method can fail to produce
a feasible answer. Another obvious shortcoming is that the method does
not distinguish between objectives Ol and O2 and that a single answer is
obtained.

The first the above-mentioned shortcomings is partly removed by a "one-
route-at-a-time" version of the method. In this version the link picked is
the topmost in the list of savings amongst those links which join an "end"
cutomer of a route being formed with a single customer. This method
continuously extends a route until no further link can be added in which
case the route is placed in a list of finished routes and another route is startèd.
In this way one can check that the partially completed list of finished routes
is at least feasible as a set as explained in section 2.3. The "one-route-at-a-
time" version of the savings method was refined considerably (from the
computational viewpoint) by Yellow [27] who gives a method that does not
require the complete savings list to be calculated, but which can compute
efficiently-at each step-the largest-saving link emanating from the "end"
customer of the route being formed.

Link scoring measures different from the savings were investigated by
Gaskell [14], and other composite measures are used by some of the
available commercial codes for solving VRP's [19]. Shightly different ways
of using the savings are described by Tillman and Cochran [26] and
Knowles [20]. The Clarke and Wright algorithm has been extended by Altman
et al. [1] to deal with cases where more thàn one depot is involved and by
Beltrami et al. [4] to deal with cases where a customer may be visited more
than once in a given set of routes.

B. Methods based on point scoring

In these methods a score is computed for an unrouted custome to express
the "desirability" of it being included into a route being formed. Justas for
the methods based on link scoring there are two versions of every point scoring
method depending on whether all (say m routes are being formed simul-
taneously or whether routes are formed "one-at-a-time".
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One of the first point scoring methods was given by Hayes [16] who
produced a technique which "simulâtes" the gênerai method which isoften
used in manual routing. The "one-at-a-time" version of this method proceeds
approximately as follows:

A customer is chosen as a "seed" to start a route. A score is computed
for every unrouted customer so that: the higher the customer requirement,
the distance from the depot and the distance from the nearest other unrouted
customer the higher the score, whereas the higher the distance from the
straight line joining the "seed" and the depot the lower the score. The customer
with the largest score is the one chosen for the next addition into the route
being formed (if this is feasible) and the procedure is continued until the
route is completed. (Note that some parts of the score may need updating
after each addition to the route.) There are several ways that the chosen
customer could be added to the route being formed. It could be added at the
end of the route, inserted in the best position which causes the least additional
mileage to be travelled, or a heuristic method could be used to solve the TSP
defined by the customers on the route and the new customer. Another "seed"
is now chosen from the remaining unrouted customers to start a new route
and so on until all customers are routed. After each completion of a route
the subset of the routes that have so far been formed must be checked for
feasibility according to section 2.3. The method could be used to generate
a number of solutions in different runs by introducing a random element
into the score. The best set of routes produced by the various runs would
then be chosen.

A different point scoring method was described in a very recent paper by
Gillett and Miller [15]. In this method a "seed" is again chosen at random
to start a route and a ray (initially joining the depot with the "seed") starts
sweeping (clockwise or anticlockwise) with the depot as the pivot. Customers
are then added sequentially into the route according to the order in which
they are sweeped, (the angle between customer, depot and seed is the score
in this case), until the route is completed. The next customer which cannot
be feasibly added to the route is now chosen as the seed of the next route to
be formed and so on. After all routes are completed the authors suggest
customer exchanges between neighbouring routes to reduce the total cost further.

Once more, the point scoring methods do not distinguish between
objectives Ol and O2, and although the method of [16] could be parti-
cularised for the two cases, the computational performance of the method
with objective O2 détériorâtes greatly.

4. COMPUTATIONAL COMMENTS AND CONCLUSION

The exact methods discussed in this paper are only suitable for small size
problems; the largest VRP that was solved exactly by the present author
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La méthode d'optimisation non linéaire sous-jacente (résolution de PP)
est la méthode GRG (Abadie et Carpentier [3]), classée première dans le clas-
sement de Colville (Colville, [8]). On pourra en trouver un exposé, par exemple,
dans le livre de Himmelblau [12].

Dans le tableau qui suit, on désigne par DAK i ou BBB i respectivement
l'algorithme DAK ou BBB avec le critère i = .1, 2, 3,4. Le nombre Sk

(le « score ») est la valeur de

<? - * V tkj

7 j=

où tkj est le temps nécessaire pour résoudre le problème/ avec la méthode k.
La méthode est d'autant meilleure que Sk est plus petit, l'idéal étant 1. En gros,
le rapport des temps de calcul pour deux méthodes A;-et k' ne devrait pas être
trop éloigné de SJSk' (Abadie et Guigou [4]) :

Méthode S Méthode S

CONCLUSION

BBB1
BBB 3
BBB 4
BBB 2

1.16
1.18
1.36
1.37

DAK 3
DAK1
DAK 2
DAK 4

1.85
3.17
3.22
3.67

II semble résulter du tableau précédent que BBB soit supérieur à DAK
en ce qui concerne la vitesse d'exécution, ce qui n'était nullement évident
a priori. BBB pourrait donner aussi, comme on l'a vu, une meilleure chance
de réussite dans le cas d'un problème non convexe. Enfin, elle possède la qualité
que le nombre de mémoires nécessaires à la mémorisation de l'arborescence
peut être borné a priori.

Si l'on avait à choisir entre les critères, il faudrait peut-être préférer 1 et 3
pour BBB, et 3 en ce qui concerne DAK.

L'expérience faite est encourageante, en ce sens que les problèmes
se résolvent assez vite (86 secondes pour les 56 essais sur une machine CDC 6600
sous SCOPE 3 b), et que certaines différences paraissent assez significatives.
Ce travail devrait être poursuivi, pour atteindre des conclusions plus solides,
avec un plus grand nombre de problèmes-test, d'autres critères, plus fins,
et peut-être la seconde des deux méthodes BBB mentionnées dans
la référence [1].
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