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A LINEAR ASSIGNMENT FORMULATION
OF THE MULTIATTRIBUTE DECISION PROBLEM (*)

by Jean-Marie.BLIN (X)

Abstract. — Af ter proposing a gênerai framework of analysis for multiattributed décision
problems, this paper develops a linear assignaient model to aggregate a set of individual ordinal
évaluations of alternatives into a global ranking. A "best" aggregation scheme is defined as
one which maximizes a linear function of individual agreement over alternative ranking s.
Due to the special features of this linear assignment problem, geometrie formulation solutions
are found. Both formulations are shown to be equivalent. Implications for aggregation theory
and extensions of the model are briefly discussed.

SECTION 1: STATEMENT OF THE PROBLEM

1.1. A large number of real-world décision problems cannot be properly
assessed from a single viewpoint : a firm attempting to compare a set of alter-
native investment projects might want to rate them on the basis of (1) the net
discounted profit expected from each investment (2) the payoff period and (3)
the market share. An economist trying to assign a précise quantitative content
to such expressions as the "rate of growth of the gênerai price level" would
want to compare priées of a set of commodities over several periods of time;
similarly, in system analysis the question of how to take into account multiple
criteria often arises; in the field of social choice theory the same problem is
encountered and voting mechanisms are but one possible way of resolving it.
To set the stage for our analysis it is convenient to adopt a few définitions
to capture the sesential similarity between the various problems we have just
mentioned (2).

(*) Reçu décembre 1973, version révisée reçue octobre 1975.
(*) The author would like to thank an anonymous référée for his judicious comments

and constructive criticisms on an earlier version of this paper.
(2) See B. ROY, [16], for a gênerai extensive discussion of the problem.
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22 J.-M. BLIN

1.2. Basic définitions

A is a finite set of well-specified objects (e. g. investment projects, candidates
in an élection, etc.).

A = {al9a2, . . . , Ö J , . . . , am}. (1)

We are also given a finite class £f of "criteria" (e. g. characteristics, features,
voters):

<7 = {SUS2, . . . , S „ , . - . , 5 , } (2)

Now each individual criterion Sh e £f is itseli a set endowed with a certain
structure, algebraic, topological or both as the case may be.

For instance we could have

Sh — N (the set of natural numbers), (3)

Sh — {0, 1, 2, . . ., n }, the finite set of the first n integers, (4)

Sft = {0, l}or{yes , no}, (5)

Sî = R o r R + . (6)

More generally Sh could be a metric space or a topological space.
These criteria now give us a basis for representing the m objects of A. This

"représentation" process can be viewed as a set of / mappings <pA:

<pA: A^Sh ( f c -1 ,2 , . . . , / ) . (7)

ïn gênerai we would not expect these mappings to be identical (if they were,
we would be faced with a single criterion décision problem and no aggregation
would be necessary). Each object at is thus described by an /-dimensional
image:

(8)

1.3* The Aggregation Problem

Informally we would like to "combine" the /-dimensional images of the m
objects in a certain "best" way.
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LINEAR ASSIGNMENT AND THE MULTIATTRIBUTE DECISION PROBLEM 2 3

Letting the images set of A be denoted by $ (A) f where O (A) a f\ Sh)
\ ft=i /

the aggregation problem consists in finding a mapping a that maps O (A)
into a one-dimensional «aggregate space" 0:

a : O(^)-*0. (9)

Now the nature of the aggregate space 0 will vary depending upon the problem
at hand. For instance if all the criterion sets Sh = { 1, 2, ..., n} and the
représentation mappings ®h are permutations of Sh, we way want to require that

0 = {l , 2, . . . , n } (10)

and a e y (where Sf dénotes the set of permutation operators, i. e. the group
of permutations).

Clearly a vey large number of mappings a could be chosen. To discriminate
among them, some "goodness of fit" criterion is needed. Intuitively we would
like the aggregate représentation mapping ei to respect as much as possible
the individual mappings cpft. The question then revolves around the choice
of an objective function that will evaluate the goodness of fit between the
"extensive" image <ï> (A) of the set A and its aggregate image a [ $ (A)~] <= 0.
Once such an objective function has been chosen, the problem is then to search
for a class of aggregation mappings a that meet this optimality requirement.
Clearly the answer to the first question, i. e. the choice of a goodness of fit
index, is partly dependent upon the choice of a structure for the criterion
sets Sh. In the next sections we will illustrate this approach by using a simple
linear form as our objective function to be maximized. The metric inter-
prétation of this solution concept will also be discussed.

SECTION 2: AGGREGATÏNG A SET OF (/) COMPLETE ORDERINGS
OF m OBJECTS

2.1. Introduction and Background

We shall now assume that the individual représentation mappings (pA of
the m objects at e A are permutation operators, i. e.

SA = {1,2, . . . , i, . . . , m } , (11)

V* = 1,2, . . . , / , (12)

where ^m dénotes the group of permutation of the first m integers.
As we know each operator <pft can be represented by a permutation matrix

P, i. e. an m x m nonnegative matrix each row and column of which has only
one entry equal to 1 (and the others are 0). And finally we want to find an
aggregate mapping a e SPm to represent the individuals mappings qv

juin 1976.



24 J>M. BLIN

2.2. Maximizing Agreement Âmong the Various Ranking Criteria

DÉFINITION 1 : An agreement matrix II is a square (m x m) nonnegative
matrix whose entries n^ represent the number of individual orderings where
the ith alternative (of the référence order) is placed in theyth position:

Kij = k o 3 K c { l , 2 , . . . , 1}B\K\ = k (13)

and cpft (a() = a} iff h e K, V h e { 1, 2, . . . , / } . It is clear that we may agree
to assign unequal weights wh to each individual criterion Sh\ in this case this
amounts to assuming that the hth individual ordering is replicated wh times.

DÉFINITION 2: The agreement index IA is a real-valued linear mapping
such that:

/A=E^P0 . , (14)
i.J

where the /^ / s are the entries of an (m x m) permutation matrix P, representing
the hth ordering.

The first formulation of the aggregation problem in this framework is then:
Find P* e S?m such that

for ail P matrices of the mth order, Of course, the first solution method we
can think of is simply to enumerate the m ! permutation matrices P and choose
that matrix P* which maximizes IA. Clearly, this is computationally inefficiënt
and even infeasible as m becomes large. An alternative formulation of the
problem is now proposed, which will greatly reduce this computational
burden.

The second formulation of our problem consists in allowing fictitious sto-
chastic orderings. More specifically we want to find a bistochastic solution
matrix [è l 7] (*) which

Ttyfey (16)

O A bistochastic matrix B is a nonnegative (mxm) matrix whose coefficients satisfy
the following properties:

(0 v /, vy btJ £ 0 (ij = 1, 2, . . . , m);

(ii) vi J btJ=l;

m

(iii) vy Y, ba = l-
i = l
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LINEAR ASSIGNMENT AND THE MULTIATTRIBUTE DECISION PROBLEM 2 5

subject to
m

(17)

( = 1

bu ^ O,

i,j = 1,2, . . . ,m . (18)

(19)

We can readily recognize the 6(/s of this formulation as the entries of an
(m x m) bistochastic matrix B (1). This new problem is, of course, a simple
linear programming problem.

The crucial point of this formulation, however, is the fact that any solution
to this second problem will necessarily be a solution to the first one. The proof
of this result is obvious : (i) it is a well known fact of linear programming
theory that if there exists an optimal solution, there will always be at least
one solution at a vertex of the polyhedral feasible région ; and (ii) this vertex
is nothing else but a permutation matrix P, according to the Birkhoff-von
Neumann theorem (2). Hence, solving problems (16-19) will give us all the
solution(s) to problem (15) as we had claimed. This second approach, however,
éliminâtes the computational limitation described before (3).

2.3. A Minimal Distance Algorithm

Another approach to the aggregation problem in the context of / individual
complete strict orderings on A, is now presented (4).

The basic idea here is to exploit the geometrical properties of the set £fm

and P as described by the Birkhoff-von Neumann theorem. In order to
do that we must first prove a simple result on agreement matries II.

LEMMA 1 : Let II be an (m x m) agreement matrix. Then the following relations
always hold:

£ Kij = /, Vi = 1, 2, . .., m,

m

Z » t y = /, Vj = l , 2 m,

(21)

(22)

(*) The idea for this formulation was first proposed by T. C. Koopmans and M. Beckmann
in the context of a location problem [11].

(2) THEOREM (Birhkoff-von Neumann): The set p of bistochastric matrices of order mforms
a convex polyhedron in Rm\ whose vertex set is identical with the set £fm of permutation matrices.

(3) The approach we propose in this paper can be comparée! with that of Jacquet-Lagrèze
[11]. In both cases the aggregation problem is stated as a discrete programming problem.
The main différence consists in the form of the objective function (linear, here, vs, quadratic).

(4) To extend it to weak orderings, it suffices to enter \/t in the n matrix whenever an
element is tied with t others.
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26 J.-M. BUN

Intuitively, this result is obvious if we realize that each row of II defines a
(different) partition of the set of criteria {1 ,2 , . . . , / } .

Proof: It suffices to prove (20) for any row i since the labeling of the alter-
natives (the référence order in the set A) is entirely arbitrary.

m

(i) By contradiction, let us suppose first that £ II y > /.

Then 3 y and k e { 1, 2, . . . , m } and h e { 1, 2, . . . , / } such that
q>* (at ) — { aj ak } with j ^ k contrary to our assumption that the <pft are
strict orderings.

m

(ii) Now suppose £ n,y < /.
j-i

Then 3 i e { 1, 2, . . . , w } and £ e { 1, 2, . . . , / } such that <ph (af) = 0
contrary to our completeness assumption for the (pA mappings. Hence we must

m

have YJ n y = /. The proof of (21) for any column y is exactly parallel to

that for (20).
Q. E. D.

We now define a normalized agreement matrix nnorm.

DÉFINITION 3: A normalized agreement matrix nnorm is an agree-
ment matrix II the rows and columns of which have all been divided by

An immédiate corollary to Lemma 1 can now be stated.

COROLLARY 1 : Any normalized (m x m) agreement matrix IInorm is a bisto-
chastic matrix p of the same order,

Proof: This follows directly from Lemma 1.
We can now make use of the geometrical characterization of the sets ^m

and P afforded by the Birkoff-von Neumann theorem. We known from Corol-
lary 1 that any agreement matrix II —obtained from the individual strict
orderings cpft e £fm as explained above — can be transformed through a simple
normalization opération into an element B e P, the convex polyhedron of all
bistochastic matrices of the mth order. In a sense one can view this normalized
agreement matrix as defining a complete stochastic (agregate) ordering on
the set of alternatives A.

In this context an aggregation process could thus be considered as a
mapping a from the interior of p onto the set £fm, i. e. the set of vertices of
the convex polyhedron p, by the Birkhoff-von Neumann theorem. Such a
a mapping would clearly not be bijective since ^m , the set of vertices of P (the
permutation operators cp) is finite, whereas it is very easy to show that the set p
has the power of the continuüm.

The solution concept we shall now propose could be thought of as a vertex
projection method: given some normalized agreement matrix nnorm, we can

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



LINEAR ASSIGNMENT AND THE MULTIATTRIBUTE DECISION PROBLEM 27

search for the vertex P which is «closést" to B under some metric in Rm2 => p.
Here the goodness of fit criterion for determining the "best" aggregate ordering
in the set Sf m can be of a metric nature because of the properties of P and £fm.

Under this solution concept, the aggregation problem can thus be stated:

Min d(P9 nnorm) (22)

p Ylnorm e Rm*. nnorm 6 pj ^ m C p C R™2

Let us now choose as our metric d:

d(p,n—)-£| j>u -«sr | . (23)

The maximal agreement approach and the minimal distance approach
lead to the same solutions(s). This is proved in the following lemma.

LEMMA 2: The maximal agreement problem (équation 15) and the minimal
distance problem (équation 23) always lead to the same solution(s).

Proof: As we recall the maximal agreement problem consisted in maxi-
mizing the agreement index IA over the set Sfm of ail permutation matrices

Max /A = I>yJ>v» (24)

where [TT^] is the agreement matrix defined in 2.2 (Def. 1). Clearly, any
optimal solution [pj-] to (24) is also an optimal solution to:

Max / ; « I i c J 7 m P y . (25)

Thus we simply need to show the équivalence between the "normalized"
maximum problem (équation (25) and the minimal distance problem which
is written

Min d(P9n
mm)^Z\Pij^ÏÏm\' (23>

Let us dénote {i, j }* the set of row and column indices which maximize (25)
above, i. e. :

{iJ}* = {(U J)|Pu = 1 and XK?;rm
Pij is maximum}.

UJ

(The set {i,j }* has m éléments by définition.)

For this maximal solution {*,.ƒ}*, équation (23) becomes

= m - X <; r m + X <; r m (as<? rmG[0, 1]). (26)

juin 1976



28 J.-M. BLIN

Now we note that £ 7c"/rm = m. Hence
Ui

) 8 i * (
(27)

In view of équation (27), we can write (26) as

O . » 6 { £ . . ƒ > *

= 2 m - 2

To minimize this last équation for some \ i9 j } permutation is equivalent to
maximizing

(i,j)e{i,j*)

which has the same solution as the original maximization problem (25) since
they only differ by a constant.

Q. E. D.

Furthermore, we note that the value of the objective function IA for the
normaiized maximal agreement problem ranges over the closed interval

— if all orderings are identical we obtain:

'1 0 . . . 0"
0 1 0 . . 0
0

J) 0 . . .
and IA = m;

— if all orderings are uniformly distributed, the agreement matrix becomes :

1 1

_.norm

m m

1

m

1

m

1

m
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LINEAR ASSIGNMENT AND THE MULTIATTRIBUTE DECISION PROBLEM 29

In this case the problem has multiple optima expressing the fact that any
ordering is as good as any other as a représentation of the distribution of
individual orderings. Then n™Tm is the center of gravity of the (3 poly-
hedron and our aggregation method sirnply states that all éléments of £fm

(all vertices of P) are equally "accurate" in representing n^°tm (1).

Based in these upper and lower bounds for IA, we can define an overall simi-
larity index (S) between all orderings as follows:

_ ^ctual value of IA at the optimum —Minimum

or

Maximum — Minimum

S =
rn-l

This index ranges over [0, 1 ] with

S = 0 when IA = Minimum = 1 and S = 1 when VA = Maximum = m.

Finally one may note that the solution to the "minimal" distance problem
would be identical if we picked the Euclidean metric.

LEMMA 3 (2): Let 8 represent the Euclidean metric and d the "city-block"
metric (as defined in 23 above).

P is a solution to

(*) It is easily shown that if the individuals orderings lead to such a point n n o r m at
equal distance from all vertices of S?m, we have a case of the "paradox of voting" —
i. e. the fact that an intransitive group ordering results from pairwise majority voting
aggregation of individual transitive orderings. For instance with three orderings:

and we were to décide on an aggregate ordering by majority voting over each pair of alter-
natives we would obtain the following intransitive order: (a, b, c, a). In such a case, however,
the normalized agreement matrix 7rnorm is given by équation (32) above; and our approach
clearly indicates that any one of the three individual orderings is "optimal". The occurrence
of any intransitivity is only a poor indicator of such an indeterminacy. A possible unique
solution could then be reached through a completely randomized choice.

(2) I am indebted to Pierre Batteau for pointing out this resuit to me.
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30 J.-M. BLIN

if and only if it is a solution to

Min d(P, n) = I || y M |
i.j

Proof: Expand 82 (P, II) = £(/>y-*ü)2:
I.J

52(P,II) - P2
1+rtî1-2P1 1Tt1 1+ . . . +PL+<m-2Pmmnmm

where P T dénotes the transpose of the permutation matrix P written as an
m2-dimensional vector (and similarly for II).

Note that || P ||2 = K (a constant), V P e ^ m .
So to minimize 82 (P, II) is equivalent to maximizing the scalar product

PTII which is precisely the maximal agreement problem (*).

Q. E. D.

Let us now examine another view of our aggregation model.

2.3. Aggregation as a statistical estimation problem

Given the properties of the normalized agreement matrix n™*™ namely
its being a bi-stochastic matrix, we can interpret each row (or column) of
n*jTm as a probability distribution on the set of slots (or alternatives). Once
we have obtained TC,"?rm the aggregation problem could be stated as a statistical
estimation problem: which permutation matrix Po- «best fits" this n™1™
matrix ?

If we select the least squares estimation criterion (2), the problem reads

Min ZiPij-^D2- (27>

The following coroilary follows directly from lemmas 2 and 3.

COROLLARY: The least squares criterion yields the same solution as the
maximal agreement and minimal distance criteria.

This result casts a rather different light on the nature of our original solution
concept and provides a link between the aggregation problem and the statis-
tical inference problem. It appears that the analogy between the two problems
could be explored further (3).

O Actually, this équivalence holds not orily for this maximal agreement problem, but
whenever pu e { 0, 1 }.

(2) Here, the least squares solution is constrained to be a permutation matrix.
(3) See, for instance, [5],

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



LINEAR ASSIGNMENT AND THE MULTlATTRIBUTE DECISION PROBLEM 31

APPENDIX: ILLUSTRATION (*)

Let S = { a, b, c, d, e } :

S , =

Jly<

6,

'a~

c

d

b

' e

b

a

d

c_

2 1 3 0 0'
2 1 0 3 0
1 3 1 0 1
0 1 2 2 1
1 0 0 1 4

S f i =

The optimal ordorings computed by the linear assignment procedure are

b~
c
a
d

_e_

and

~a
c
d
b
e

for which the objective function takes on the value 14.
Or, if 7r??rm is used

A ~ 6 6 6 6 6~~6

= 2.33.

The value of the similarity index is:

(l) We are indebted to an anonymous referee for suggesting this example.
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