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A HEURISTIC ALGORITHM FOR THE FLOWSHOP
SCHEDULING PROBLEM (%)

by Jatinder N. D. Gueta (%)

Abstract. — This paper describes a simple heuristic algorithm for seeking a quick and
approximate solution to the n-job, M-machine flowshop scheduling problem under the assumptions
that the process times of the jobs are deterministic and the same order of jobs is followed on all
machines. The proposed algorithm is based on the fact that the flowshop scheduling problem
may be considered as (M —1) quasi equivalent sorting problems and that an approximate solution
to the flowshop scheduling problem, then, may be obtained by solving the corresponding sorting
problems. The proposed heuristic algorithm can be executed by hand for reasonably large-sized
problems and yields solutions that are comparatively closer to optimal solutions than those
obtained by Campbell-Dudek-Smith heuristic algorithm. These computational results are

discussed and efficiency of the proposed heuristic is compared with that of Campbell-Dudek-
Smith algorithm.

1. INTRODUCTION

The flowshop scheduling problem considered here is one of scheduling a
given number of jobs on given number of machines in a shop where the flow
of work is unidirectional. The unidirectional flow of work implies that the
technological order of all jobs on all machines is identical. This problem
was first formulated by Johnson [14] as an n-job, 2-machine production
scheduling problem when the objective is to minimize the throughput time
(called the make-span) of all jobs. Subsequent developments in scheduling
theory have been extensions of Johnson’s formulation, in that the number
of machines is increased to the general case M (M = 3). Recently, there
has been considerable interest in finding suitable mathematical techniques
to solve the flowshop scheduling problem and substantial progress has been
made in the development of efficient algorithms for obtaining optimal or
near-optimal solutions to the flowshop scheduling problems ([1-6], [8-21]).
In all the algorithms, several restrictive assumptions are made, the complete
statement of these assumptions is provided by Ashour [1] and Dudek and
Teuton [6] and hence is not repeated here.

(*) Regu décembre 1974, version révisée juillet 1975,
(*) U.S. Postal Service Headquarters, Washington, D. C.
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64 J.N.D. GUPTA

The available solution techniques may be divided into two classes; (1)
techniques which assure optimality of the solution, and (2) techniques which
don’t guarantee optimality but yield solutions which are very near-optimal
solutions. The exact solution techniques usually require an electronic computer
and, because of practical limitations of computer memory and excessive
computational effort (cost) of obtaining the solution, the range of their appli-
cability is limited to moderately small sized problems [5, 10, 16, 17, 18].
Thus, while research is being continued to develop efficient optimizing algo-
rithms and/or faster and more economical computational devices with larger
memories, companies faced with large-sized flowshop scheduling problems
have to resort to heuristic techniques to solve their problems and feel contented
by approximate solutions only [5, 10, 18]. For the flowshop scheduling
problem, Campbell, Dudek, and Smith [5], Gupta [10], and Palmer [17]
have suggested heuristic algorithms which can be applied to large-sized pro-
blems even for hand computations. These heuristic approaches to scheduling
problems are based on Page’s [16] analogy between' scheduling and sorting
problems. Further, this analogy between scheduling and sorting suggest a
strong heuristic algorithm for a simple and approximate solution (*) of the
M-stage flowshop scheduling problem. This paper describes a heuristic algo-
rithm and compares its effectiveness and efficiency with the Campbell algorithm.,
The proposed heuristic algorithm decomposes the original M-stage flowshop
scheduling problem into a series of 2-machine problems (as in the case of the
Campbell algorithm) and uses Page’s analogy between scheduling and sorting
to solve these decomposed problems. Since the decomposition of the original
problem into smaller sub-sets is not exact, the solutions so obtained are
not in general optimal.

2. THE FLOWSHOP SCHEDULING PROBLEM

In the flowshop scheduling problem discussed here, as indicated earlier,
the flow of work is unidirectional and the order in which jobs are processed
on machines is the same and is completely specified. Since the numbering
of machines is arbitrary, the machines can be numbered such that jobs are
processed on machine 1 first, machine 2 second, . .., and machine M last [11].
With this nomenclature of machines and above discussion of the problem,
the flowshop scheduling problem may be stated as:

“Given n jobs to be processed on M machines in the same order, the process
time of job i on machine m being ¢,,(i=12,...,n;m=1,2,..., M),
find that common order in which these n jobs should be processed on the

(*) The term simple and approximate solution is used here to mean that the solution
procedure can be carried through mannually for reasonably large-sized problems and the
make-span of the schedule thus obtained is not very much longer than the minimum (optimal)
make-span.
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FLOWSHOP SCHEDULING PROBLEM 65

M machines which minimizes the throughput time (called the make-span)
of all jobs.”

In order to make this problem tractable, consider a partial sequence o
containing k, (k < n), jobs and the augmentation of job a to ¢ represented
by the concatenation of ¢ and a (written as ¢ a). Then, following the physical
constraints of the problem (non-simultaneous processing of a job on two
or more machines and non-simultaneous processing of two or more jobs
by the same machine) and the assumptions outlined by Dudek and Teuton [6],
the recursive relation for the completion time of the partial sequence ¢ a
of length (k+1) at machine m, T (c a, m), is as follows [4, 8, 9]:

T(c a, m) = max [ T(c, m); T(ca, m—1)]+tyn,
where ¢))
T(p, m)= T(c,0)=0 for all c and m.

Then, the flowshop scheduling problem stated above, is one of minimizing
T (o a, M) where a ranges over all the n jobs and ¢ ranges over all possible
sequences of (n—1) jobs not containing job a [9].

3. THE HEURISTIC ALGORITHM

The flowshop scheduling problem, as formulated above, is a typical quan-
titative combinatorial search problem and permits of a finite number of
feasible solutions, in fact equal to n!. Theoretically, therefore, the optimal
solution can be obtained by a direct enumeration of all the feasible schedules.
However, the practical difficulty in such a direct enumerational approach
to the scheduling problem is caused by the fact that number of feasible sche-
dules approaches a limit outside the range of practical computational faci-
lities even for problems as small as the ones containing 10 jobs. Thus, if some
functional representation and quasi-equivalent sorting problems can be
developed, at least an approximate solution to the problem under conside-
ration can be obtained.

The quantitative search problem associated with the scheduling of »n jobs
on M machines may be considered as a case of sorting » items as to minimize
a function, f(t;y, ..., t,,,), of the process times, called the make-span. The
equivalent sorting problem so defined is quite complex because the corres-
ponding function is not separable in terms of the individual items in the
sense that for any specific job, such function cannot be determined without
the knowledge of the preceeding and following sequences of other jobs.
Because of this complexity, it seems unlikely that a function, independent
of other jobs which reflects the merit or demerits of its occupying a
specific sequence position, can be assigned to each job. However, as shown
by Page [16] and Bakshi and Arora [3], for Johnson’s two machine case,
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such an equivalent function can be obtained. Thus for Johnsons’ two machine
case, the function associated with job i, f(i), takes the following form:

min (45, t;2) ’
where 3 (2
f=1 iftilztiz\
| —1otherwise.

fm=—;ﬁ—-)

Following the above functional representation, the two machine scheduling
problem is equivalent to the problem of sorting # numbers in such a way that
f(a) £ f(ay) £ ... £ f(a,) where a; represents the job at the ith sequence
position. This sorting problem can now be easily solved by ordering the jobs
in ascending order of f ().

It seems very much unlikely that simple functions of the form (2) can be
developed for the general M-stage flowshop scheduling problem [16].
However, it is possible to take advantage of this analogy between scheduling
and sorting and obtain a quick and approximate (near optimal) solution
to the problem. Thus, the given M-stage scheduling problem is broken down
to K auxiliary 2-machine problems, each of which is solved by using relation (2)
above. The process times of the kth auxiliary 2-machine problem are obtained
from the original problem as follows: the sum of the process times for the
first k machines is treated as the process time of a job on machine 1 of the
auxiliary problem, while the sum of the process times for the last k machines
forms the process time of a job on machine 2 of the auxiliary problem.

Let p, (i, 1) and p, (i, 2) be the process times of job i for the k th auxi-
liary problem. Then p, (i, 1) and p, (i, 2) are determined by the following
relation (%):

k
p(i, 1) = Z tims i=1,2,...,n
m=1
and €))
M
n(i,2)= Y twm, k=12 ..,K
m=M+1-k

The corresponding function R (k, i) for the kth auxiliary problem, then,
takes the following form:

R(k7 l) = Aki/min (pk(l: 1)’ pk(i’ 2))’ )
where

1 i pG D2 2) “
Ayi

—1 otherwise.

(*) Use of relations (3) above limits the maximum value of K to (M—1).
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Then the proposed heuristic algorithm may be described by the following
step-by-step procedure:

Step 1: For each k and i, using relation (3) and (4), calculate R (k, i).

Step 2: For each k, arrange the jobs in ascending order of R (k, i) breaking
the tie in favor of a job with lesser value of R(a, i), 0o =k +1,...,M—1
or a=k—1, k—2, ..., 1. If the tie cannot be broken, choose any one
job arbitrarily.

Step 3: For each of the k schedules so generated, using the recursive
relation (1) above, calculate the make-span.

STEP 4: Seclect the schedule with minimum make-span. This is the approxi-
mate solution to the problem.

4. A NUMERICAL ILLUSTRATION

The working of the above heuristic algorithm is explained by solving
the 4-job, S-machine problem of Table I:

r
m
\ 1 12 |3 |4 |5
1 4 3 7 2 8
2 3 7 2 8 5
3 1 2 4 3 7
4 3 4 3 7 2
TaBLE 1

Process Time Matrix

Step 1: This step involves the calculation of R (k, i). Using relations (3)
and (4), the R (k, i) obtained are shown in Table IL

Step 2: For each value of k, the jobs are to be arranged in ascending
order of R (k, i), breaking the ties. Observe that ties exist for k = 2 and k = 4.
For k = 2, tie exists between jobs 1 and 4. Since k = 2, weseta =k + 1 =3
and observe that R (3, 4) < R (3, 1). Therefore, tie is broken in favor of job 4.
Proceeding in this manner. four complete schedules are generated.
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R(k, 0
! k=1 k=2 k=3 k=4
1 -1/4 -1/7 -1/14 -1/16
2 -1/3 -1/10 -1/12 -1/20
3 -1 -1/3 -1/7 -1/10
4 1/2 -1/7 -1/10 +1/16
TasLe I1

Functional Values for Example Problem

SteP 3: Using recursive relation (1), the make-spans of the four schedules
are obtained and are shown in Table III.

Schedule Make-Span
3214 36
3412 33
3421 39
3124 34
TaBLE 111

Make-Span of Schedules

STEP 4: Among the four schedules of Table III, schedule 3412 has a
minimum make-span of 33 time-units. Hence it is accepted as the solution
of the problem.

For the above problem, the proposed heuristic algorithm results in an
optimal schedule as can easily be confirmed by using the lexicographic search
technique [8]. However, it will be wrong to leave the reader with an impression
that the proposed algorithm yields optimal results in all cases (see the next
section).
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5. COMPUTATIONAL EXPERIENCE

In order to investigate the effectiveness and efficiency of the proposed
heuristic algorithm, considerable experimentation was conducted. Since
the Campbell algorithm seems to be the most effective heuristic algorithm
available in the literature, the performance of the proposed algorithm was
was compared with that of the Campbell heuristic algorithm. For this purpose
the proposed and the Campbell heuristic algorithms were programmed in
FORTRAN language for an UNIVAC 1108 computer. While writing the
program for the proposed heuristic algorithm, no special routine was deve-
loped for solving the corresponding sorting problems. Instead, the standard
pair comparison method of digital simulation [7] was used to obtain the
schedules as per step 2 of the algorithm with additional feature of breaking
the ties. In order to carry out these experimental investigations, 1,055 pro-
blems with number of jobs varying from 4 to 60 and the number of machines
varying from 3 to 60 were generated and solved by the proposed and the
Campbell algorithms. The process times of the jobs in the above problems
were randomly generated from a rectangular distribution and ranged
from 00-99. For purposes of comparing the two algorithms, two factors,
viz: the quality of solution (algorithm’s effectiveness in finding a better solu-
tion) by each algorithm and the computational time required to obtain the
solution, are important. Both of these are discussed below.

5.1. Effectiveness.of the Algorithms

The 1,055 problems were divided into two sets: one consisting of problems
for which the optimal solutions were known since these problems could be
solved by using lexicographic search algorithm [8] without excessive computer
time and the other for which the optimal solutions were unknown. The number
of jobs in the first set varied from 4 to 7 and the number of machines varied
from 3 to 7, whereas, in the second set, the numbers of jobs and machines
varied from 10 to 60.

a) Problems with known optimal solutions

For the first set of problems, the effectiveness of the algorithm was mea-
sured by obtainning the percentage error of the algorithm gchedule make-
span from the optimal make-span. Thus, the percentage error is given by:

~ % To 100

P To
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FLOWSHOP SCHEDULING PROBLEM 71

and

o = L= To , 100,
T

where o, and o, are the percentage errors for the proposed and the Campbell
heuristic algorithms respectively and 7, T, and T, are the make-spans
obtained by proposed, Campbell and lexicographic search algorithms res-
pectively.

Pro:lem Shlze # Problems Average Value of 8 Range of B

10 10 5 0.971 0.936-0.998
10 20 5 0.974 0.951-0.991
20 20 5 0.964 0.924-0.992
40 20 5 0.977 0.947-0.996
60 20 5 0.972 0.969-0.996
20 40 5 0.978 0.962-0.994
40 40 5 0.939 0.952-1.045(a)
60 40 5 0.985 0.977-0.991
20 60 5 0.984 0.969-0.997
40 60 5 0.99 0.953-1.00%(a)
60 60 5 0.981 0.979-0.984
(a) observed in one case only

TABLE V

Comparison of Algorithms on Large Problems

For the 1,000 problems belonging to this set, Table IV contains the data
concerning the average errors and their ranges by the proposed and the Camp-
bell algorithms.

b) Problems with unknown optimal solutions

Since the optimal solutions to these problems were unknown, the ratio,
B = T,/T,, was used to judge the comparative effectiveness of the two algo-
rithms. If the proposed algorithm solution is better than the Campbell Solution,
B < 1 and the lower the value of B, the better is the quality of the proposed
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72 J. N. D. GUPTA

algorithm solution as compared to the Campbell Solution. Further, because
of larger size of problems, the total number of schedules for each problems
were limited to six (i. e. K = 6). Table V shows the average value of B and
its ranges for 55 problems belonging to this set.

5.2. Efficiency of the Algorithm

The average computational time required to solve a problem may be consi-
dered as the measure of computational efficiency of the algorithm. For the
above, 1,055 problems, the proposed and the Campbell algorithms require
about the same computation time. The variations in computation times
times between the two algorithms were in micro-seconds and hence are
not reported here.

A review of the results in Tables IV and V shows that the proposed heu-
ristic algorithm generally yields better results than the Campbell algorithm
especially for large-sized problems. Further, the computation time required
to solve a problem by the proposed algorithm is the same as that by the Camp-
bell algorithm. Based on this computational experience, therefore, it may
be said that the proposed heuristic algorithm is comparatively more effective
and efficient that the Campbell algorithm.

6. CONCLUSIONS

The heuristic algorithm described above provides a practical solution
to larger sized flowshop scheduling problems which cannot be solved by
exact solution techniques. Solutions obtained by the proposed algorithm are
optimal or near optimal and are consistently better than those obtained by
the Campbell algorithm. The simplicity and ease of computations in the
proposed algorithm make it possible to solve reasonably large-sized problems
manually, though the use of computers will definitely increase the quality
of solution (because of increased number of schedules K) and the size of
the problem that can be solved by the algorithm.
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