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INVESTMENT/FINANCIAL PLANNING
WITH ENDOGENOUS LIFETIMES:
A HEURISTIC APPROACH
TO MIXED-INTEGER PROGRAMMING (*)

by Wim G. vaN HuLst
and Jan Th. vAN LiesHouT (1)

Abstract. — This paper deals with the question of how to achieve the best possible solution
to a given investment|financial planning model of the mixed-integer linear program type when
the available computer has insufficient core to allow a straight-forward solution. Of course
the use of the method described is not limited to the situation in which computer facilities are
restricted, because it is anyhow desirable to reduce the size of an integer programming formu-
lation. However the paper is not concerned with inventing new arithmetical gadgets or altering
the (standard) computer program. The aim is to show by example how a satisfactory result
can be achieved by looking critically at the given economic problem itself: are the constraints
imposed really as necessary as the textbooks claim them to be, given the economicrequirements?
What exactly will happen if some of these constraints are weakened to some extent ? The answers
to these questions concerning the given problem and a heuristic procedure led eventually to
a result which is surely satisfactory from an economic viewpoint. This demonstrates once again
the interaction (that should always be present) between model building and model solving.

1. INTRODUCTION

This paper is the outcome of a convergence of two different areas of interest.
In 1973 Van Hulst published a model [1] with which to establish optimal
investment and financial planning, optimal in the framework of a given
planning period and without regard to risk and uncertainty. The questions
to be answered with the aid of this model were: which of a given set of proposed
investment projects should be carried out respectively discarded at what
times and in what numbers and which of a given set of financial funds should
be raised at what times and to what amounts? This model was a mixed integer
linear programming model: the project variables had to be integer, the financial
variables were continuous. A fairly small and simplified numerical example
however, made it clear that solving the problem thus formulated could be
nothing but wishful thinking, in view of the capacity of the computer we
then had at our disposal; indeed it required some ingenuity to solve the pro-
blem even without the integrality constraints. All in all a rather unsatis-
factory result; so when Koks [2] remarked that c«arithmetical problems
(as the required integrality of a number of variables in a real solution) when
applying-this and similar models to industrial practice are not solved yet”’,
we decided to do something about it.

(*) Regu novembre 1975, révisé mars 1976.
(') Both at Tilburg Catholic University, Hollande.
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86 W. G. VAN HULST, J. TH. VAN LIESHOUT

The second author, Van Lieshout, though not uninterested in investment
problems (see [3]), was, however mainly concerned with a different question.
In 1974 a standard programm (named XDLA mark 3) became available
for solving both continuous, and mixed-integer 1. p. models in the ICL 1903-A
computer (64 K words core from 1974 on) of our university. This raised
the question as to how integer programming is carried out by this program
and just what size of problems can be solved. The user’s manual did not
give adequate information about this.

What was more obvious than confronting the above mentioned numerical
example with the mixed-integer routine? This paper is a report of the vicissi-
tudes of this confrontation. First we give the symbolic model in its original
form, then the numerical data and the solution without regard to the inte-
grality constraints. The value of the objective function thus determined may
be seen as an ideal optimum: as soon as integrality requirements are imposed,
the maximum will always be smaller. But it would be unrealistic to require
all project variables to be integer, given the size of the problem: there are no
less than 196 variables that ought to meet this requirement. Therefore we had
to make concessions. Which we did in such a way as to make the eventual
solution certainly acceptable from a business point of view. Consequently
the modifications we had to make to the problem were based exclusively
on- economic considerations and were realized by looking critically at the
results obtained after each step in the procedure, if unsatisfactory at that time.

It was this procedure too, which inspired us to publish the results. Our aim
was not to invent new arithmetical gadgets nor to alter the computer program,
but to show by example how the user of a standard computer program that
is erratic with respect to a given problem, can obtain satisfactory results by
approaching the real problem in a heuristic way. We also hoped to demons-
trate the interaction between model building and model solving.

2. THE MODEL

In this section we give the investment/financial planning model in its ori-
ginal form. The considerations that led to this formulation are not mentioned
here. As far as these are not self-evident we may refer to [1].

A planning period is given, bounded by the points of time 0 and N. Only
at the discrete points of time 0, 1, 2, ..., N—1 can decisions be made about
installing, retaining or discarding machines (?) and about raising financial funds.
It is assumed that financial resources consist only of credits that have given
patterns of amortisation and interest payments. For the sake of simplicity we also
assume that the economic properties of machines as well as of credits are mutually
independent. Finally we assume a tax rate of zero. The chosen objective in
this model is to maximize the present value of the genecrated cash flows:

(?) The word “machines’’ is used here as an equivalent of “durable equipment.”’
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INVESTMENT FINANCIAL/PLANNING 87

DEFINITIONS:
to, the point of time at which the oldest machine still present at time 0
had been installed (¢, < 0);
k, the number of machine types;
Xjers the number of machines of type j(j =1, ..., k) installed at time

T(t = ty, ..., t)that are still present immediately after the decision
taken at time t\(¢ =0, ..., N);

Q; (1, t), the cash flow before subtracting initial investment outlays and
before adding salvage values if any, generated by one machine
of type j that is installed at time T, which cash flow is measured
at time ¢. Further to be denoted as operating surplus;

C;(t), the initial investment outlay for one machine of type j at time ¢;

S; (1, ), the salvage value of at time ¢ of one machine of type j installed

at time T;
IA the number of financial resources (3);
0, the number of planning intervals (*) at which a credit from source
s(s=1,...,]) generates interest and amortization payments;
Vst the amount of credit s acquired at time ¢#(t = —6,, ..., N—1);
gy the interest and amortization payment per dollar of credit s that

is acquired at time ¢ which payment is due at time #4;
i, the interest rate;
b,, the amount made available at time ¢ from elsewhere (e. g. subsidies

from other sections, dividend payments, etc. This amount is assumed
to be given and may be negative).

Objective function

Maximize
N—l‘ . k t 1 i
K=Y e'”[ > { Y xj",[ e Q;(x, t+w)dw
=0 ji=1 =t 0 1
t—
_‘xjncj(t)"' Z (xjr,t—l—xjﬂ) Sj('r’ t)}
=10
i t+0s N
+ Zyst(l_ Z éﬂ(h_odsrh)]
. -1 s=1 h=t+1 J
+e W 21 Y X;n S;(t, N). )
Jj=1 t=to

(®) The pth interest and amortization payment of a credit acquired at time 7 is due at
time z+-p.

(*) The planning period consists of N eqhally long planning intervals.
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88 W. G. VAN HULST, J. TH. VAN LIESHOUT

Liquidity constraints

If
k -1
Lo ="bo+ Zl{ = %500 C;(O+ Y, (Xje, -1 —Xj:0) S; (7, 0)}
j= T=1g
1 -1
+ Zl (yso Z_ Vst er)
and

T=1o

k t—1 1
+ Z { Z xjt,t-lj e(l—w)i Qj(t, t—l-l—w)dw
ji=1 0

-1
— X4 C; () + Z (Xje, 0-1— X)) S (7, t)}

T=10
1
+ Z <yst Z Vst dsrt)’
s=1 T=—05+t
(t=1,...,N),

then the liquidity constraints can be written shortly as:

t
Ze(‘_z)ingO (t:O,...,N)

Z N ’)'L + Z Z Xjn S; (1, N)

Jj=1 t=to
N-1 t+80

-2 Y YoMy a,zo
s=1 t=N—0s+1 t=N+1
Credit constraints
Vo < Yo (max) s=1,...,1;t=0,...,N=-1).
Other constraints
Xju—Xje,1~1 =0
(j=1, .., kit=¢ty, ..., t—1;t=0,...,N-1),
XjN=—Xje,N—1 =0 (=1, .., kit=ty, ..., N=-1),
Xjn 20 (=1, .., kit=ty, ..., t;t=0, ..., N),
xjNN=0’
=0 Gs=1,..,1;t=0,...,N=-1),
Yaon =0,
Xy integer (G=1, .., k;t=tg, ..., t;t=0, ..., N).

)

3

@

&)

Q)
@)
®
®
(10)
(1)
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INVESTMENT/FINANCIAL PLANNING 89
3. THE DATA

An enterprise has a planning period consisting of 10 intervals, bounded
by the equidistant points of time 0 to 10. At time 0, which can be identified
with «now”’, two machines of type 1 and three machines of type 2 are present
which had been installed at times —2 and —1 respectively. Type 1 is offered
on the market of capital goods during the entire planning period, type 2
can be obtained at time S at the latest. Further there are two different types
that may be useful for our firm, namely types 3 and 4 of which the firm does
not possess any specimen as yet. Type 3 is offered during the entire planning
period, type 4 from time 4 to 10. Further data about operating surplusses,
salvage values and initial investment outlays are given in the following tables.
All data in these tables are measured in thousands of dollars. It is assumed

Operating surplus of one machine of tvpe 1 : Q, (1, t)

T t'—1012345678910

-2 60 SO 40 25 20 15 10 0 ~5 ~10 —15 —-20
0 80 70 65 60 55 SO 30 25 20 15
l 85 70 60 50 45 30 30 20 15
2 90 80 70 60 -5 40 30 2
3 100 100 100 100 95 95 90
4 110105 100 95 85 80
5 115 110 100 95 90
6 120 100 95 90
7 130 125 120
8 150 140
9 160

Salvage values of one machine of type 1 : S, (1, 1)
and its initial investment outlay C, (1)

-1 0 1 C;fC)
115 100 90 70 40 20 10 O 6 0 0 0 140
135 120 100 90 80 70 65 60 55 SO | 180

150 135 120 90 70 45 35 30 25| 200

200 170 160 150 130 110 95 85 ] 240

230 220 220 215 215 210 210 | 250

240 220 200 170 140 100 | 300

270 265 260 255 252 | 320

280 220 170 130 | 350

320 310 280 | 400

380 350 | 425

390 | 450

(8]
w
»
w
o
-~
o
L -]
)

4

V- IS - SRV N NV SR R

!
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90 W. G. VAN HULST, J. TH. VAN LIESHOUT

Operating surplusses of one machine of type 2 : Q, (7, 1)

;\\012345‘678910

65 60 S5 52 45 47 38 30" 10 0 -5
67 62 S5 48 45 40 40 20 10 8
75 60 55 48 45 42 30 25 20

80 67 65 S5 S50 48 46 42

80 75 70 68 62 57 50

80 70 60 50 40 30

80 65 45 30 25

NBWN—O -

Salvage values of one machine type 2 : S, (t, t)
and its initial investment outlay : C, (1)

N 0 1L 2 3 4 5 6 7 89 10C (T)
— 1 140 130 120 115 110 8 60 25 10 0 O 154
0 135 125 120 115 108 75 40 20 10 © 150
1 135 125 118 105 80 45 30 IS 5 156
2 : 130 120 115 95 50 45 25 10 156
3 125 122 120 70 65 35 IS5 195
4 130 125 75 70 45 20 150
5 1tS 85 80 55 30 144

Operating surplusses of one machine of type 3 : Q; (1, t)
|
t
T 1 2 3 4 s 6 7 8 9 10

0 110 9% 88 87 60 50 45 32 28 15
I 120 105 100 85 70 55 50 48 45
2 149 140 130 60 40 20 5 0
3 180 172 170 166 160 I55 60
4 190 140, 120 95 75 60
5 190 160 (40 100 80
6 195 190 180 175
7 196 185 140
8 196 180
9 200
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Salvage values of one machine of type 3 : S; (1, 1)
and its initial investment outlay C, (7)

91

N 2 3 4 5 6 7 8 9 10 |G5(T)
0 300 240 140 105 102 100 95 90 80 60 373
| 257 110 95 90 85 80 75 70 S0 342
2 180 137 100 97 95 90 60 60 365
3 480 435 433 340 330 325 310 600
4 405 390 365 360 347 320 469
5 420 409 400 390 350 484
6 499 450 440 309 580
7 500 473 380 550
8 420 400 s44
9 490 628

Operating surplusses of one machine of type 4 : Q,(t, t)

T t 5 6 71 8 9 10
4 80 70 6 50 40 30

5 95 92 88 75 68

6 9 82 14 65

7 100 92 85

8 100 90

9 103

Salvage values of one machine of type 4 : S, (1, 1)
and its initial investment outlay : C, (1)

T t 5 6 7 8 9 0 | C4(T)
4 100 90 88 8s 80 75 205
s 150 133 125 100 90 222
6 145 140 120 110 162
7 175 140 115 190
8 150 120 190
9 150 190

Further data: b, =0(¢ =0, ..., N).

that operating surplusses become available at the end of each planning interval
and that receipts of salvage values and expenditures of initial investment
outlays fall at the start of each interval. Interest rate is 10 per cent.

vol. 11, n° ‘1, février 1977



92 W. G. VAN HULST, J. TH. VAN LIESHOUT

=2, y,,(max) =80(¢=0,...,9).
This credit has to be repaid by a five periods 8 per cent annuity, hence
dyy=025046  (h=1t+1,...,t45);
Vs (max)=50 (t=0,...,9).

This is a short term credit with a maturity term of one period; interest
12 per cent. Hence

d2t.t+l = 1 .12.

At time O there are no more payments due resulting from previous credits.

If one substitutes these data into the I. p. model, one has a problem with
216 variables and 196 constraints apart from the non-negativity and the inte-
grality constraints. Of course the constraints (6), (8) and (10) were not taken
separately but had already been substituted into the model. The cons-
traints (4) were regarded as so-called bounds, which, as is generally known,
results in a considerable reduction of computer time. '

4. THE SOLUTION WITHOUT REGARD TO INTEGRALITY CONSTRAINTS

In the first instance the problem was solved without taking into account
the integrality constraints. After 126 ijterations (because of the 164 cons-
traints (5) the problem was very degenerate) the optimal solution was obtained
of the problem thus reduced. The most important results were:

K =10,409.73,
X200 = X201 = X202 = X303 = 5.00,
X311 = 2.49,
X322 = X223 = X34 = 5.56,
X133 =2.94,
X244 = Xp45 = 14.33,
Xys55 = 14.73,
X466 = 34.83,
X477 = Xa78 = X479 = Xg710 = 44.04,
X488 = X4g9 = X4g10 = 69.39,

X499 = X4910 = 57.71.

R.A.LR.O. Recherche opérationnelle/Operations research



INVESTMENT/FINANCIAL PLANNING 93

The remaining x variables (basic or not) are zero.
ylt=80 (t=0""99)’
Y2 =50 (t=0,...,9).

That this optimal solution shows an integer number of machines to be ins-
talled at time O is a pure coincidence. The solution is illustrated in figure 1.

Type 4
44,04
34,831
14,33
Type 2 <2,49| =56
3 )
A 5 ] L1473
- 2 294
Type 1 t T T T rj T T T T T ——

Figure 1.
The continuous solution

5. THE WAY TO AN OPTIMAL MIXED-INTEGER SOLUTION

Although we could guess what the outcome would be, we first tried to see
if rounding off the appropriate non-integer results produced a satisfactory
result. It was soon clear that this produced only infeasible solutions, so we
had to look for a different way. It was immediately clear that it was impossible
to impose the integrality requirement on 196 variables. So for the time being
this requirement was imposed only on those x variables that concerned the
points of time ¢ = 0 to 3. Thus the problem was reduced to a mixed-integer 1. p.

vol. 11, n° 1, février 1977



94 W. G. VAN HULST, J. TH. VAN LIESHOUT

problem with 38 integer variables, which seemed reasonable at first sight.
As there were quite considerable differences in the levels of the continuous
solution we did not set bounds to these variables a priori, except, of course,
the trivial non-negativity constraints. Even so the size of the problem still
proved to be too large for the available computer capacity. It is true that we
found some feasible solutions but it would have taken too long to check
whether one of them was optimal. We did however find an <«acceptable”
solution after one hour C.P.U. time: the value of the objective function differed
less than 2 per cent of this value in the continuous case.

But what problem did we actually <«solve?’’ Could it still be regarded as
the real problem? We proceeded by subjecting this latter problem to a critical
investigation. A number of good reasons might be suggested for restricting
the integrality requirements to those x variables that are related to decisions
to be taken at early points of time. Firstly the question is concerned in prin-
ciple only with those variables that represent decisions toc be taken imme-
diately, i. e. the variables x,,. But we are also concerned with the «career”’
of the machines represented by the x;,, variables, if only in order to determine
the depreciation plan. Moreover decisions at time 0 are influenced by later
decisions concerning both the choice of machine type and the level. Therefore
it is not sufficient to impose the integrality requirement only on the x;, varia-
bles, the x variables related to subsequent times should also meet this
requirement.

Secondly the continuous solution shows some remarkable characteristics.
As can be seen from figure 1, the level of the solution for ¢ > 5 is much higher
than for ¢ < §5; it might even be regarded as an absolutely high level. Further,
it turns out that machines installed in the first half of the planning period
are scrapped at ¢ = 6 at the latest. Moreover the continuous solution is very
stable with regard to the composition of the basic solution: the boundaries
between which the coefficients of the objective function and the right hand sides
of the constraints may move without a change in the composition of the basic
solution, are generally very wide. If such a boundary is trespassed in respect
of a variable or a right hand side related to ¢ > 5 then the composition of
the basic solution still remains unchanged for ¢ < 5. All these findings led
us to an acceptance of the hypothesis that preliminary decisions are not signi-
ficantly influenced by the imposition or non-imposition of integrality restric-
tions on x variables for # > 5. A test (though not indeed a waterproof one)
to this hypothesis might be found in the differences between the value of
the objective function and the levels of the x variables for ¢ > 5 in the eventual
optimal mixed integer solution .on the one hand and these magnitudes in the.
continuous solution on the other hand.

But now the border had been shifted from ¢ = 3 to # = 5 so the number
of -integer variables had increased again. In order to meet this objection it
was necessary to re-examine some of the assumptions on which the model

R.A.LR.O. Recherche opérationnelle/Operations research
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had originally been based. It was at first assumed that decisions about installing
and discarding machines could be made only at discrete points of time ¢.
This assumption is fully maintained with regard to the installation of new
machines. In our case this means that all x;,, (0 < ¢ < 5) must be integer.
However we abandonned the assumption concerning the scrapping of econo-
mically worn-out machines; from now on we also allow a machine to be
scrapped anywhere between two discrete points of time. How this works
out in formulating integrality constraints we shall discuss in the next section,
but first we want to discuss the consequences of this weaker assumption.

Scrapping 2 machine between times means that a variable x;, .., (@ > 0)
does not need to be integer. This statement may not be extended over more
than one value of a without some further restrictions, but we shall come
to this point later. The following is an example of the result that may be
expected:

X100 =4; X101 =3.8; X102 = 3.

This must be interpreted as: at time 1 there are still 4 machines present,
but at time 1+0.8 one of them is scrapped. In other words-we consider the
event «0.8 machine during one planning interval’’ as equivalent to the event
«one machine during 0.8 interval’’. However this requires further assumptions
concerning the behaviour of the coefficients of this variable in objective function
and liquidity constraints. In these relations this variable appears multiplied
by an operation surplus Q and a salvage value S. Firstly the equivalence
of the events just mentioned requires the assumption that the operating surplus
during a planning interval, discounted at the start of it, shows a linear graph.
Only if this is true, then indeed

ny/n2

1
nx/”zj e Q;(, t+w)dw =J et Q,(, t+w)dw,
0 0

where n, and n, are natural numbers and n, < n,.

Secondly a similar assumption needs to be accepted concerning the salvage
value. The pertinent terms in the objective function in the above mentioned
example are:

e {0.25,(0, 1)+0.8¢7'5,(0, 2)}

which is equivalent to
e 1% 5,(0,1.8)

if the graph of the discounted salvage value within one planning interval
is linear.

However difficulties arise concerning the liquidity constraints. According
to the model-formulation there is at time 1 a contribution to the liquidity
to an amount of 0.2 S (0, 1), plus one at time 2 to an amount of 0.8 S, (0, 2).

vol. 11, n° 1, février. 1977



96 W. G. VAN HULST, J. TH. VAN LIESHOUT

If we interpret the non-integer value of x in the way described above, these
contributions do not appear at all, but between these two points of time
an amount becomes available that is a little larger than the weighted average
of these amounts (a little larger because of the effect of discounting). For the
sake of liquidity we therefore have to assume that this amount, becoming
available in the meantime, can by adequate financing be spread over the
two points of time.

6. REFORMULATING THE MODEL

As restricting the integrality requirements to the first half of the planning
period does not really affect the formulation of the model, and as the weakening
of these requirements concerning the scrapping time does, we shall first consider
‘the latter. In section 7, at the solving phase, both matters will be included.

In: the .previous section it was stated that not all non-integer results of
Xj. c+q (@ > 0) are feasible. A set of such results ought to. make it possible
to scrap at least one machine between times, without coming into conflict
-with the constraints (5). It can easily be shown that there are two feasible
‘ways in which an x variable not related to a new investment (so ¢ > 1) may
have-a non-integer value: ,

(@) it is immediately preceded by an integer result in the sequence x;, ..,
for given j and 7;

() if its immediate predecessor in the sequence is not integer, then the
interval bounded by the value of the variable under analysis and the value
of its immediate predecessor must be wide enough to contain one natural
number at least.

If one takes into account these considerations, the model of section 2 can
be reformulated as:

Maximize (1);

Subject to (2) to (4), (7) and (9), while (5) and (11) are replaced by

xj'rt_zj'rtgo’ ijt;xjt,t+l 209 zj'rt: integer9
j=1, .., k;t=t, ..., N—1;
te[{(0,2,4, .. )UWN-D}A{t+2, ..., N=1}]

(5a)
if T is even and
te[{(1,3,5 .. )0uN=-D}n{r+2, ..., N=1}]
if © is odd or negative,
Xje—Xjr, 1412 0, X;q © integer, 5b)

ji=1 o k;t=0,...,N-1,

R.A.LLR.O. Recherche opérationnelle/Operations research



INVESTMENT/FINANCIAL PLANNING 97

and (6), (8) and (10) are substituted into the model itselt. The rather strange
looking counting set of ¢ may perhaps require some explanation. For given j
the integrality requirements can be illustrated by the following scheme:

\
T . Q 1 2 31 4 eeof N-1

% %
t 0 .

* LR :'(

= w = O

L23 %

N-1

The asterisks denote an integrality requirement for x;,, (at the main diagonal
of the lower part of the scheme) and for z;, (the remaining part). In this
way the above verbally formulated requirements are met. Note that for 1 < 0
the «variable’” x; _, is a datum and hence always integer. Note further the
integrality requirement for # = N—1; this is necessary because x;, y_; = X5
is required, so inside of the interval (N—1, N) no scrapping is allowed.

The number of integer variables in the most unfavourable case (i. e. if all
possible types had been installed at z, and are available during the entire
planning period) equals

k(1NN 1N|to|
4 2
if N is even and
1 1 1
K{-N?*+N+ -ty [(N+1)—=
{4 ol +D-4
if N is odd. In our numerical example there are, according to the reformulated

model, 122 integer variables; so we succeeded in reducing the model by 74
integer variables though the model actually became more general. However

vol.. 11, n° 1, février 1977



98 W. G. VAN HULST, J. TH. VAN LIESHOUT

the remaining number of integers is still too large to be solved in a straight-

forward way. Therefore we shall now describe a stepwise procedure which,

as can easily be seen, will lead to the optimum, but may require a lot of patience

from the analyst if it is carried out to the end. The procedure is as follows:
(a) Start by adding the constraints:

X © integer (j=],A...,k;t=0,A..,N—1)

to the (continuous) model (1) to (7) and (9) and solve it (%),

(b) For each sequence x; .., (@ > 0,j and t given) resulting from the
previous step, determine which variable first comes into conflict with the
requirements:

[ijz]_ Z Xje,t+1-

For these variables, insert constraints of the torm (5 a). If ‘there are no
(more) variables in conflict with the above-mentioned requirement, the optimal
solution has been obtained. If there still are, proceed to (c).

(¢) Solve the model resulting from step (b). Then go back to (b).

This procedure makes it possible to insert only those integrality constraints
that are absolutely necessary: no integrality constraints are imposed on varia-
bles that will not appear in the eventual solution with a value larger than zero.
But as one does not know before how many integrality constraints are neces-
sary, two things may happen:

1) either one has to go through a tedious and very long procedure before
obtaining the optimal result;

2) or because of subsequent adding constraints (5a) the model grows
beyond the capacity of the computer and the optimal solution will not be
obtained at all; one does, however, obtain a.better approximation of it after:
each step, and this approximation meets integrality requirements for the
earlier part of the planning period.

7. A HEURISTIC PROCEDURE AND SOLUTION

Now we return to our numerical example. We did not carry out the pro-
cedure of section 6 to the end because we were interested, not in «the’’ optimal
solution, but in a satisfactory one that could be obtained in a relatively short
time. We defined <satisfactory’” as when the difference between the optimal
value of the objective function in the continuous model and this value in the
eventual mixed-integer solution is less than 0.5 per cent. By <«relatively short
time’’ we meant that the satisfactory solution should be obtained in a time
shorter than five times the time needed for solving the continuous model.

(®) To accelerate the solving procedure it is not difficult to set appropriate upper bounds.
The same can be said about the solution in step ¢. However if in a solution a value equals
a bound, the latter might be too low. Increase it and solve again.
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Firstlywe again took our hypothesis of section'5 concerning the restriction
of integrality requirements to ¢ = 0 to ¢ = 5. This hypothesis can easily
be inserted into the procedure of section 6 by replacing at step (¢) N—1 by T,
where T denotes the last point of time that an integrality requirement should
be met.

Secondly, though we could already see that a continuous solution would
not do, this solution does give a considerable amount of information. The most
important is that one can immediately see which investment projects will
certainly not be realized because of their huge shadow prices. So by removing
these variables the model can be reduced. In our numerical example this
was the case with respect to e. g. all x variables corresponding to type 3.

Now we went through the following procedure:

(a) Solve the continuous model (1) to (7) and (9) and remove «superfluous”’
variables.

(b) Put a (new) lower bound to the objective function (in our case: 99.5 per
cent of the value of the objective function in the continuous model).

(¢) For each sequence x;, .., (@ > 0, and t given) in the solution found
up to now, determine which variable first comes into conflict with

Xj, . integer (t=0,...,T=5)
and
[xj-tt]— = Xjrr41 (t=T=5)
For these variables insert constraints (5 @) and (5 b) into the model. If there
are no (more) such variables, proceed to (e), or else to (d).

(d) Solve the reformulated model. If there is no solution because the cut
off percentage of step (b) is. too. tight, loosen it-and solve again if the new
lower bound can still be considered as satisfactory. Go back to (c).

(e) Analyze shadow prices and penalties and decide whether a tightening
of the cut — off percentage of step (b) would result in a considerable impro-
vement. If it does, go back to step (), or else stop.

Of course: watch the clock!

In this way we found the required satisfactory solution in one step after
solution of the continuous problem; this step took 30 minutes C.P.U. time.
The most important results are:

K =10,359.00,
X200 =5, X245 = 13.93,
X201 = 4.41, X,55 = 15,
X202 = 3.18, X466 = 34.66,

X203 =3, X477 = X478 = X479 = Xg710 = 43 .83,
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X211 =3, X488 = X480 = Xag10 = 69.06,
X222 =X223 =1, X409 = X4910 = 37.43,
X224 =5.87, =80 (t=0,...,9),
X133=3, yu=50 (t=0,....2,4,...,9),
X244 = 14, Y23 = 29.68.

From further results it was clear that the maximum present value that
might be obtained was less than 10,380.00. To verify whether this solution
was optimal would have taken at least 90 minutes C.P.U. time, so this solution

I | []
I —_— '.__L
=
] 57,43f
I
| 6906
Type 4 l
I
43,83
34,661
14 13
Type 2 3 -
3 7 6 5
I e L
3
Type 1 f—2;L—= -
T T T 1 1 T T T T T —
-2 -1 0 1 2 3 4 5 6 7 8 9 10 t
Figure 2.

The eventual mixed-infeger solution

was considered as satisfactory. At step (d) the model contained 207 non-
negative variables of which 11 integer ones and 186 constraints.

This solution is pictured in figure 2. Comparison of it to the continuous
solution (see also fig. 1) shows that the present value is indeed less than 0.5 per
cent lower. The composition of the investment program is the same and there
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are no great differences between the levels. The differences between the levels
for ¢t > 5 can be all but neglected, so our hypothesis that investments
after ¢ = 5 hardly influence the strategy in the first half of the planning period
is supported by these results.

8. FINAL REMARKS

At each step in the heuristic procedure we solved the entire problem right
from the beginning. The procedure would run much faster if there is a simple
procedure in the standard package used, that enables the user to restart the
program from the level where the previous step became stuck; at any rate
this is a solution somewhere down the tree. Because there are only a few
changes in the model at the next step, this solution will be near optimal,
so there is no reason to repeat the branching process from the beginning.

Although the XDLA package offers the possibility to restart the program
from stored intermediate results, the way how to use this feature was not
clearly described. in the user’s manual. Only if this feature will have to be
used when one has to solve routine problems, it may be worthwile to find
out how exactly it has to be applied. As our problem was an unique one,
we decided not to use this feature and to proceed in the described, rather
inelegant way. '

We got the impression that our experience is not unique. Too often user’s
manuals have been written with the writer’s face to the computer instead
of to the user. In our opinion it ought to be possible to use standard packages
without the help of a computer specialist. Therefore we may call on suppliers
of standard software packages to give user’s manuals with the empbasis
on «user’s’’. Only then the computer will be used efficiently also for non-
routine problems.
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