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A QUEUING MODEL WITH FEEDBACK (*)
by Lajos TAKÂCS (l)

Abstract. — In the time interval (0, oo) customers arrive at a service system in accordance wit h a
Poisson process andform a queue in a waiting room. The customers are served by a single server in a
service room in order of arrivai. The service times are mutually independent random variables having a
common exponential distribution. After each service a customer may return to the waiting room with a
constant probability. Every time the service room becomes empty all the customers in the waiting room
and additional r customers (r ^ 1) enter the service room. In this paper the distributions of the queue
size, the waiting time and the total time spent in the system by a customer are determinedfor a stationary
process.

1. INTRODUCTION

The object of this paper is to find the limit distributions (stationary
distributions) of the queue size, the waiting time and the total time spent in the
system by a customer for a single-server queue with feedback. It is assumed that
in the time interval (ö, oo) customers arrive at a service system in accordance
with a Poisson process of density X and form a queue in a waiting room. The
customers are served by a single server in a service room in order of arrivai. The
service times are mutually independent random variables having the same
distribution fonction

for x ^ 0, (l)

for x < 0,

and are independent of the arrivai times. After each service a customer may
return to the waiting room with probability p where 0 ^ p < 1 or may départ
permanently with probability q = 1 - - p. Every time the service room becomes
empty, all the customers in the waiting room and additional r customers (r ^ 1 )
enter the service room.

Dénote by ̂  (t) the number of customers in the waiting room and by %2 (0 the
number of customers in the service room at time t. The possible values of.4i (0
are 0, 1, 2, . . . and the possible values of £2 (0 are 1, 2, . . . . We assume that the
arrivai times, the service times and the events of returns are independent of £x (0)

(*) Reçu décembre 1976.
(l) Case Western Reserve University, Cleveland, Department of Mathematics and Statistics.
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In the particular case when p = O, that is, when there is no feedback the
aforementioned model is equivalent to a counter model introduced by D.
G. Lampard [1]. See also R. M. Phatarfod [2], [3], and the author [5].

2. THE LIMIT DISTRIBUTION OF THE QUEUE SIZE

We have the following result.

THEOREM 1 : IfX < \iq, then the limit distribution

limP{^(t) = i,Wf)=i}=^ (2)
t—*• 00

existsfor i ̂  O and) ^ land is independent of the joint distribution ofl>1 (0) and
^2 (0)- The generating fonction

1 = 0 j=l

is given by

P(w z) =
r[\iq

for \w\ ̂  1 and \z\ ̂  1 where
CO

Aa = 1 anrf

- {X + ]x)z + Xwz]

(3)

V ;

(5)

^ \iq,then lim P { ̂ ( t ) = Ï , ^ 2 ( 0 = J } = Oregardlessofthe

joint distribution of^)1(0) and ^2(^)-

Proof: The random variables { Çi(f)> £2(0 } f ° r m a homogeneous and
irreducible Markov process with state spàce

{ ( î , ; ) : î = 0 , 1 , 2 , . . . , 7 = 1,2, . . . } .

If* the process {^ t(t), ^ 2 ( 0 } n a s a stationary distribution, then the limit
distribution (2) exists and is identical with the stationary distribution. If
{ £>i(t)9 ̂ 2 (0 } has no stationary .distribution, then

for all i ̂  O a n d ; ^ 1.
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If we suppose that { Ptj } is a stationary distribution, then it satisfies the
following system of équations

(X + ii)Py = XPt_Uj + \ipPt-1J+1 + \iqPiJ+i (7)

for i ^ 1,7 ^ 1,

(X + ii)POj = \iqPoj+i (8)

for 1 S j < r9

{X + \i)POr = \iqPoi + MPo.r+1 (9)

for j ^ 1 and

Z Z Py = 1. (H)
i = 0 j=\

Define P(w, z) by (3). By (7), (8), (9), and (10) we obtain that

(w) - (g
'{W' Z)~ M - (X + v)z + (Xz

for \w\ ̂  1 and \z\ ^ 1 where

(13)

for |w| g 1.
If a stationary distribution { P(J. } exists, then by (11) we have P(l , 1) = 1,

and (12) implies that

l imP(l,z) = (p + r)G(l) + G'(l) = 1 (14)
z-* 1

and

lim P(w, 1) =

Hence we get

= ^^A- (16)
This shows at once that a stationary distribution cannot exist if X ^ mj. If
X < \xq, then a stationary distribution exists and its generàting function is given
by (12) where G(w) is still to be determined. In (12) we can détermine G(w) for

^ 1 by the requirement that |P(w, z)\ ^ 1 for |w| ^ 1 and \z\ ^ 1. If
^ 1, then the denominator of (12) has a zero

H- pw)

| i -h X ( l — w)
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in the unit circle |z| S 1. If z is equal to (17), then the numerator of (12) should
vanish too, that is,

(q + pw)G(w) = (q + pz)zrG(z)

whenever z is defined by (17) and \w\ ^ 1.
Let

R(w) = (q + pw)G(w)/G(l)

for \w\ ^ 1. Then R{1) = 1 and by (18) we have

R(w) = ÏR{z)

whenever z is defined by (17) and \w\ g 1. Hence it follows that

R(w) = [ô(w)J

where 0(1) = 1,

Q{w) = U(w)Q(U(w))
and

(18)

(19)

(20)

(21)

(22)

for |w| ^ 1.
By (12), (19) and (21) we get (4) where only Q(w) remains to be determined. If

w e d e f i n e t / i H = C/(w)and Un + 1(w) = U{Un(w))forn - . 1 , 2 , . . . , t henby
(22) it follows that

e M = n un{w)

for \w\ ^ 1. We can easily see that

for n = 1, 2, . . : where

a„ P„ = c W> m

and Cn ^ 0. If we choose Cn = [iq - X, then we have

However, we can also détermine Q(w) 'm a simpler way. Let us write

Xw - X

(24)

(25)

(26)

(27)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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for H <; 1. Then by (22) we get

' - + Ï ) [ I - £ K > ] (29)

and A(Q) = Q(l) = 1. By expanding A(z) into a Taylor series at z = 0,

A(z) = £ 4,z\ (30)
n = 0

the coefficients An (n = 0, 1, 2, . . . ) can be determined by (29). If we form the
coefficient of zn in (29), then we get

for n = 1,2, . . . and Xo = 1. This proves formulas (5) and (6).

3. THE LIMIT DISTRIBUTION OF THE WÀITEVG TIME

Dénote by ^n the queue size, that is, the number of customers in the System,
immediately before the n-th customer arrives. We can easily see that if X < \xq,
then the limit distribution

lim P { kn = j } - Pj (32)
n-> oo

exists for; = 1,2, . . . and is independent of the joint distribution of ^ (0) and

Ç2(0). If X ^ W , then lim P { 4, = 7 } = 0 for) = 1, 2, . . . .
n->oo

II X < \iq, then the generating function

O(z) = X P / (33)

is given by

for |z| ^ 1 where Q(z) is defined by (5) and (6).
Dénote by r|n the waiting time of the n-th customer.

THEOREM 2:IfX < [iq, then the limiting distribution

Hm P { TI„ g x} = W(x) (35)
n—* oo

exists and is independent of the joint distribution of^ (0) and Ç2 (0). The Laplace-
Stieltjes transform

Q(s) = \e~
sx dW{x) (36)

Jo
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is given by

( ) p 7 )

for Re (s) ^ 0 where O(z) is defined by (34). If X ^ pq, then

lim P { TI„ ^ x } = 0 for all x.
n —• o o

; Since r|„ can be represented as a sum of ̂ „ independent and identically
distributed random variables with distribution function (1), (35) and (37) follow
immediately from (32) and (33).

Define

Mv= f, fPj (38)

for v = 1, 2, . . . and write M = Mx and D| = M2 - M\.

THEOREM 3 : IfX < \x.q, then

M = rJ±±M + r + 1 + X
y.q — X 2 \aq — X

and

II we form the derivatives of (22) at w = 1, then we get

Proof: By (34) we obtain that

M = O'(l) = rÔ'(l) + r + + (41)

and

D = o"(D + «'(ï) - r<

fi'(l) - (Ö'(D)2] + r-=A + T ^ ^ T - (42)

and

Since C/'(l) = (A, + np)/|iand L/"(l) = 2X(X + |xp)/n2 by the above formulas
we get (39) and (40).

RA.I.R.O. Recherche opérationnelle/Opérations Research
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From (37) it follows that if X < ng, then

f00

x dW(x) = M/n (45)

Jo
and

- —] dW{x) = (D + M)Ai2. (46)

4. THE LIMIT DISTRIBUTION OF THE SOJOURN TIME

Dénote by 0n the total time spent in the system by the n-th customer.
Obviously, the distribution of 0n dépends solely on the distribution of £„, the
number of customers in the system immediately before the arrivai of the n-th
customer. If X < \iq, then £„ has a limit distribution which does not depend on
the initial distribution of the process. Consequently, if A- < \iq, then 0n also has a
limit distribution which does not depend on the initial distribution of the
process. The limit distribution of 0n is evidently the same as the distribution of 0n

in the case where P { Çn = j } = 'Pj (j = 1, 2, . . . ) defined by (32). Thus we
assume that X < \iq and that P { Çn = j } = Pj(j — 1, 2, . . . )isgivenby (33)
and (34), and give a method of finding the distribution of 0„.

Dénote by 0j,k> the total time spent in the system by the n-th customer until his
k-th service ends if he joins the queue at least k times. Dénote by £j,fc) the number of
customers in the system immediately after the k-th service of the n-th customer
ends. The n-th customer is not included in~ÇJ,fc) even if he returns at least k + 1
times. If £„ has a stationary distribution, then the expectation

<Ms, *) = E { e-^zC } (47)

exists for Re (s) ^ 0 and \z\ ^ 1 and is independent of n. We can easily see that

for fc = 0, 1, 2, . . . where <D0(s, z) = O(z) is defined by (34). The proof of (48)
follows the same lines as the proof of (28) in référence [4]. Define

®(s,z) = q J pk-^k{s,z) (49)
k ~ 1

forRe(s) ^ 0and|z| ^ l.Thefunction<I>(s, z)iscompletelydeterminedbythe
récurrence formula (48) and the initial condition O0(s, z) = O(z).

THEOREM A:IfX < \iq, then the limit distribution

IimP{9^x }=K(x) (50)
n-*oo
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exists and is independent of the initial distribution of the process. IfRe (s) ^ O,
then

f
Jo

e'sx dK{x) = <£(s, (51)

where <£(s? z) is defined by (49).

Proof : The probability that the n-th customer joins the queue exactly k times
(including his original arrivai) is ^p*"1 for k = 1, 2, Thus we have

00

E f ^~sd». 1 „ V —fc—11? f * — sd^ 1 /O\

| é? ] = ^ f y p ML \ e j \ P ^ /

for Re (5) ^ 0. If ^„ has a stationary distribution defined by (33), then (52)
reduces tb $>{s, 1) and this proves (51).

We note that in (49) we can express $>k(s9 z) in an explicit form. Let us write

v(q + pz)U(s, z) = (53)
\x + s + 1(1 - z)

and define Un(s, z) (n = 0, 1, 2, . . .)by the récurrence formula

Un+1(s, z) = U(s9 Um(s, z)) =. Un(s, U(s, z)) (54)

for n = 0, 1, 2, . . . where Uo (s, z) = z. It is easy to see that if we define

(55)

f o r k = 1 , 2 and if ®0(s, z) = O(z), then (48) is satisfied for
fe = 0, 1,2, . . . . In (55) we have

S»(s)

for k = 0, 1, 2, . . . where

- X y. + X + s

From (48) it foliows immediately that
/

(56)

(57)

(58.)

for Re (s) ^ 0 and |z| ^ 1. By (58) we can easily détermine the moments

Km = (59)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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for m = 1, 2, . . . . Define

for i = 0, i , 2, . . . and 7 = 0, 1, 2, ... .» If we form the mixed partial
derivatives of order m of (58), then we obtain m + 1 linear équations for the
détermination of O0m, O l m _ l 5 . . . , Om0. These derivatives can be determined
step by step for m = 1, 2, . . . and

Km = ( - lfm\ Om0 (61)

yields the m-th moment of K{x).

Introducé the notation

+ 5 + MI -

for i ^ 0 and j ^ 0. Then a00 = 1, a10 = -
a20 = 1/M2, flu = - (2À, + \ip)l\i2 and a02 =k(\

By (58) we obtain

1 + ii®l0 = p.p*10 - pO01s (63)

and

\iO01 - X = \ir + ^ ^ ' ( 1 ) + (X + w>)p*oi- (64)

From (63)

*io = - (1 + P*oi)/M (65)

and from (64)
1 (66)

where<D'(l) = M is given by (39). Since K{ = - O1 0 , by (65) and (66) we get

1 ~ " - ••- ' 'w--~ ^ r x - (X + \ip)p] \\xq \iq
(67)

If we form the partial derivatives of order two of (58), then we obtain the
following équations for the détermination of K2 = 2<P20 :

|i<l>20 + O10 = \ipa2o^oi + H-P^o + ^P^i o^ii + '^^10^02» (68)

O 0 1 - \<S>i0 + n<Dn =

(69)
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and

,1*02 - *®oi = H < z [ ~ + *>'(!)

+ W> ^02^01 + «01^02 + rooi*oi + Q H (70)

Now O02 can be determined by (70), O u by (69) and finally O20 by (68).

5. AN EXAMPLE

Let us suppose that in the queuing process-, p = 1/3 and X/\i = 1/6. Then
Vmz = 1/4 and Çn, r|M and 0„ have a limit distribution. The probabilities
l i m P { ^ - j } = P;( / = 1 ,2, . . . ) are determined by (34) where now

ÖW = 3(z + 2)(4 - z)->. (71)
This follows from (5) where now Ao = 1, ̂ 4| = — 3, A2 = 2 and ̂ 4„ = 0 for
n ^ 3. In this case (34) reduces to

The Laplace-Stieltjes transform of the limiting distribution of r|M is given by (37),
and the Laplace-Stieltjes transform of the limiting distribution of 0„ is given by
(51).

By (39) and (40) we obtain that

M = (9r + 5)/6 (73)
and

D = (3r2 + 40r -f 13)/36. (74)
By (67) we get

\iKt = (18r + 29)/15 (75)

and by (68), (69) and (70) it follows that

\i2K2 = (16065r2 + 37025r + 23827)/2475. (76)
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