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SOME APPROXIMATE EQUILIBRIUM RESULTS
FOR THE EJM/r NO-QUEUE SYSTEM (*)

par George P. COSMETATOS (*)

Abstract. — Approximate formulae for the utilization ofagroup of servers in the EJM/r no-queue
system are derived. The degree of approximation achievëd dépends on the particularformula used and on
the values of the various parameters involved ; the relative percentage errors incurred seem, however, tq
be well below 1 per cent in absolute value. The dérivation of the formulae is based on the underlying
principle that two Systems of the same gênerai type EjMjr with equal parameter k and equal traffic
intensities but with unequal number of servers, have a "similar" behaviour.

Service Systems where no queue is formed are quite common in practice, the
original physical situation motivating their study, just after the turn ofthis
century, being the simple téléphone network [2]. Over the years many models of
such systems have been devised, solved and applied in the design of téléphone
exchanges [3,5]; and fairly reeently these models have been used in the design of
file organization systems and in the study of situations where either a queue is not
allowed to form because of space limitations (limiting case of balking) or
customers are unwilling to join a queue because of long expected queueing time
(limiting case of impatience).

The system considered in this paper can be described as follows : there are r
servers in parallel each having an exponential service time distribution with
mean \i~x. Intervals between successive arrivais have an Erlang — k
distribution; the average rate of arrivai of customers is X, so that the traffic
intensity p = . X/r u=. No queue is formed : all customers that arrive and find every
server busy are turned away.

When dealing with such a system one is usually faced with the problem of
balancing the efficient use of the group of servers against the provision of
acceptable service for the customers. One is therefore primarily interested in
calculating the utilization factor of the servers (also known as server occupancy)
which will be denoted U (r, k) and the probability of a customer being turned
away (also known as probability of loss or blocking probability) which will be
denoted B(r, k).
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According to Takâcs [6], who discusses the GI/M/r no-queue system in
detail,

Vir.k) J " , V / , (1)

with „ . —. /M , ~—.K— .

where 9 (5) is the Laplace-Stieltjes transform of the inter-arrival times
distribution given, in the case of Erlang inter-arrival times, by

9(5) =

kpr\i

The blocking probability can then be calculated as

B{r,k) = [p - l/(r,*)]/p (2)

It is interesting to note that in a single-server no-queue system the
complicated-looking formula (1) is greatly simplified :

DERIVATION OF APPROXIMATE FORMULAE FOR U(r, k)

With the assumption that inter-arrival times have an Erlang distribution,
U(r, k) dépends on p, r and k only; and, according to Benès [1], for p and r
fixed, U{r, k) is an increasing function of k with limiting values U(r, 1),
corresponding to the system M/M/r, and U(r, 00) if k -> 00.

We now consider two such Systems, EJM/rj and Ek/M/ri9 both with equal
traffic intensities but with r} > rt and proceed in writing a relationship of the
gênerai form :

_ U(rj, 1) U(rj, °o)

k) - S Ü(^ï)- + (1 " S) 17^75) (4)

where S is a factor, yet to be specified, with limiting values 1 and 0 for k = 1 and
00 respectively, regardless of rjy rt or p.

(4) is an expression giving U{rp k) in terms of U(riy k) ; consequently, if the
relative percentage errors incurred are small,
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a) the hypothesis that the EJM/rj and EJM/ri no-queue Systems with equal
traffie intensities have a similar behaviour would be established, the quantity on
the right hand side being regarded as the similarity ratio ; and

b) (4) could be used as an approximate formula for the évaluation of U{r^ k)
provided that U(rh fcjwithr; = r̂  — 1 ,^ — 2, . . . or even 1 and the similarity
ratio were both known.

A method for the détermination of S has now to be devised. It was feit initially
that solving (4) for S could provide some indication on how sensitive S is to the
values of rif rjt k and p. A computer programme developed by Sellmeyer [4]
was used for the calculation of the six utilization factors in (4) and the computed
values of S were then tabulated for seiected values of the various parameters
involved. Quite unexpectedly, a promising resuit emerged, namely that S seemed
to be rather insensitive to the value of p. On the basis of this information, the
détermination of S can be achieved by expressing (4) in the limiting case of heavy
traffie conditions (p -> oo). Byexpanding[l — <p(i|i,)]/q>(iji)into a power series
of p, it can be easily verified that :

H m U{r, k) = 2pr + 2(r - 1) - (1
P-oo 2pr + 2r

in which case simple algebra yields S = 1/fc so that :

We evaluated formula (5) for 2 < r} < 100, 1 < rt < rj_ly k > 1 and
0.4 < p < 3.0 and calculated the corresponding theoretical values for U(rjf k)
using the programme in [4]. The results obtained are briefly outlined in the next
section.

EVALUATION OF THE APPROXIMATE FORMULAE DERIVED

Evaluation of formula (S) with rt = 1

ïfwesetï^ = 1, formula (5) is greatly simplified because the expression in (3)
for [7(1, k) can be worked out manually ; some results for U(rjy 1) and l/(rj5 oo)
are given in Appendices 1 and 2 for easy référence.

a) For a given value of k, any value of C/(rJ5 k) can be approximated with a
relative percentage error :

e = 100 (approximate value — theoretical value)/(theoretical value)

which (i) is négative and tends to 0 as p -^ oo ; (ii) is not sensitive to the value of
rj ; and (iii) is very small in absolute value, not exceeding 1 per cent over the
whole range of values for p, k and rj çonsidered.
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b) Fox given values of r} and p, U(rj:> k) can be approximated with a relative
percentage error which varies with k as originally expected : it tends to 0 as k
approaches 0 or 1 and attains a maximum absolute vaiue somewhere in-between,
namely for k ^ 2. Table 1, for example, gives the relative percentage errors
incurred if formula (5) with ri = 1 is used for the évaluation of 1/(4, k) for
p - 0.5, 1.0, 1.5, 2.0, 3.0 and k = 1, 2, 3, 4, 9, 25, 100 and oo.

TABLE 1

Relative percentage errors incurred if formula (5)
with rt — 1 is used for the évaluation of £/(4, k)

" \ ^ k

p ^ x

0.5
1.0
1.5
2.0
3.0

1

0
0
0
0
0

2

- 0.97
- 0.50
- 0.39
- 0 . 3 1
- 0.19

3

- 0 . 9 3
- 0.48
- 0 . 3 6
- 0 . 2 9
- 0.18

4

- 0.82
- 0.41
- 0 . 3 2
- 0 . 2 5
- 0 . 1 5

9

- 0.46
- 0 . 2 3
- 0 . 1 7
- 0.14
- 0.08

25

- 0.18
- 0 . 0 9
- 0 . 0 7
- 0.05
- 0 . 0 3

100

- 0.05
- 0.02
- 0.02
- 0.01
- 0.01

00

0
0
0
0
0

Evaluation of formula (5) with rt > 1

If a value of rt exceeding unity is selected, formula (5) becomes difficult to
apply ; however, the relative percentage errors incurred are, generally, smaller in
absolute value^ In particular it wâs found that for given values of p and k, the
degree of similarity in the behaviour of the no-queue Systems EJM/rj and
EjM/r^ as expressed in (5), tends to increase when (r;- — ri)/ri decreases.
Table 2 gives the relative percentage errors incurred in evaluatmg U (10, 2) for
p = 0.5, 1.0, 1.5, 2.0, 3.0 and rt = 1, 2, 3, 4, 6 and 8.

TABLE 2

Relative percentage errors incurred if formula (5) is used for the évaluation of U (10, 2)

N,^^ r{

P ^ \

0.5
1.0
1.5
2.0
3.0

1

- 0.74
- 0.55
- 0.43
- 0.32
- 0 . 1 9

2

- 0.35
- 0.33
- 0 . 2 8
- 0 . 2 0
- 0.11

3

- 0.16
- 0 . 2 3
- 0 . 2 0
- 0.14
- 0 . 0 7

4

- 0.05
- 0 . 1 7
- 0.15
- 0.10
- 0.04

6

.0.04
- 0 . 0 9
- 0 . 0 8
- 0.05
- 0.02

• . • " ~ r

8

0.04
- 0.04
- 0 . 0 3
- 0 . 0 2
- 0 . 0 1
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CONCLUSIONS

From a practical viewpoint formulae (5) with r( ~ 1 and (2) appear to provide
a reliable, simple and economical tool for the analysis of Ek/M/r no-queue
Systems. If interested in redesigning an already existing system, where the arrivai
pattern may not lend itself to direct measurement, the values of p and k are
unknown ; provided that an Erlang distribution of inter-arrival times seems a
reasonablp distribution for one to adopt, it might be possible to estimate the
values of U(r, v) and B(r, v) by other means and thus obtain a value for p by
solving (2). Répétitive application of (5) could then provide an estimate for /c.
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APPENDIX 1

SERVER UTILIZA.TÏON ü ( r f l ) IN M/M/r NO - QTOUE SYSTEMS

JQ«4

0.6

0.8

i;o

1.2

1.4

1.6

•1.8

2.0

2.2

2.4

2.6

2.8

3.0

H
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

1

0.285714

0.375000

0.444444

0.500000

0.545455

0.583333

0.615385

0.642857

O.666667

0.687500

0.705882

0.722222

0.736842'

0.750000

2

0.339623

0.452055

0.536082

0.600000

0.649682

0.689119

0.721030

0.747292

0.769231

0.787798

0.803695

0.817444

0.829443

0.840000

10

0.397877

0.574115

0.702671

0.785418

0.837690

0.871801

0.895102

0.911735

0.924074

0.933528

0.940971

O.946965

0.951886

0.955992

15

0.399643

0.588079

0.731417

0.819684

0.871063

0.902126

0.922106

0.935738

0.945512

0.952809

0.958441

0.962905

O.966523

O.9695H

3

0.364090

0.491840

0.585275

0.653846

0.705134

0.744387

0.775117

0.799678

0.819672

0.836214

0.850096

0.861891

0.872024

0.880814

4

0.377413

,0.516776

0.617484

0.689320

0.741353

0.779984

0.809418

0.832398

0.850730

0.865635

0.877956

0.888291

0.897069

0.904608

20

0.399936

0.594123

0.748471

0.841108

0.891501

0.920113

0.937676

0.949269

0.957386

0.963343

0.967881

0.971442

0.974307

0.976658

30 .

0.399998

0.598427

0.767903

0.867540

O.916O67

0.940953

0.955189

0.964156

0.970241

0.974609

0.977884

0.980424

0.982449

0.984099

6

0.390256

0.546516

0.658576

0.735078

0.787611

0.824693

0.851739

0.872085

0.887822

0.900291

0.910377

0.918682

0.925626

0.931510

50

0.400000

0.599867

0.785047

0.895213

0.940658

O.96O676

0.971105

0.977319

0.981391

0.984248

O.986356

0.987973

0.989250

0.990285

8

0.395528

0.563450

0.684485

0.764430

0.816937

0.852477

0.877493

0.895779

0.909598

0.920342

0.928900

0.935858

0.941614

0.946448

100

0.400000

0.600000

0.796806

0.924300

0.964476

0.978259

0.984593

0.988133

0.990371

0.991907

0.993024

0.993872

0.994538

0,995073



APPENDIX 2

SEKVER UTILIZATION U(r,oo) IN D/M/r NO - QUEUE SYSTEMS

X
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

P \

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3-0

1

0.367166

0.486675

0.570796

0.632121

0.678482

0.714642

o;743582

0,767244

0.786939

0.803580

0.817822

0.830148

0.840917

0.850406

10

0.399983

0.595713

0.752444

0.844891

0.894258

0.922042

0.939053

0.950284

0.95816Q

0.963949

O.968367

0.971841

0.974639

0.976939

2

0.388176

0.534704

O.636692

0.706928

0.756584

0.792904

0.820342

0.841666 ;

0.858646

0.872447

0.883865

0.893454

0.901613

O.9O8634

3

0.395246

0.557958

O.671852

0.747212

0.797811

0.833053

0.858572

0.877711

0.892501

0.904226

0.913722

0.921554

0.928115

O.933685

4

0.397987

0.571419

0.694598

0.773679

0.824518

0.858508

0.882291

0.899636

0.912741

0.922940

0.931077

0.937704

0.943197

0.947818

6

0.399^10

0.585605

0.723069

0.807689

0.858284

0.889898

0.910841

0.925480

0.936181

0.944297

0.950638

0.955717

0.959869

0.963323

8

0.399920

0.592281

0.740529

0.829411

0.879437

0.908991

O.927744

0.940441

0.949507

0.956260

0.9^1465

0.965588

0.968930

0.971691

15

0.400000

0.598931

0.770395

0.870063

0.917770

0.942058

0.955935

0.964686

0.970633

0.974910

0.978122

0.980617

0.982608

0.984232

20

0.400000

0.599716

0.780254

0.885733

0.931923

0.953604

0.965370

0.972558

0.977345

0.980741

0.983267

0.985215

0.986761

0.988017

30

0.400000

0.599978

0.790259

0.904987

0.948608

0.966601

0.975670

0.980984

0.984434

0.986842

0.988613

0.989968^

0.991037

0.991902

50

0.400000

0.600000

0.797151

0.925046

0.964827

0.978431

0.984692

0.988197

0.990416

0.991940

0.993049

0.993892

0.994554

0.995086

100

0.400000

0.600000

0.799815

0.946017

0.979862

0.988479

0.992034

0.993934

0.995108

0.995904

0.996478

0.996911

0.997250

0.997522


