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OPTIMUM ORDERING POLICIES
WHEN ORDER COSTS DEPEND ON TIME(*)

by NAOTO KAIO (') and SHUNJI OSAKÏ (!)

Abstract. — This paper considers optimum ordering policies minimizing the expected cost per unit
time in the steady-state. It is assumed that a lead time for the spare is constant and order costs depend on
time. It is shown in theorem that there exists afinite and unique optimum ordering policy under certain
conditions.

1. INTRODUCTION

When we discuss replacement policies, especially age ones, for a one-unit
System subject to failure, we must first consider how to supply a new unit for
replacement. That is, there exist the following two cases. One is that a new unit is
always on hand and is available for replacement, and another is that a new unit is
delivered after a lead time and an order cost is constant or dependent on time
when we order. The former was discussed by Barlow and Proschan [1] and
others [2, 3, 4, 5, 6], and the latter will be of interest in this paper as optimum
ordering policy with lead time. In this paper we treat the optimum ordering
policy with a constant lead time and two kind of order costs depending on time.

The analysis is done as follows. Introducing a constant lead time and three
kind of costs, and noticing that every replacement time instant is a régénération
point, we dérive the expected cost per unit time in the steady-state. We seek the
optimum ordering time minimizing that expected cost. It is shown that there
exists a unique and finite optimum ordering policy under certain conditions. It is
further shown that there exists an upper limit of such an optimum policy.

(*) Reçu novembre 1976.
(') Department of Industrial Engineering, Hiroshima University, Japan.
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2. MODEL AND ASSUMPTIONS

The original unit starts operating at time 0. If the unit does not fail up to a
prespecified time t0 e [0, oo), then order for the spare is made at time t0

regularly, and it is named the regular order. After a constant lead time L, the
spare is delivered and immediately the original unit is replaced by the spare
within negligible time, even if the original one is operating. On the other hand,
if the original unit fails up to time t09 immediately emergency order is made at the
failure point, and it is named the expedited order. And the spare starts operating
as soon as it is delivered after a lead time L. The similar cycles are repeated from
time to time.

The failure time for each unit has an arbitrary distribution F(t) with a finite
mean l/A and a p.d.f. f (f). Let us introducé the following three costs : The
constant cost kx per unit time is suffered for failure, the cost Cx (t) for expedited
order made at time t before time t0, and the cost C2 (t0) for regular order made at
time t0. Assume that Ct (t) is differentiable twice, finite and positive,
Ci(t) > C2(t0) for te [0, f0], and dCi(t)/dt = c^t) (i = 1, 2). Moreover,
assume that Ci(t) is a convex-decreasing function, 0 > c1(t) > c2(t). Of course,
it is evident that c'.(t)^0 {i-1, 2).

Under the above assumptions, we define an interval from the beginning of the
original unit (replacement) to the (next) replacement as one cycle.

3. ANALYSIS

Consider the following two expected costs : (i) When the original unit fails, if
no spare is available, the system is under failure state until the spare is delivered.
The expected cost during that period is

k,n L dF(t) + I (t0 + L - t) dF(t)\ = k, I F(t) dt. (1)

(ii) The expected order cost is

[°Cl{t)dF{t)+ rC2(t0)dF(t)
o Jto

- rCl(t)F(t)dt + C2{t0)F(t0), (2)
Jo

where F(t) = 1 — F(t). Moreover, the mean time of one cycle is

P ° ( t + L) dF(t) + p ( t 0 + L) dF(t) = L + \°F{t) dt. (3)
Jo Jto J°

R.AJ.R.O. Recherche opérationnelle/Opérations Research

Jo



OPTIMUM ORDERING POLICIES 95

Thus, the expected cost per unit time in the steady-state is

kA° F{t)dt + CMFito) - cx{t)F{t)dt + C2{t0)f(t0)

K(t0) = -** — rt0^° (4)
L + F(t)dt

Jo

(see Ross [7]), K{t0) > 0,

k,L + diao) - Cl(t)F(t)dt
w „ \ Jo a\

and

klt
LF(t)dt + C2(0)
^ (6)

Define the numerator of the derivative of the right-hand side in (4) as

q(t0) = [M(*o) + (Ci(t0) - C2{t0))r(t0)

[ rto+L
kA F{t) dt + C^Fito)

- ^cMFftdt + CAto)F(to)\, (7)

wherei?(t0) = [F(t0 + L) - F{to)]/F(to)tr{to) = f{to)/F(to) and we assume
that these functions are differentiable. These functions, il(t0) and r(t0), are called
failure rates and have the same monotone property (see Barlow and
Proschan [1, p. 23]). Further,

q{oo) = [*!*((») + (Cx{oo) - C2(oo))r(oo) + c2(oo)][L + IA]

Cl(t)F(t) &J, (8)

and

q(0) = [M(0) + (C^O) - C2(0))r(Ö) + c2(0)]L ^

- ^ F ^ A + C , ^ . (9)
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Now, we have the following.

THEOREM 1 : (i) Ifq(oo) > 0 then there exists at least an optimum ordering time
t* (0 < t* < oo) minimizing the expected cost K(t0).

(«) V ?(0) < O ^ e n ^ e r e existe at /east an optimum ordering time t$
(O < t* ^ °°) minimizing the expected cost K(t0).

Proof: By differentiating log K(t0) with respect to t0, we have

d log X(g0)
dt0

= f ( r o ) —?q^+X " — —TTo " ~~ ~ ~Z
:ï(t)F(t)dt + C2(t0)F(t0)

rto+L

- Jto

For large t0, we have

<f log K(t0)

L +
Jo

(10)

dtn

F(to)
(Ct(co) - C2(oo))r(oo) + c2(oo) 1

+ C^oo) Jo Cl(t)F(t)dt
L + IA (H)

Thus, if the bracket of the right-hand side is positive, Le., g(oo) > 0, then there
exists at least an optimum ordering time tj (0 < t j < oo) minimizing the
expected cost K(t0).

Also, for srnall to, we have

d log K(t0) -
dtn F(t0)

(Cx{0) - C2(0))r(0)

F(t)dt + C2(0)

(12)

Thus, if ^(0) < 0 then there exists at least an optimum ordering time t%
(0 < t$ < oo) minimizing the expected cost K(t0). Q.E:D.

The above theorem states that there is at least an optimum ordering time tg
(not necessarily unique). However, supposing the monotone property, especially
the strictly increasing property, of the failure rate, we have the following.

THEOREM 2 : Suppose that the failure rate ds strictly increasing.
(i) Ifq(O) < 0 and q(oo) > 0 then there exists afinite and unique optimum

ordering time t% (0 < t j < oo) satisfying q(t0) = 0, and the expected cost is

K(t*0) = M W ) + (dW) - C2(t*))r(tf) + c2(r0*). (13)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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(ii) Ifq(oo) < 0 then the optimum ordering time is t* -> °o> i.e., order for the
spare is made at the same time as failure of the original unit, and the expected
cost is given by (5).

(in) Ifq(O) > 0 then the optimum ordering time is £* — 0> *•£•> order for the
spare is made at the same time as the beginning of the original unit, and the expected
cost is (6).

Proof: By differentiating K(t0) with respect to t0 and setting it equal to zero,
we have the équation q(t0) — 0. Further, we have

q%) = [M'( 'o) + (ci(t0) ~ c2(t0))r(t0)

+ (CiCo) ~ C2(t0))r>(t0) + c'M

Since the failure rate is strictly increasing, we have q' (t0) > 0, i.e., q (t0) is strictly
increasing.

If f̂(O) < 0 and 4(00) > 0 then, since q(t0) is strictly increasing and
continuous, there exists a finite and unique t$ (0 < t% < 00) minimizing the
expected cost K(t0) and satisfying q(t0) = 0. By substituting the relation of
q(t$) = 0 into K(t%) in (4), we obtain the équation (13).

If^(oo) < 0 then the optimum ordering time is tl -> oo,sinceforanarbitrary
non-negative t0 we have Kf(t0) < 0 and consequently K(t0) is a strictly
decreasing fonction with respect to t0.

If ^(0) > 0 then the optimum ordering time is t$ = 0, since for an arbitrary
non-negative t0 we have Kf(t0) > 0 and consequently K(t0) is a strictly
increasing fonction with respect to t0. Q.E.D.

Moreover, in case of (i) in Theorem 2, we give an upper limit for the optimum
ordering time t%.

THEOREM 3 : Suppose thaï the failure rate is strictly increasing, q(0) < 0,

4(00) > 0, and 1 ^ 0 . If t0 is a solution satisfying the équation h(t0) = 0, Fo

exists uniquely and t% < Fo, where

h(t0) = [ktR{t0) + ( C ^ o ) - C2(t0))r(t0)-]L

- L !LF(t) dt - r !?i(W) dt + Ca(to)1 (15)

for t0 > 0.

vol. 12, n ° l , février 1978
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Proof: Since the failure rate is strictly increasing, we have the following two
inequalities :

>
F(t) dt

and

R(t0) >

Çto + L ÇL
F{t) dt - F(t) dt

jto Jo

f '°F(t) dt
Jo

Further,

q(to)-h(to)= M(*o) + ( C i ( t 0 ) - C2{t0))r{t0)}

F(t) dt - f F{t) dt
Jo

F(t)dt
Jo

+ 1 ^ L -
F(t)dt

Jo J

(16)

(17)

.(18)

Thus, from the inequalities (16) and (17), we obtain q(t0) > h(t0)ïort0 > O.If

there exists a solution satisfying h(t0) = 0, the solution t0 is a unique one and

t$ < t0, since h(t0) is strictly increasing. Q.ED.

4. CONCLUDING REMARKS

EspeciallyswhenL == Q,Ci(t) = c l sC 2 ( t 0 ) = c2, the expected cost per unit
time in the steady-state is

c2F(t0)

Jo

(19)

and the model discussed here is identified with the age replacement model f 1],
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