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PRICING FOR SPARSITY
IN THE REVISED SIMPLEX M E T H O D (*) ( ' )

by James K. Ho (2)

Abstract. — This paper présents computationai expérience in using a column sélection rulefor the
revised simplex method which tends to maintain sparsity of the basis. It is observed that in all cases
tested, the average density of the basis inverse in product form is also reduced, and that in many cases an
overall improvement in computationai efficiency can be achieved.

1. COLUMN SELECTION IN THE SIMPLEX METHOD

Let B be a primai feasible basis for the linear program to minimize

cBxB-\-cNxN

subject to

Bx

so that B'1 exists and B~1b^:0. The reduced costs in the revised simplex
method [4] are given by

cN — cN — nN where n = cB B ~1.

If cNg:0, then (x%, x%) = (B~x b, 0) is an optimal solution. Otherwise, any
column Nj in N with cN<0 can be introduced into the basis for an improved
solution.

The standard column sélection rule chooses Nj with the most négative cN,.
This corresponds to following that edge of the polyhedral feasible région which
shows the greatest rate of decrease in the objective value. The virtue of the
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Standard rule, and hence its popularity in practice, is that given cN no extra
computation is required. Many other rules have been proposed and tested [2,3,
5, 6, 7, 9]. In gênerai, they are devised to enhance, at the cost of extra
computation, the actual one-step decrease in the objective value so that the
number of itérations to optimality may be reduced. However, none of them takes
into account explicitly the sparsity of the basis.

2. SPARSITY AND THE REVISED SIMPLEX METHOD

As summarized in [1], sparsity is the main feature of linear programs in
practice that has allowed the development of efficient variants of the simplex
method. In particular, along with the revised simplex algorithm which keeps the
basis inverse in some factorized form, reinversion techniques are available to
seek compact représentations of the inverse of a sparse basis [1, 8, 11].

Consider the revised simplex method with the product form of inverse (PFI).
Here, the basis inverse is represented by what are commonly called ETA vectors
stored compactly (i. e. nonzeroes only) in an ETA file [10]. With each change of
basis, a new ETA vector is created to update the PFI. As a resuit, the size of the
ETA file grows, implying more work for each subséquent itération. To regulate
this process, a reinversion is performed periodically to start a new, usually much
more compact ETA file.

This suggests the following heuristics. By choosing a sparser séquence of
bases, relative to, say, that irnplied by the standard rule, we may hope to;

(i) attain a more compact ETA file at each reinversion; and
(ii) reduce the growth of the ETA file between reinversions.
Then, less work per itération may be expected and provided that the number

of itérations required is not much more than the standard séquence, an overall
improvement may be achieved. Moreover, (i) and (ii) imply a réduction of
storage requirement for the ETA file as well as improved numerical accuracy.

3. A SPARSE COLUMN SELECTION RULE

To find a sparse séquence of bases we propose the following modification of the
Standard column sélection rule. Let Kj be the number of non-zero coefficients in
column Nj and

Then choose Nj with the most négative c'N_. In other words, we use the standard
rule with reduced costs weighted by a measure of the column sparsity.

Note that this modification is so simple that it requires only changing one
instruction in any advanced LP code,
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In gênerai, any positive, non-increasing function in Kj can be used as a
weighting factor for the usual reduced costs or any of their normalized forms
given by other column sélection rules [2, 3, 5, 6, 7, 9].

4. COMPUTATIONÂL EXPERIENCE

For an empirical comparison of the spar se rule with the standard rule, a
Fortran, in-core implementation [12] of the revised simplex method with
product form of inverse was used. The reinversion routine is that described in [1]
and [11]. Ten small to medium-size problems (averaging 340 constraints) from
various real applications were solved using the two column sélection rules. The
dimensions as well as the models giving rise to the test problems are summarized
in table I. The experiments with Problems 1, 4, 5, 7, 9 and 10 were performed
on a CDC 7600 at Brookhaven National Laboratory, U.S.A., and the rest on an
IBM 370/158 at the Catholic University of Louvain, Belgium.

TABLE I

The test problems

PROBLEM

1

2

3

4

5

6

7

8

9

10

NAME

SCAGR7

BESOM

SC205

SCTAP1

SCFXMl

SCORPION

SCSD8

SCAGR25

SCRS8

SCFXM2

APPLICATION

Agricultural
model

U.S. energy
model

Economie
growth model

Traffic
assignaient

Production
planning

French energy
model

Optimal design
in structural
engineering

Agricultural
model

ü.S. Energy
model

Production
planning

ROWS

130

166

206

311

331

389

398

472

491

661

COLUMNS

270

498

409

791

788

74?

3148

972

1660

1575

NONZEROS

680

5889

758

3683

2943

2133

11732

2501

4520

5890

% DENSIÏY

1.95

7.12

0.90

1.50

1.13

0.73

0,94

0.55

0.55

0.57
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In each case, the maximum size of ETA allo wed was 12,000 non-zero éléments
and the reinversion frequency was set at 30 itérations. The averages for the
number of non-zero coefficients in the basis and ETA were taken over the total
number of simplex itérations to optimality, starting from an all-logical basis. The
relative performance of the sparse rule to the standard rule is presented in
table IL

TABLE II

Performance of the sparse rule relative to the standard rule

V. RELATIVE

PRÛB^E>TSTlCS

P R Û B L E M \ ^

1

2

3

4

5

6

7

8

9

10

MEAN

DEVIATION

AVERAGE NUMBER

OP NONZEROS IN

BASIS

0.94

0.70

0.99

0.85

0.91

0.90

0.94

0.84

0.93

0.94

0.90

0.08

ETA

0.76

0.69

0.85

0.95

0.89

0.81

0.85

0.76

0.89

0.93

0.84

0.08

ITERATIONS

I

1.05

1.09

1.00

0.92

1.04

1.00

0.73

0.72

0.82

1.07

0.94

0.14

CPU
TIME

T

0.97

1.09

0.94

0.87

1.03

1.00

0.70

0.60

0.77

1.05

0.90

0.16

T / I

0.92

0.99

0.94

0.95

0.98

1.00

0.96

0.33

0.94

0.99

0.95

0.05

Based on the results of our test problems, we make the following observations:
(a) the sparse rule tends to select a sparser simplex path. The average basis for

the average case is reduced by 10%;
(b) the sparser path selected by the sparse rule has a smaller ETA file. The

average ETA for the average case is reduced by 16%;
(c) the average time per itération is reduced by 5% for the average case;
(d) in many cases, the sparser path is actually shorter than the standard path.

When this occurs, an overall réduction in solution time can be expected (cf. fig).
Otherwise, it dépends on the trade-off bet ween the increase in itérations and the
decrease in time per itération;

(e) the sparse rule does not seem to do much harm even in the worst case
encountered in our experiments. While the average case shows a 10% overall
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improvement, it is really the possibility of cases like Problems 7, 8 and 9 (30, 40
and 23%, improvement respectively) that is of significance {cf. table II);

NONZEROS

IN ETA

(X103)

STANDARD RULE

SPARSE RULE

300 600 900
SIMPLEX ITERATIONS

Growth of non-zeros in the ETA file for Problem 8.
In each case, the upper graph represents the situation right before a reinversion,

the louer graph right a f ter.

( ƒ ) since the sparse rule can be obtained from the standard rule by modifying
only one instruction to the computer, it should be a useful option in a LP code.

ACKNOWLEDGEMENT

The author is grateful to the Center for Opérations Research and Econometrics, Catholic
University of Louvain, Belgium, for supporting part ofthis work during his visits. He wishes to thank
Etienne Loute for many helpful discussions as well as assistance in the computer experiments, and
John Tomlin for providing the LPM1 code.

REFERENCES

1. E. M. L. BEALE, Sparseness in Linear Programming, in Large Sparse Sets of Linear
Equations, J. K. REID, éd., Academie Press, London, 1971, pp. 1-15.

2. H. CROWDER and J. M. HATTINGH, Partially Normalized Pivot Sélection in Linear
Programming, Mathematical Programming Study, Vol. 4, 1975, pp. 12-25.

vol. 12, n° 3, août 1978



290 J. K. HO

3. L. CUTLER and P. WOLFE, Experiments in Linear Programming, in Recent advances in
mathematical programming R. L. GRAVES and P. WOLFE, éd. McGraw-Hill, New
York, 1963, pp. 177-200.

4. G. B. DANTZIG, Linear Programming and Extensions, Princeton University Press,
Princeton, N.J., 1963.

5. J. C. DICKSON and F. P. FREDERICK, A Décision Rulefor Improved Efficiency in Solving
Linear Programming Problems with the Simplex Algorithm, Communications of the
Association for Computing Machinery, Vol. 3, 1960.

6. D. GOLDFARB, Using the Steepest-Edge Simplex Algorithm to Solve Sparse Linear
Programs in Sparse matrix computations, J. R. BUNCH and D. ROSÉ, éd., Academie
Press, New York, 1976, pp. 227-240.

7. P. M. J. HARRIS, Pivot Sélection Methods of the Devex LP Code, Mathematical
Programming Study, Vol. 4, 1975, pp. 30-57.

8. E. HELLERMAN and D. RARICK, Reinversion with the Preassigned Pivot Procedure,
Mathematical Programming, Vol. 1, 1971, pp. 195-216.

9. H. W. KUHN and R. E. QUANDT, An Expérimental Study of the Simplex Method,
Proceedings of symposia in applied mathematics, Vol. 15, Amer. Math. Soc,
Providence, R.I., 1963.

10. W. ORCHARD-HAYS, Advanced Linear Programming Computing Techniques, McGraw-
Hill, New York, 1968.

'11. J. A. TOMLIN, Pivoting for Size and Sparsity in Linear Programming Inversion
Routines, J. Inst. Math, and Appl., Vol. 10, 1972, pp. 289-295.

12. J. A. TOMLIN, LPMl user's Manual, Systems Optimization Laboratory, Department
of Opérations Research, Stanford University, 1973.

R.A.LR.O. Recherche opérationnelle/Opérations Research


