Pricing for sparsity in the revised simplex method
RAIRO - Operations Research - Recherche Opérationnelle, Volume 12 (1978) no. 3, pp. 285-290.
@article{RO_1978__12_3_285_0,
     author = {Ho, James K.},
     title = {Pricing for sparsity in the revised simplex method},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {285--290},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {3},
     year = {1978},
     zbl = {0384.90082},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1978__12_3_285_0/}
}
TY  - JOUR
AU  - Ho, James K.
TI  - Pricing for sparsity in the revised simplex method
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1978
SP  - 285
EP  - 290
VL  - 12
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1978__12_3_285_0/
LA  - en
ID  - RO_1978__12_3_285_0
ER  - 
%0 Journal Article
%A Ho, James K.
%T Pricing for sparsity in the revised simplex method
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1978
%P 285-290
%V 12
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1978__12_3_285_0/
%G en
%F RO_1978__12_3_285_0
Ho, James K. Pricing for sparsity in the revised simplex method. RAIRO - Operations Research - Recherche Opérationnelle, Volume 12 (1978) no. 3, pp. 285-290. http://archive.numdam.org/item/RO_1978__12_3_285_0/

1. E. M. L. Beale, Sparseness in Linear Programming, in Large Sparse Sets of Linear Equations, J. K. REID, éd., Academic Press, London, 1971, pp. 1-15.

2. H. Crowder and J. M. Hattingh, Partially Normalized Pivot Selection in Linear Programming, Mathematical Programming Study, Vol. 4, 1975, pp. 12-25. | MR | Zbl

3. L. Cutler and P. Wolfe, Experiments in Linear Programming, in Recent advances in mathematical programming R. L. GRAVES and P. WOLFE, éd. McGraw-Hill, New York, 1963, pp. 177-200. | MR | Zbl

4. G. B. Dantzig, Linear Programming and Extensions, Princeton University Press Princeton, N.J., 1963. | MR | Zbl

5. J. C. Dickson and F. P. Frederick, A Decision Rule for Improved Efficiency in Solving Linear Programming Problems with the Simplex Algorithm, Communications of the Association for Computing Machinery, Vol. 3, 1960. | MR | Zbl

6. D. Goldfarb, Using the Steepest-Edge Simplex Algorithm to Solve Sparse Linear Programs in Sparse matrix computations, J. R. BUNCH and D. ROSE, ed., Academic Press, New York, 1976, pp. 227-240. | MR | Zbl

7. P. M. J. Harris, Pivot Selection Methods of the Devex LP Code, Mathematical Programming Study, Vol. 4, 1975, pp. 30-57. | MR | Zbl

8. E. Hellerman and D. Rarick, Reinversion with the Preassigned Pivot Procedure, Mathematical Programming, Vol. 1, 1971, pp. 195-216. | MR | Zbl

9. H. W. Kuhn and R. E. Quandt, An Experimental Study of the Simplex Method, Proceedings of symposia in applied mathematics, Vol. 15, Amer. Math. Soc, Providence, R.I., 1963. | MR | Zbl

10. W. Orchard-Hays, Advanced Linear Programming Computing Techniques, McGraw-Hill, New York, 1968.

11. J. A. Tomlin, Pivoting for Size and Sparsity in Linear Programming Inversion Routines, J. Inst. Math, and Appl., Vol. 10, 1972, pp. 289-295. | Zbl

12. J. A. Tomlin, LPM1 user's Manual, Systems Optimization Laboratory, Department of Operations Research, Stanford University, 1973.