EGON BALAS MANFRED W. PADBERG Adjacent vertices of the all 0-1 programming polytope

RAIRO. Recherche opérationnelle, tome 13, nº 1 (1979), p. 3-12 http://www.numdam.org/item?id=RO_1979_13_1_3_0

© AFCET, 1979, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Recherche opérationnelle » implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ R.A.I.R.O. Recherche opérationnelle/Operations Research (vol. 13, nº 1, février 1979, p. 3 à 12)

ADJACENT VERTICES OF THE ALL 0-1 PROGRAMMING POLYTOPE (*) (1)

by Egon BALAS (²)

and Manfred W. PADBERG $(^3)$

Abstract. -- We give a constructive characterization of adjacency relations between vertices of the convex hull of feasible 0-1 points of an all 0-1 program. This characterization can be used, for instance, to generate all vertices of the convex hull, adjacent to a given vertex. As a by-product, we establish a strong bound on the diameter of the convex hull of feasible 0-1 points.

Any linear 0-1 programming problem can be brought (by using binary expansion on the slack variables, when necessary, or other devices) to the form of an equality-constrained all 0-1 program:

min { $cx \mid x \in X$, x integer } **(P)**

where

$$X = \{ x \in \mathbb{R}^n | Ax = b, x \ge 0 \}$$

and where A is $m \times n$, and Ax = b implies $x_j \le 1, \forall j \in N = \{1, \ldots, n\}$.

We will assume, without loss of generality, that A has no identical columns or zero columns, and is of full row rank. The *j*-th column of A will be denoted a_i .

Let (P') denote the linear program associated with (P), i. e.,

(P') $\max \{ cx \mid x \in X \}.$

Further, let X_I be the convex hull of the feasible 0-1 points, i. e.,

 $X_I = \operatorname{conv} \{ x \in X \mid x \text{ integer} \}$

and let vert X (vert X_I) denote the set of vertices of X (of X_I). X_I is the all 0-1 programming polytope referred to in the title.

^(*) Manuscrit reçu Octobre 1977, révisé Janvier 1978.

⁽¹⁾ The research underlying this paper was supported by the National Science Foundation by grant MPS73-08534 A02. (²) Carnegie Mellon University, Pittsburg.

^{(&}lt;sup>3</sup>) New York University.

R.A.I.R.O. Recherche opérationnelle/Operations Research, 0399-0842/1979/3/\$1.00 © Bordas-Dunod.

It is a well-known property of 0-1 programs that every feasible integer solution is basic. Hence, vert $X_I \subseteq$ vert X. Further, a solution associated with a feasible basis B, whose columns are indexed by I, is integer if and only if $\sum_{i\in Q} a_i = b$ for some $Q \subseteq I$, and Q is unique whenever it exists.

Finally, if B is a feasible basis, I and J are the associated basic and nonbasic index sets, and $\bar{a}_j = B^{-1}a_j$. To simplify notation, we assume the components of x to have been ordered so that $I = \{1, \ldots, m\}$; thus the components of \bar{a}_j are \bar{a}_{ij} , $i = 1, \ldots, m$. Observe that $\bar{a}_{ij} > 0$ for at least one $i \in I$ and every $j \in J$, since X is bounded. Further, we denote

$$\bar{a}^{j} = \begin{pmatrix} \bar{a}_{j} \\ -e_{j} \end{pmatrix} \tag{1}$$

where e_j is the (n - m)-dimensional unit vector whose *j*-th component is 1; i. e., the *n*-vector \bar{a}^j is the *j*-th column of the Tucker-tableau. The *k*-th component of \bar{a}^j is denoted by \bar{a}_k^j .

Given a linear program, two *bases* are called *adjacent* if they differ in exactly one column. Two *basic feasible solutions* are called *adjacent* if they are adjacent vertices of the feasible set (i. e., distinct vertices contained in an edge, or 1-dimensional face). Two adjacent bases may be associated with the same solution; while two adjacent basic feasible solutions may be associated with two bases that are not adjacent to each other.

The results of this paper were first shown in [1], [2] to hold for the set partitioning problem, a special case of the problem considered here. Most of the proofs given in [2] carry over to the general case with only minor changes, but the main result (the sufficiency part of Theorem 3) requires a different approach. For the sake of completeness, we give all the proofs.

THEOREM 1: Let x^1 and x^2 be two feasible integer solutions to (P'). Let B be a basis matrix associated with x^1 , let I and J be the index sets for the basic and nonbasic variables respectively, and for i = 1, 2, let

$$Q_i = \{ j \in N \mid x_j^i = 1 \}, \qquad \overline{Q}_i = N - Q_i.$$

Then, denoting $\bar{a}_j = B^{-1}a_j, j \in J$,

$$\sum_{j \in J \cap Q_2} \bar{a}_{kj} = \begin{cases} 1 & k \in Q_1 \cap \bar{Q}_2 \\ -1 & k \in Q_2 \cap \bar{Q}_1 \cap I \\ 0 & k \in (Q_1 \cap Q_2) \cup (\bar{Q}_1 \cap \bar{Q}_2 \cap I). \end{cases}$$
(2)

Proof: From the definition of Q_i , i = 1, 2, we have

$$\sum_{k\in Q_1}a_k=\sum_{k\in Q_2}a_k\,$$

which implies

$$\sum_{j\in J_1\cap Q_2} a_j = \sum_{k\in Q_2} a_k - \sum_{k\in Q_2\cap I} a_k$$
$$= \sum_{k\in Q_1} a_k - \sum_{k\in Q_2\cap I} a_k$$
$$= \sum_{k\in Q_1\cap \overline{Q}_2} a_k - \sum_{k\in Q_2\cap \overline{Q}_1\cap I} a_k$$

(by subtracting and adding $\sum_{k \in Q_1 \cap Q_2} a_k$).

Premultiplying the last equation by B^{-1} then produces (2), since the vectors a_{k} , $k \in Q_1$ and $k \in I$, are columns of B. Q. E. D.

Next we state the converse of Theorem 1.

THEOREM 2: Let x^1 be a feasible integer solution to (P'), let B, I, J, Q_1 and \overline{a}_j , $j \in J$, be defined as in Theorem 1. Further, let the index set $Q \subseteq J$ satisfy

$$\sum_{j \in \mathcal{Q}} \overline{a}_{kj} = \begin{cases} 0 \quad \text{or} \quad 1 \quad k \in \mathcal{Q}_1 \\ 0 \quad \text{or} \quad -1 \quad k \in I_1 \cap \overline{\mathcal{Q}}_1 \end{cases}$$
(3)

Then x^2 defined by

$$x^2 = x^1 - \sum_{j \in Q} \bar{a}^j \tag{4}$$

is a basic feasible solution to (P'), and

$$x_j^2 = \begin{cases} 1 & j \in Q_2 = Q \cup S \\ 0 & \text{otherwise} \end{cases}$$
(5)

where

$$S = \{ k \in Q_1 \mid \sum_{j \in Q} \bar{a}_{kj} = 0 \} \cup \{ k \in \bar{Q}_1 \cap I \mid \sum_{j \in Q} \bar{a}_{kj} = -1 \}.$$

Proof: Consider the problem (\bar{P}') in (n + 1)-space, obtained from (P') by augmenting A with the composite column $a_{j_*} = \sum_{j \in Q} a_j$. The transformed column $\bar{a}_{j_*} = B^{-1}a_{j_*}$ has an entry $\bar{a}_{kj_*} = 1$ for some $k \in Q_1$, for otherwise (3) implies $\bar{a}_{kj_*} \leq 0$, $\forall k \in I$, which is impossible in view of the boundedness of the solution set. Pivoting on $\bar{a}_{kj_*} = 1$ yields a feasible solution \tilde{x}^2 to (\bar{P}') , defined by

$$\tilde{x}_j^2 = \begin{cases} 1 & j \in \{j_*\} \cup S \\ 0 & \text{otherwise.} \end{cases}$$
$$\sum_{j \in S} a_j + a_{j^*} = \sum_{j \in S \cup Q} a_j = e$$

Since

it follows that x^2 as defined by (5) is feasible for (P'). Since x^2 is integer, it is also basic. From Theorem 1, relation (4) follows with $Q = J_1 \cap Q_2$. Q. E. D.

A set $Q \subset J$ for which (3) holds will be called *decomposable* if it can be vol. 13, n° 1, février 1979

partitioned into two subsets, Q^* and Q^{**} , such that (3) remains true when Q is replaced by Q^* and Q^{**} respectively.

We now give a necessary and sufficient condition for two integer vertices of X to be adjacent on X_I .

THEOREM 3: Let x^1 and x^2 be two feasible integer solutions to (P'), with B, I, J, Q_1 and \bar{a}_j , $j \in J$, defined as in Theorem 1, and $Q_2 = \{j \in N \mid x_j^2 = 1\}$. Then x^2 is adjacent to x^1 on X_I (i. e., x^1 and x^2 lie on an edge of X_I) if and only if $Q = J \cap Q_2$ is not decomposable.

Proof: (i) Necessity. Suppose Q is decomposable into Q^* and Q^{**} . Then the vectors

$$x^{i} = x^{1} - \sum_{j \in S_{i}} \bar{a}^{j}, \quad i = 2, 3, 4$$
 (6)

where $S_2 = Q$, $S_3 = Q^*$, $S_4 = Q^{**}$, and \bar{a}^i is defined by (1), are all feasible integer solutions to (P'), hence vertices of X_I . Let $\pi x = \pi_0$ be a supporting hyperplane for X_I , such that $\pi x^i = \pi_0$ for i = 1, 2 and $\pi x \le \pi_0, \forall x \in X_I$. (If no such hyperplane exists, then x^1 and x^2 are not adjacent on X_I , and the statement is proved.) Then from (6)

 $\pi x^3 = \pi x^1 - \pi (\sum \bar{a}^j) < \pi_0 = \pi x^1$

$$\pi x^{1} = \pi x^{2}$$

= $\pi x^{1} - \pi (\sum_{j \in Q} \bar{a}^{j}) = \pi_{0}$
 $\pi (\sum_{j \in Q} \bar{a}^{j}) = 0,$ (7)

or

whereas

$$\pi x^{4} = \pi x^{1} - \pi \left(\sum_{j \in Q^{**}} \bar{a}^{j}\right) \le \pi_{0} = \pi x^{1}$$
$$\pi \left(\sum_{i \in Q^{*}} \bar{a}^{j}\right) \ge 0, \qquad \pi \left(\sum_{i \in Q^{**}} \bar{a}^{j}\right) \ge 0.$$
(8)

or

Then from (7) and (8) we have

$$\pi\big(\sum_{j\in Q^*} \bar{a}^j\big) = 0, \qquad \pi\big(\sum_{j\in Q^{**}} \bar{a}^j\big) = 0$$

or $\pi x^3 = \pi x^4 = \pi_0$. Hence any supporting hyperplane for X_I that contains x^1 and x^2 , also contains x^3 and x^4 ; i. e., x^1 and x^2 cannot lie on an edge of, or be adjacent on, X_I .

(ii) Sufficiency. Suppose x^1 and x^2 are not adjacent on X_I . Let F be the face of minimal dimension of X_I , which contains both x^1 and x^2 (F is clearly

unique), and let x^{11}, \ldots, x^{1p} be the vertices of F adjacent to x^1 on F. The (translated) convex polyhedral cone

$$C(x^{1}) = \{ x \mid x = x^{1} + (x^{1i} - x^{1})\lambda_{i}, \lambda_{i} \geq 0, i = 1, ..., p \}$$

is known (see for instance [3]) to be the intersection of those halfspaces H_i^+ , i = 1, ..., p, such that $x^1 = \bigcap_{i=1}^{p} H_i$, where $H_i = bdH_i^+$. Since $\{H_i^+\}_{i=1}^{i=p}$ is a subset of the set of halfspaces whose intersection is X_I , clearly $X_I \subseteq C(x^1)$, and therefore every vertex x of F can be expressed as

$$x = x^{1} + \sum_{i=1}^{p} (x^{1i} - x^{1})\lambda_{i}, \quad \lambda_{i} \ge 0, \quad i = 1, ..., p.$$
 (9)

Since x^2 is not adjacent to x^1 , $p \ge 2$. From Theorems 1 and 2,

$$x^{1i} = x^1 - \sum_{j \in Q_{1i}} \bar{a}^j, \qquad i = 1, ..., p$$
 (10)

and

$$x^{2} = x^{1} - \sum_{j \in Q} \bar{a}^{j}$$
(11)

where $Q_{1i} \subseteq J$, $i = 1, \ldots, p$, and $Q \subseteq J$.

Since F is the lowest-dimensional face of X_I containing both x^1 and x^2 , there exist $\lambda_i > 0$ for i = 1, ..., p, such that (9) holds with $x = x^2$. For if not, then x^2 is contained in a face F' of $C(x^1)$ such that

 $\dim F' < \dim C(x^1) = \dim F.$

But $F'' = \operatorname{aff} F' \cap X_I$ is a face of X_I that contains both x^1 and x^2 and dim $F'' = \dim F' < \dim F$,

which contradicts the assumption that F is the lowest-dimensional face of X_I containing both x^1 and x^2 . Using (10) and the fact that (9) holds with $x = x^2$ for some $\lambda_i > 0$, i = 1, ..., p, we have

$$x^{2} = x^{1} + \sum_{i=1}^{p} (x^{1i} - x^{1})\lambda_{i}$$
$$= x^{1} - \sum_{i=1}^{p} (\sum_{j \in Q_{1i}} \bar{a}^{j})\lambda_{i}$$

and from (11)

$$\sum_{j\in Q} \bar{a}^j = \sum_{i=1}^p \left(\sum_{j\in Q_{1i}} \bar{a}^j \right) \lambda_i, \quad \text{with} \quad \lambda_i > 0, \qquad i = 1, \ldots, p,$$

which implies $Q = \bigcup_{i=1}^{\nu} Q_{1i}$.

vol. 13, nº 1, février 1979

7

We now partition Q into two subsets $Q^* = Q_{11}$ and $Q^{**} = Q - Q^*$. To complete the proof, we will show that (3) holds when Q is replaced by Q^{**} (for Q^* this follows from Theorem 1). This will be done by showing that x^{**} is a feasible integer solution to (P'), where

$$x^{**} = x^{1} - \sum_{j \in Q^{**}} \overline{a}^{j}$$

= $x^{2} + \sum_{j \in Q^{*}} \overline{a}^{j}$ (12)

Theorem 1 then implies that (3) holds with Q replaced by Q^{**} .

First, from Theorem 1 and the definition of Q^* , x^{**} is integer. Next we show by contradiction that $x^{**} \ge 0$. Suppose $x_k^{**} < 0$. Then from (12), $x_k^2 = 0$ and $\sum_{j \in Q_{i,1}} \hat{a}_k^j = -1$ (since $Q^* = Q_{11}$). But from (10), this implies (for i = 1) $x_k^1 = 0$, and hence

$$\sum_{i \in \mathcal{Q}_{1i}} \bar{a}_k^j \le 0, \qquad \forall i \in \{1, \ldots, p\}$$
(13)

But

$$x_{k}^{2} = x_{k}^{1} - \sum_{i=1}^{p} \left(\sum_{j \in Q_{1i}} \bar{a}_{k}^{j} \right) \lambda_{i}, \qquad \lambda_{i} > 0, \qquad i = 1, \ldots, p;$$
(14)

hence $x_k^2 > 0$, contradicting our earlier finding that $x_k^2 = 0$. Hence, $x^{**} \ge 0$.

Suppose on the other hand that $x_k^{**} > 1$. By (12), $x_k^2 = 1$ and $\sum_{i \in \Omega_1} \bar{a}_k^i = 1$

(since $Q_{11} = Q^*$). But from (10), this implies (for i = 1) that $x_k^1 = 1$, and hence that (13) holds with reversed inequality. Again from (14) we conclude that $x_k^2 < 1$, contradicting our earlier finding that $x_k^2 = 1$. Consequently, $0 \le x_k^{**} \le 1$ for all $k \in N$. Finally, $Ax^{**} = b$, since

$$A\bar{a}^{j} = (B, R) \begin{pmatrix} B^{-1}a_{j} \\ -e_{j} \end{pmatrix}$$
$$= a_{j} - a_{j} = 0, \quad \forall j \in J$$

where R is the submatrix of A consisting of the columns a_j , $j \in J$. Hence x^{**} is a feasible 0-1 point. Q. E. D,

COROLLARY 3.1: Let x^1 and x^2 be two vertices of X_I , and let B, I, J and \overline{a}^j , $j \in J$, be defined as above. Then x^2 is not adjacent to x^1 on X_I , if and only if there exists a family of p sets $Q_{1i} \subseteq J$, $i = 1, \ldots, p$, such that

(i) $p \ge 2$; (ii) $Q_{1i} \cap Q_{1k} = \emptyset$, $\forall i \ne k$; (iii) the points $x^{1i} = x^1 - \sum_{j \in Q_{1i}} \bar{a}^j$, i = 1, ..., p

are vertices of X_I , adjacent to x^1 ; and

(iv)
$$x^{2} = x^{1} - \sum_{i=1}^{p} \sum_{j \in Q_{1i}} \bar{a}^{j}$$
$$= x^{1} + \sum_{i=1}^{p} (x^{1i} - x^{1}).$$

Proof: (a) Necessity. If x^1 and x^2 are not adjacent on X_I , then by Theorem 3 $Q = J \cap Q_2$ can be partitioned into two subsets Q^* and Q^{**} such that (3) holds with Q replaced by Q^* and Q^{**} . If

$$x^* = x^1 - \sum_{j \in Q^*} \overline{a}^j$$
$$x^{**} = x^1 - \sum_{j \in Q^{**}} \overline{a}^j$$

are both adjacent to x^1 , the statement is proved; otherwise the reasoning can be applied to Q^* and/or Q^{**} , and can be repeated as many times as needed to obtain pairwise disjoint sets Q_{1i} , i = 1, ..., p, with $p \ge 2$, which are not decomposable.

(β) Sufficiency. If the condition holds, then $Q = \bigcup_{i=1}^{p} Q_{1i} = J \cap Q_2$. Furthermore, (7) is satisfied when Q is replaced by Q_{1i} for $i = 1, \ldots, p$.

From (*iii*) it follows that the vectors $\sum_{j \in Q_{1i}} \overline{a}^j$ and $\sum_{j \in Q_{1h}} \overline{a}^j$ are mutually orthogonal for all $i \neq h$, $i, h \in \{1, \ldots, p\}$. Consequently, (3) also holds when Q is replaced by $\bigcup_{i=2}^{p} Q_{1i}$. Thus Q is decomposable into Q_{11} and $\bigcup_{i=2}^{p} Q_{1i}$, hence x^1 and x^2 are not adjacent. Q. E. D.

COROLLARY 3.2: If x^1 and x^2 are two non-adjacent vertices of X_I related to each other by (*iv*), then for any subset H of $\{1, \ldots, p\}$,

$$x^* = x^1 - \sum_{i \in H} \sum_{j \in Q_{1i}} \overline{a}^j$$
$$= x^1 + \sum_{i \in H} (x^{1i} - x^1)$$

is a vertex of X_I .

Proof: From (*iii*), the vectors $\sum_{j \in Q_{1i}} \bar{a}^j$ and $\sum_{j \in Q_{1k}} \bar{a}^j$ are pairwise orthogonal for all $i, h \in \{1, \ldots, p\}, i \neq h$; hence if (3) holds for $Q = \bigcup_{i=1}^{p} Q_{1i}$, then it also holds when Q is replaced by $\bigcup_{i \in H} Q_{1i}$. Q. E. D.

vol. 13, nº 1, février 1979

Corollary 3.2 can be given the following geometric interpretation. A path on X_I between two vertices x, y is a sequence of vertices (x^1, x^2, \ldots, x^k) , with $x^1 = x$, $x^k = y$, such that every pair of vertices x^i , x^{i+1} , $i = 1, \ldots, k-1$, is connected by an edge of X_I ; the length of the path being k - 1. The edgedistance d(x, y) between x and y is the length of a shortest path between xand y. The diameter $\delta(X_I)$ of X_I is the longest edge-distance between any two vertices of X_I .

Let [a] denote the largest integer less than or equal to the real number a. For the next corollary, we assume that the matrix A defining X_I has no identical columns.

COROLLARY 3.3:
$$\delta(X_I) \le \left[\frac{z^*}{2}\right]$$
 where
 $z^* = \max\left\{\sum_{j=1}^n x_j \mid x \in X_I\right\}$

Proof: Let x^1 , x^2 be a pair of vertices of X_I which are at maximal edgedistance from each other, i. e., for which

$$d(x^1, x^2) = \delta(X_I)$$

Further, let B be a basis associated with x^1 ; let I, J, Q_1 and \bar{a}^j , $j \in J$, be defined as above.

From Corollary 3.1,

$$x^{2} = x^{1} - \sum_{i=1}^{p} \sum_{j \in Q_{1i}} \bar{a}^{j}$$
(15)

and from Corollary 3.2, (15) holds with $p \ge \delta(X_I)$, since the sequence of vertices $\{x^{10}, x^{11}, \ldots, x^{1p}\}$, of X_I , where $x^{10} = x^1$ and $x^{1p} = x^2$, with

$$x^{1k} = x^1 - \sum_{i=1}^k \sum_{j \in Q_{1i}} \overline{a}^j \qquad k = 1, \ldots, p,$$

defines a path of length p between x^1 and x^2 .

Now let $P = \{1, ..., p\}$, and let

$$P_1 = \left\{ i \in P \mid \sum_{j \in Q_{1i}} \bar{a}_k^j = 1 \text{ for exactly one } k \in N \right\}.$$

If $P_1 = \emptyset$, then from (15) and the definition of z^* ,

$$p \le \left[\frac{|Q_1|}{2}\right] \le \left[\frac{z^*}{2}\right]$$

which, together with $\delta(X_I) \leq p$, proves the corollary. Suppose now that $P_1 \neq \emptyset$. Then for each $i \in P_1$, the vector $\sum_{j \in Q_{1i}} \overline{a}^j$ has at least two negative components.

For otherwise Q_{1i} is a singleton, say $Q_{1i} = \{h\}$, and \overline{a}^h is of the form

$$\overline{a}^h = \left(\frac{e_i^m}{-e_h^{n-m}}\right)$$

(where e_j^k is the k-dimensional unit vector whose j-th entry is 1); which implies that the nonbasic column a_h of A is identical to a basic column, contrary to our assumption. Now let

$$x^{3} = x^{1} - \sum_{i \in P_{1}} \sum_{j \in Q_{1i}} \bar{a}^{j},$$

$$x^{4} = x^{1} - \sum_{i \in P - P_{1}} \sum_{j \in Q_{1i}} \bar{a}^{j},$$

where both x^3 and x^4 are vertices of X_I (Corollary 3.2). Then

$$x^{4} = x^{3} - \sum_{i \in P_{1}} \left(-\sum_{i \in Q_{1i}} \bar{a}^{j} \right) - \sum_{i \in P - P_{1}} \sum_{j \in Q_{1i}} \bar{a}^{j};$$
(16)

but in view of

$$\sum_{j\in Q_{1i}} \bar{a}_k^j \neq 0 \implies \sum_{j\in Q_{1h}} \bar{a}_k^j = 0, \qquad \forall k \in N, \quad \forall i, h \in P, \quad i \neq h,$$

(16) implies that $p \leq \left[\frac{|Q_3|}{2}\right]$, where $Q_3 = \{j \in N \mid x_j^3 = 1\}$. Hence, in view of $\delta(X_1) \leq p$ and $|Q_3| \leq z^*$, the corollary follows. Q. E. D.

REMARK: If in the definition of X_I , $A = (A_G, I_m)$ and $b = (e^m)$, where I_m is the identity matrix of order m, $e^m = (1, ..., 1) \in \mathbb{R}^m$, and A_G is the $m \times \left(\frac{m}{2}\right)$ incidence matrix of the complete undirected graph with m vertices, then $\delta(X_I) = \left[\frac{z^*}{1}\right]$, since $\delta(X_I)$ is achieved by the minimum distance between the empty matching and any maximum matching on the matching polytope. In this sense the upper bound on $\delta(X_I)$ given in the above Corollary is a strongest possible one.

The property stated in the next Theorem, which does not hold for arbitrary integer programs, has some interesting algorithmic implications.

THEOREM 4: Let x^1 be a non-optimal vertex of X_I , let x^{1i} , i = 1, ..., k, be those vertices of X_I adjacent to x^1 , and such that $cx^{1i} < cx^1$, i = 1, ..., k. Then the convex polyhedral cone

$$C = \{ x \mid x = x^{1} + \sum_{i=1}^{k} (x^{1i} - x^{1})\lambda_{i}, \lambda_{i} \ge 0, i = 1, ..., n \}$$

contains an optimal vertex of X_I .

vol. 13, nº 1, février 1979

Proof: Let \bar{x} be an optimal vertex of X_I . If \bar{x} is adjacent to x^1 , then $\bar{x} \in C$. Otherwise, \bar{x} can be expressed (Corollary 3.1) as

$$\bar{x} = x^{1} - \sum_{i=1}^{p} \sum_{j \in Q_{1i}} \bar{a}^{j}$$
$$= x^{1} + \sum_{i=1}^{p} (x^{1i} - x^{1})$$

where x^{1i} , i = 1, ..., p, are vertices of X_I adjacent to x^1 . Then

$$0 < cx^1 - c\bar{x} = \sum_{i=1}^p \sum_{j \in Q_{1i}} c\bar{a}^j$$

Let $\{1, \ldots, p\} = P$, and let $P^+ = \{1, \ldots, k\}$. Since $c\bar{x} < cx^1$, $P^+ \neq 0$. From Corollary 3.2, the point

$$x^* = x^1 - \sum_{i \in P^+} \sum_{j \in Q_{1i}} \bar{a}^j$$

= $x^1 + \sum_{i \in P^+} (x^{1i} - x^1)$

is a vertex of X_I , and from the definition of P^+ ,

$$cx^* = cx^1 + \sum_{i \in P^+} c(x^{1i} - x^1)$$

$$\leq cx^1 + \sum_{i=1}^p c(x^{1i} - x^1) = c\bar{x}.$$

Thus, since \overline{x} is optimal, so is x^* ; and since the vertices x^{1i} , $i \in P^+$ are among those that generate C, clearly $x^* \in C$. Q. E. D.

The above results can be used to generate integer vertices of the feasible set X, adjacent to a given integer vertex x^1 . Namely, by systematically generating composite columns of the form $\bar{a}^{j_*} = \sum_{j \in Q} \bar{a}^j$, where Q satisfies the requirements for $x^1 - \bar{a}^{j_*}$ to be a vertex of X_I adjacent to x^1 , one can obtain all such vertices. The efficiency of a procedure based on these results will of course be highly dependent on the specific way in which they are used; and in view of the many options that are available, this topic requires further investigation.

REFERENCES

- 1. E. BALAS and M. PADBERG, On the Set Covering Problem. Operations Research, 20, 1972, p. 1152-1161.
- 2. E. BALAS and M. PADBERG, On the Set Covering Problem. II: An Algorithm for Set Partitioning. *Operations Research*, 23, 1975, p. 74-90.
- 3. J. STOER and C. WITZGALL, Convexity and Optimization in Finite Dimensions. I. Springer, New York, 1970.