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A COMPLEMENTARITY APPROACH
FOR SOLV1NG LEONTIEF SUBSTITUTION SYSTEMS

AND (GENERALIZED) MARKOV DECISION PROCESSES (*)

by Gary J. KOEHLER (X)

Abstract. — Leontief Substitution Systems and (generalized) Markov décision processes can be
solved by value itération, policy itération, linear programming or hybrids of these. In this paper we
present a new procedure based upon an equivalent complementarity formulation. This formulation can
be solved by itérative methods as in value itération.

1. INTRODUCTION

In this paper we present a new algorithm for solving (generalized) Markov
décision processes and Leontief Substitution Systems. Utilizing a resuit due to
Cottle and Veinot [1] we formulate a nonstandard linear complementarity
problem which is equivalent to the original problem. This resulting problem can
be solved in a number of ways. In particular, Mangasarian's gênerai class of
itérative methods [5] for solving symmetrie linear complementarity problems
can be used.

2. NOTATION AND PRELIMINARY RESULTS

A matrix B is said to be Leontief [7] if it has exactly one positive element in
each column and there is an x^O such that Bx>0. Consider the problem

Max c'x,
s. t.

(2.1)

where B is an mxk Leontief matrix and è > 0 . We impose the following on (2.1).
(*) Reçu mars 1978.
(l) Department of Management, University of Florida, Gainesville.
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76 G. J. KOEHLER

Assumption A

Problem 2.1 has a bounded objective and the columns of B are scaled so that
the positive éléments of B are not greater than one.

m

Let At = {j : Bu>0} for i = l , . . . , m a n d A = n A*- For ÔeA let £5 be the

corresponding submatrix of B and let g5= I - Bb with Ps = Q'h. Of course P5^0.
Since the objective in (2.1) is bounded, we have that the problem has an

optimal solution at an extreme point of the feasible set. By Veinott [7] this
extreme point corresponds to a basis i?ô* where 8* e A, B^*1 exists and is non-
negative and p(P5*)< 1 [p(P§*) is the spectral radius of P5*].

Let D = {y : B'y^c} represent the dual feasible set. From Cottle and
Veinott [1] D has a least element v* and z;* = (£§*)= 1 c6*. Since b ̂  0 and v* is the
least element of D, v* solves the dual of (2.1).

Given A and Ps and cs for each 8 e A we refer to these as a generalized Markov
décision process. Discounted Markov décision processes fit this format with
each P s taking the formai^ where 0 < a < l and Rb is stochastic. A more
gênerai notion of a discounted Markov décision process has P§ ̂  0 and p (P§) < 1
for ail 8 e A [6]. Both of these problems give rise to a totally Leontief System and
these always have a bounded solution. The generalized Markov décision process
we define hère may have p(P s)^l for some 8 G A. We refer to [4] for several
properties of this form of generalized Markov décision process and for properties
of value itération under this format.

We take as our goal in solving a generalized Markov décision process that of
finding the least element of the fixed points of L where

L (v) = Max Pbv + cb. (2.2)

Since u* is the least element of D and is also a fixed point of L and every fixed
point of L must be in D, the détermination of v* is our goal.

3. SOLUTION METHODS

There are many methods available for solving (2.2) for the special case where
P (P§) < 1 f°r aH 8 G A. Specifically, one can use value itération, linear
programming, policy itération, or hybrids of these. For the gênerai case value
itération is starting point dépendent [4] and policy itération may break down.

One can also formulate the problem of simultaneously finding r* and a
solution to (2.1) as a linear complementarity problem. Recently Eaves [2] has
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directly formulated the fixed point problem given in (2.2) as a complementary
problem and provided an algorithm for finding v*.

Below, we give a new linear complementarity formulation for finding u*. The
resulting problem can be solved by traditional linear complementarity methods,
by quadratic programming methods, or by itérative methods. The method
foliows that given by Hildreth [3].

Let veD and z<u*. Clearly

- Z < ^ I ? — z

(since t>* is the least element of D - the dual feasible set) so that we can find z;* by
finding the minimum norm vector from z toD. This can be formulated as:

Min {v-z)'(v-z),
s. t.

B'v^c.

After discarding constants and forming the associated saddle-point problem we
get

Max Mmv!v~2z'v~Xf{Bfv~c).
X^O v

Then the inner problem is solved by

BX
v = z+~,

and this gives an equivalent problem

(3.1)

This problem is a concave quadratic programming problem.
Let X* solve (2.3). Then

and

which implies BX*>0. Note then that X* solves (2.1) for b = BX*. Let 5eA
where Xf >0 and B^1 exists and is non-negative (there will be at least one

vol. 13, n° 1, février 1979



78 G. J. KOEHLER

such S [7]). Then 8 is an optimal set of actions for the generalized Markov
décision process and Bb is an optimal basis for problem (2.1).

Now problem (3.1) can be solved as a quadratic program. One itérative
method for doing this is the one variable at a time method. That is, guess X,0.
Compute X1 by holding constant all components of X° except Xf and fmd the Xt

maximizing the resulting expression with X^O. This is the procedure given by
Hildreth [3]. When this method is applied cyclically one obtains a Gauss-Seidel
type itération (with projections to the non-negative orthant) on the System

B'BX = 2(c-B'z).

Hildreth showed that, providing (3.1) has a solution, the resulting séquence
converges to a solution of (3.1). Under our assumptions (3.1) always has a
solution.

Probîem (3.1) can also be cast into a more formai complementarity format.
Here we want to find X ̂  0 such that

B'BX-2(c-B'z)^Q, )
Xf(B'BX-2(c-B'z))^0. ) l ' }

Recently Mangasarian [5] has generalized many of the itérative procedures for
sol ving symmetrie linear complementarity problems. A symmetrie linear
complementarity problem is a problem of the form: Détermine X^O where

and M is symmetrie. Problem (3.2) is a symmetrie linear complementarity
problem. Mangasarian's algorithm in its full generality is: Let A,°^0. Then

Xn+l=y(Xn-(ùEn(MXn + q + Kn(Xn + l-Xn)))+ + ( l - y ) r , (3.4)

where 0<y^ l , a>>0 , {£"} and {Kn} are bounded séquences of real matrices
with each En being a positive diagonal matrix with En

ü > a for some a > 0 and for
some T > 0 :

for all n and y. Here ( )+ means the projection onto the non-negative orthant.
Mangasarian showed that all cluster points of (3.4) solve (3.3). He gave some
sufficient conditions for guaranteeing the existence of a cluster point. One was
that M be copositive plus with some solution to either MÀ->0orMÀ, + g>0
(clearly the first condition implies the second.) A square matrix M is copositive
plus if X^O implies X'MX^O and X^O giving XfMX = 0 implies MX = 0.
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SOLVING LEONTIEF SUBSTITUTION SYSTEMS 79

In applying algorithm (3.4) to problem (3.2) we have that B'B is copositive
plus. In the following two results we show when B' B X > 0 and
BfBX-2(c-B' z)>0 have solutions.

THEOREM 1: B' BX>0 has a solution if and only ifp(Pb)<lfor all 5eA.
Before proving theorem 1 we note that Veinott [7] has shown that p (Ps) < 1 for

all 8 e À if and only if JB x = 0, x ̂  0 has no non-trivial solution. Also p (Ps) < 1 for
all 8eA if and only if there is a y^O such that y'B>0.

Proofof theorem 1: (=>) If there is a X giving Bf B X > 0 then by duality there is
no non-trivial solution to B'BX = 0, X^O. Thus p(P6)<l for all 5eA.

(<=) Suppose p (P5) < 1 for all 5 G A. Then there is a y ̂  0 such that y' B > 0. Let
ôe A and xb = Bb

1 y and x§ = 0 where 5 is the set of indices not listed in 8. Then

B'Bx = B'BbBb
l y = Bf y>0. D

REMARK: Theorem 1 gives that a cluster point exists and gives some incentive
for using the Mangasarian method for solving discounted Markov décisions
processes.

For the following, recall that D = {v : B't?^c}.

THEOREM 2: B' B X — 2 (c — B' z) > 0 has a solution ifand only ifD has an interior.

Proof: {=>) Suppose B'BX-2{c-B'z)>0 has a solution. Then let

BX

Then B' BX = 2B'(v-z).Hence B' BX-2{c-B' z) = 2{B' Bv-c). Thus Bfv>c.

{<=) Let v be a solution to B' v > c. Then choose § e A where Bb is nonsingular

(there is at least one such 5). Let X-s = 2(Bg)"1 (v-z) and Xl = 0. Then

B'BX-2{c-B'z) = 2(B'v-c)>Q. D

Note that if the conditions of theorem 1 are satisfied [i. e., p (Ps) < 1 for ail 5 G A]
then D has an interior and the conditions of theorem 2 are satisfied [To see this
merely add B'y>0 and Bfv*^c together. Then £'(i;*-f y)>c.].The converse is
not true as can be seen by the following example:

c' = ( - 2 1 0),

B
ri -i oi
L-i i ij

Hère A = {(l,2),(l,3)},p(P(lj2)) = l but i/=(l,2.5) gives v'B=(-l.5, 1.5, 2.5).

vol. 13, n° 1, février 1979
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4. CONCLUDING REMARKS

Finding an optimal basis of a Leontief Substitution System or finding u* and
an optimal set of activities for a generalized Markov décision process can be
accomplished by solving (3.1). This can be solved in a number of ways. One
itérative method which always works is Hildreth's procedure. Under rather mild
conditions (i. e., that D has an interior), the family of algorithms proposed by
Mangasarian can be used.

All the itérative methods for solving (3.1) work in the space of problem (2.1)
rather than in its dual space (like value itération and policy itération). This
présents a major drawback since one must maintain at least one working vector

m

of size k where k= £ \At\ and k^tm. Usually, k^m. Since value itération

requires at least one working vector of size m, the itérative methods suggested for
solving (3.1) may not be as computationally attractive as methods for solving
(2.2). However, with the large flexibility inherent in the class of algorithms given
by Mangasarian this cannot be definitely answered now. Also when kœm, the
procedure may be quite compétitive with value itération.

As a final question, what are the effects of the choice of z on the solution
methodology? Usually (in value itération [4]) one chooses z = - M l where
M PO and 1 is a vector of ones. This is done to insure that z<t>*.
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