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TWO
IN MULTICOMMODITY NETWORKS (*)

par Y. P. ANEJA (') and K. P. K. NAIR (•)

Abstract. — The problem ofmaximizing the sum offlows in a multicommodity network has been
studied by Ford and Fulkerson, and they provided an aîgorithm, involving column génération, for
Computing the maximal flows. In this paper, considering afinite traversai time for each commodity along
each arc, two problems of interest are studied. In thefirst problem the objective is one ofmaximizing the
sum offlows but subject to additional constraints oftheform that the maximal traversai time for each
commodity must not exceed a specified limit. In the second problem the objective is to minimize the
maximum of the traversai times for the commodities subject to meeting the specified requirement of
flows. Introducing the concept of constrained shortest path génération, algorithms are presentedfor
Computing the solution in each of the problems.

Résumé. — Le problème de trouver le maximum de la somme des écoulements dans un réseau de
plusieurs produits a été étudié par Ford et Fulkerson. Ils ont trouvé un algorithme, pour calculer les
écoulements maximaux, qui emploie une génération de colonnes. Dans cet article nous considérons un
temps fini de traversée pour chaque produit le long de chaque arc. Deux problèmes sont étudiés. Dans le
premier, Vobjectifest de maximiser la somme des écoulements sous les contraintes de telle sorte que le
temps de traversée maximal pour chaque produit n'excède pas une limite spécifiée. Dans le second
problème, on minimise le maximum des temps de traversée pour les produits sous les contraintes de telle
sorte que les flots de chaque produit soient supérieurs ou égaux à des quantités données. Pour appliquer
les algorithmes de résolution de ces problèmes il convient de résoudre le problème suivant (plus courts
chemins contraints) : aux arcs d'un réseau numérotés i — ï, 2 mon associe 2 nombres hf et gt. Il
s'agit de trouver un plus court chemin d'un sommet s à un sommet p (les longueurs des arcs étant les ht)
sous la contrainte que la longueur de ce chemin (si on prend pour longueur des arcs les gi) soit inférieure
ou égale à un nombre B donné.

1. INTRODUCTION

The study of multicommodity flows in networks is of special interest,
particularly because of its application in the areas of transportation and
communication. Ford and Fulkerson [2] provided an efficient aîgorithm for
Computing the maximal sum of the flows in a network. Their aîgorithm is based
on the idea of a column génération, and indeed as a conséquence the aîgorithm is
suitable even in large problems. In this paper we consider a finite traversai time
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136 Y. P. ANEJA, K. P. K. NAIR

for each commodity along each arc, and in gênerai, along an arc these could be
différent for the various commodities. Associated with each commodity we have
a set of chains that can be used for implementing its flow from source to sink. For
a commodity the traversai time along a chain is the sum of the traversai times for
this commodity along those arcs constituting this chain. In certain situations
such as in the transportation of perishable or deteriorating goods, the maximum
traversai time for each commodity in the network may have to be restricted. In
this context we consider two problems. The first is one of maximizing the sum of
flows subject to restrictions on the allowable traversai time for each commodity
in the network. In the second problem we minimize the maximum of the traversai
times for the commodities subject to specified requirement of the flows.
Developing a technique for generating a constrained column both the problems
are solved, and the methods are applicable even in large problems.

2. FORMULATION OF THE PROBLEMS

Consider a multicommodity network whose arcs are numbered
1, 2, . . ., Ï, . . ., m and let the commodities be denoted by the set
Q= { 1, 2, . . ., q, . . ., K} . A chain j is associated with one of the
commodities and let Cq {q e Q) be the set of all the chains associated with the
commodity q. The set of ail possible chains in the network is denoted by C so
that

Setting A = { atj} to be the incidence matrix of the network

1 if chain j includes arc i,
üiJ= 1 0 otherwise.

Let the traversai time for commodity q on arc i be t?(i=l ,2, . . ., m;
4 = 1,2, . . ., K). Define Fq(q = l, 2, . . ., K) to be a subset of Cq such that

F«= ij\jeC* and | a^tf^d*, q=l, 2, . . ., K j , (3)

where dq is the maximum allowable traversai time for commodity q from its
source to sink. The set of ail chains in the network given by (3) is denoted by
F(FczC) such that

F=[)F*. (4)

R.A.I.R.O. Recherche opérationnelle/Opérations Research



TWO PROBLEMS IN MULTICOMMODITY NETWORKS 137

PROBLEM I: Maximize

I*j- (5)
jeF

Subject to

^OijXj^bi, i=l,2, . . . , wi. (6)
jeF

Xj^O, jeF, (7)

where x, = the amount of flow in chain jeF and &; = capacity of are
i(i=l, 2, . . ., m).

The above formulation differs from that of Ford and Fulkerson [2] with
respect to the admissibility of the chains. While their formulation admits all the
chains contained in the set C, the present formulation allows only those chains in
the set F (JF e C). The constraint on the admissible set of chains results from the
fact the maximum allowable transversal time from source to sink for each
commodity is specified to be dq(qeQ). Therefore, the column génération
technique of Ford and Fulkerson [2] requires some modifications for sol ving this
problem. A constrained shortest chain génération as detailed in Section 4 allows
this problem to be solved efficiently. An algorithm based on this is presented
in the next section.

PROBLEM II: Minimize

m

r=Max Max £ atjtl (8)
qeQ j e C " i = 1

Subject t o

Y * , * , £ & „ i = l , 2 , ...,m, (9)

E^^ ! . « = 1.2 K, (10)

XjtO, jeC, (11)

where xj = amount of flow in chain j (j e C) and cq = required flow of commodity

The objective function (8) is one of bottleneck type as considered by Frieze [3]
in the case of gênerai linear programming. However, his method is not directly
applicable to the present problem since it is not pratical to enumerate all the
chains given by the set C. But the technique of constrained column génération
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138 Y. P. ANEJA, K. P. K. NAIR

detailed in Section 4 allows also this problem to be solved without enumerating
all the chains, and an algorithm is given in the next section.

3. ALGORITHMS

Algorithms I and II, respectively, presented in this section are applicable to
Problems I and II above. Algorithm I is similar to that of Ford and
Fulkerson [2] except in Step 3. Algorithm II is based on the one given by
Frieze [3] but incorporâtes a constrained column génération. Essentially this
algorithm performs phase I of the simplex method, in such a way that, at each
step, the chain generated for entering in to the basis has the minimum time
among all the chains which can reduce infeasibility.

Algorithm I

STEP (0): Start the simplex method with an initial basis ha ving columns which
correspond to all the slacks introduced to convert the problem into an equality.

STEP (1): For a given basis B at the current itération détermine the simplex
multipliers nlt n2, . . ., rcm.

STEP (2): If nt < 0 for some i, introducé the corresponding slack in to the basis,
and go to step (1). Otherwise go to step (3).

STEP (3): For each commodity q, q= 1, 2, . . . , K, détermine a 0-1 vector
W» y% • • • > yli) representing a chain such that

s.t. f;
Let zq* = Min {z1) z2, . . ., zK }.

STEP (4): If zq* < 1, then introducé the chain (yf, yq
2*, . . ., y„) m to the basis

and go to step (1). Otherwise terminate. The current basis yields an optimal
solution to the problem.

Algorithm II

STEP (0): Start phase I of the simplex algorithm with an initial basis consisting
of columns corresponding to slacks introduced in to the first m constraints and
artificial variable introduced in the last K constraints.

RA.I.R.O. Recherche opérationnelle/Opérations Research



TWO PROBLEMS IN MULTICOMMODITY NETWORKS 139

STEP (1): For the basis B at the current itération détermine the simplex
multipliers (nlr n2, . . ., nmt OLlf ot2, • • • > <%)• IÏÓÜ the artiiical variables in the
solution corresponding to the current basis B are equal to zero, go to step (5).
Otherwise go to step (2).

STEP (2): If any 7C; <0 for i = 1, 2, . . ., m or aq > 0 for q = 1, . . ., k; introducé
the corresponding slack in to the basis, and go to step (1). Otherwise go to
step (3).

STEP (3): For each commodity q, q= 1, 2, . . . , K détermine a 0-1 vector
(y\, y\, . . . , yU representing a chain such that

m

z, = Min X tl.j/1

m

s.t. X ni.J>?<l-cv

Let Zg = oo if the above problem does not have a feasible solution. Let
f z2> . . ., zK] and go to step (4).

STEP (4): If zq* = oo, terminate since the problem does not have a feasible
solution. Otherwise introducé (j/f, yq

2*, . . ., y/j*) in to the basis and go to
step(l).

STEP (5): Let T* = Max £ au tf. Then 71* is the value of the optimal solution to

problem II.

The validity of Algorithm I and II follows from the works of Ford and
Fulkerson [2] and Frieze [3] respectively. It is of interest to note that step 3 in
each of the algorithms is similar, and involves, basically, generating a
constrained snor test chain from source to sink.

4. CONSTRAINED SHORTEST CHAIN

Let G [N; A] represent a gênerai network with node set Af with two
distinguished nodes s and t, s^t, and are set A, Let a(x, y)^0 and b(x, y)^0
be two numbers associated with each are (x, y)eA. The constrained shortest
chain problem can be defined as:

Minimize
E a(x> y)-f(x> y)

{x,y)eA

1 if x = s, •

1 if x = r,
yeN yeN

0 otherwise,

vol. 1.3, n° 2, mai 1979



140 Y. P. ANEJA, K. P. K. NAIR

(P) E b(x,y).f(x,y)SB,
(x,y)eA

f(x,y) = 0 or 1,

for some specified positive number B.

For any chain from source to any given node y, we can define two numbers
a1 (y) and ot2 (y) where ax (y) is the a-value of the chain and a2 (y) is the b-value of
the chain. Consider a chain from s to y with values a? (y) and a® (y) such that
<*2 (y) = B- Then such a chain is said to be non-dominated if for any other feasible
chain (satisfying the constraint) with values oc^y) and OL2(y):

ai (y) < a? (y) => y.2 (y) > a§ (y)

and

a2 (y) < 0C2 (y) => oti (y) > a? (y).

The algorithm presented below develops a multiple labelling scheme for
determining a non-dominated chain from s to t, if one such exists, with
minimum a-value. During the steps of the algorithm, a node may acquire none,
one or more labels. The source, ho wever, would have only one label.

The r-th label at node yt denoted by Qr(y) has the structure: Qr(y) = [xh of{y)]
where ar (y) = (a^ (y), ar

2 (y)) and xt is the index which tells that otr (y) is obtained
from /-th label at node x, using the relation af (y) = al (x) + y (x, y). Here
Y (x, y) = (a (x, y)9 b (x,. y)).

To begin with there is no label at any node. Every label assigned is initially
tentative, but may subsequently become permanent. Let L(x) dénote the set of
tentative labels at node x and set L = (J L (x). Similarly P = (J P (x) where P (x)

xeN xeN

is the set of permanent labels at node x.

Algorithm III

STEP (0): Assign 01(5) = [- ; .ax(s)] where a1(s) = (0, 0). Let L(s)= {
L(x) = Ç>îoi x^s. Set P - 0 .

STEP (1): If L = Ç>, the problem is infeasible and therefore stop; otherwise go to
step (2).

STEP (2): In the set L, find a label 9' (k) such that a[ (k) ̂  0̂  (x) for all 9r (x) e L, If
there are more than one label satisfying this, choose Ql (k) to be the one with least
value of a2( ). Set L(fc) = L(ik)- {Ql{k)} and P(fc)-P(fc)u {Ql{k)}.1f Jk = t,the
optimal solution is obtained and therefore stop; otherwise go to step (3).
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STEP (3): Identify the set of arcs Al(k)= {(fc, y)\a.l2{k) + b{k, y)SB}. If
A'(fc) = Ç>, go to step (1), otherwise go to step (4).

STEP (4): for (k, y) e Al (k), compute the vector v = al (k) + y (fc, y). If there is no
label at node y, then insert the label d1(y) = [kl, v] and set L(y)={Q1(y)}.
Otherwise check whether or not v^air(y) for any r. If "yes" discard the vector
computed; otherwise insert the label Qq(y) [where q is different from any r given
0r(y)eL(y)] so that Qq(y) = [kh v] and set L{y) = L(y) u {6*(y)}. Identify the set
D(y)={Qr(y)eL(y)\ar(y)^a*(y)}. Set L(y) = LQ/)-Z)(y). Repeat this step for
each (k, y)eAl(k) and go to step (1).

5. VALIDITY OF THE ALGORITHM

The proof of the validity of the algorithm is shown by the following two
lemmas.

LEMMA 1: Each permanent label at a node represents a non-dominated chain
from source to that node.

Proof: The proof is by induction. Clearly the first permanent label does
represent a non-dominated chain. Suppose that at some stage the labels are
divided into two sets — Set A containing all permanent labels and set B
containing all tentative labels. Assume that labels of set A represent non-
dominated chains from source to their respective nodes. By construction, any
label, say at node y, in the set B dénotes a chain from s to y and this chain is
revealed by a séquence of labels from source to node y; and further all these
labels, except at y, are contained in set A. Let S (y) be the set of such chains; one
chain for each label of L (y). Every chain in the set S (y) is non-dominated among
chains of S(y). Then the algorithm makes the tentative label 9r(y), at node y,
permanent if it has the minimum a-value among all tentative labels. This label
must represent a non-dominated chain. For, if there exists a chain which
dominâtes this chain to y, then it must be realized by a séquence of labels from s
to y where at least the last two labels are from set B. Since all a's and b's are non-
negative, and 0r (y) is the label with minimum ô  ( ) value, this can not happen.

LEMMA 2: The first permanent label at any node represents a non-dominated
chain from source to that node with minimum a-value.

Proof: The proof is by induction again. At some itération of the algorithm, let
the nodes of the sets be divided in two sets A and B. Set A containing all nodes
which have at least one permanent label and set B containing nodes which have
only tentative labels associated with them. By lemma 1, permanent labels
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represent non-dominated chains. Assume that the first permanent label at any
node in set A represents a non-dominated chain with minimum a-value. Assume
also that at this stage a node y of set B will be labeled permanent, with the label
Br(y). By construction, for any node in set B, the label with minimum a-value
represents a shortest feasible chain from source to that node among ail chains
where ail except the terminal node are from set A. Since a's and b's are non-
negative, 9r(y) must represent a non-dominated chain with minimum a-value.

The solution obtained by algorithm III satisfies two properties. It is an optimal
solution to (P) and no other optimal solution to (P) has lesser constraint values.

For Algorithm I it is important to note that in step (3) one does not require
determining a shortest constrained chain. Any feasible chain (satisfying the
constraint) with length less than 1 would be a candidate for entering into the
basis. Algorithm III can be modified to achieve this leading to computational
advantage.
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