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ASUMMARY
OF BLOCK REPLACEMENT POLICIES (*)

Toshio NAKAGAWA (*)

Abstract. — It is of practical importance to consider a block replacement policy in which a unit is
replacedat times kT{k = l,2, . . . ) and at failure. In this paper we propose three block replacement
policies in which a unit is replaced at kT and afailed unit (i) is replaced, (ii) remains failure, and (iii)
undergoes a minimal repair, respectively. These would give useful results to détermine which kinds of
policy should be adopted. Models with discounting arefurther considered. Several useful extended and
modified models are given as remarks.

Résumé. — ƒ / est important en pratique de considérer une politique de remplacement par blocs où une
unité est remplacée aux instants kT(k = l, 2, ...) et en cas de panne. Dans cet article, nous proposons
trois politiques de remplacement par blocs dans lesquelles une unité est remplacée en kT et une unité en
panne : (1) est remplacée; (2) demeure en panne; (3) subit une réparation minime, respectivement. Ces
considérations donneraient des résultats utiles pour déterminer quelles sortes de politiques devraient
être adoptées. Des modèles avec amortissement sont ensuite considérés. Plusieurs extensions et
modifications des modèles sont données en remarques.

1. INTRODUCTION

Consider block replacement policies in which all units are replaced
periodically at times kT (fc= 1, 2, . . . ) independent of the âges of units in use.
These policies are commonly used with complex electronic Systems such as
digital computers, and electrical parts such as light bulbs and vacum tubes.

Barlow and Proschan [1] compared block replacement with âge replacement,
and studied various replacement policies. Some of their results are introduced in
this paper. After that, Marathe and Nair [8] and Jain and Nair [6] defined the n-
stage block replacement policy and compared it with other replacement policies.
Bhat [2] suggested that a failed unit could be replaced by one of used units under
some conditions, which have been replaced earlier at times kT. Schweitzer [12]
compared policies of block replacement and replacement only of individual
failures for hyperexponentially and uniformly distributed failure times. Tilquin
and Cléroux [13] introduced the adjustment costs, in addition to replacement
costs, which are increasing with the age of a unit. Holland and McLean [5] gave a
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352 T. NAKAGAWA

pi actical procédure for a replacement policy (Policy III in this paper) to parts of
cquipments, as examples of large motors and smalf electrical parts.

In this paper, we summarize the results of the following block replacement
policics:

(i) À failcd unit is replaced instantaneously at failure;
(ii) A failed unit remains failure until the next planned replacement;

(iii) A failcd unit undergoes a minimal repair.

I urther, we consider the above replacements with continuous discounting and
gave ihe total expected costs for each policy. Examples are presented when the
l'allure time is a gamma density with a shape parameter 2.

As rcmarks, we consider extended and modified models of block replacement
which could be more realistic than the above models. For instance, a model
combinée (i) and (iii) is introduced.

2. BLOCK REPLACEMENT POLICIES

A unit is replaced at times kT(k= 1,2, . . .) independent of the âge of a unit.
Assume that each unit has a failure time distribution F(t) with fmite mean 1A.
fhcn, we consider the following three block replacement policies which could be
usciul in practical fields.

(i) Policy 1

A failcd unit is discovered instantaneously and replaced by a new unit, Then,
the cxpecled cost rate is

whore M(t) ihe expected number of failed units during the interval (0, t];
( , - cost of replacement for a failed unit; c2

 = cost of planned replacement.

We scek an optimum planned replacement time Tf (0<Tf^œ) which
minimizcs the expected cost Ct (T). We assume that M(t) is differential and
tlehnc m(t)i^dM(t)/dt. Then, differentiating Cx (T) with respect to T and
Nt'iiing it cqua! to zéro, we hâve

Tm(T)- I m(t)dt=—. (2)
Jo Ci

~\ his équation is a necessary condition that there exists a fmite Tf, and in this
;asc, the rcsulting value of the expected cost rate C1(Tf) is

c1(r*)=c,m(rn. (3)
R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Let a 2 be variance of the failure time distribution Fit). Then, from

Cox [3], p. 119, there exists a large T s u c h that Q {T)<X , ( r_ ) ( = A c j ) if

and X2 o2 is not small.

Further, Cox [3] considered a modification of Policy I in which a failure occurs
just before one of the planned replacement times, it may postpone replacing a
failed unit until the next planned replacement. That is, if a failure occurs in an
interval (kT- Td, kT), the replacement is not made until the time kT, and the
unit will be down for the time interval. Suppose that the cost suffered for unit
failure in this interval is proportional to the down time, i. e., let a + bt be the cost
of the time t elapsed between failure and its détection. Then, the expected cost
rate is

Ç
cxM(T-Td) + c2+ [a + b(T-u)\F (T--u)dM(u)

J r ' T (4)

(ii) Policy II

In the first policy, we have assumed that a failed unit is detected
instantaneously and its replacement is also made instantaneously. In this policy,
we assume that failure is discovered only at times kT(k^ 1, 2, . . . ) .

The unit is always replaced at times kT but is not replaced at failure, and
hence, the unit remains failure for the time interval from the occurrence of failure
to its détection. Then, the expected cost rate is

c, F(t)dt + c2

C2(T)= J o
 T , (5)

where ci =cost of the time elapsed between failure and its détection per unit of
time; c2 = cost of planned replacement.

Differentiating C2(T) with respect to Tand setting it equal to zero, we have

TF(T)-~ f F(0dt=—. (6)
Jo c1

Thus, if l/'k>c2/c1 then there exists an optimum time T* uniquely which
satisfies (6), and in this case, the expected cost rate is

C2(Ti)^ClF(Ti). (7)
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354 T. NAKAGAWA

Further, we introducé not only the loss costs c1 and c2 but also a net earning of
the working unit. Then, the expected earning rate is

e0 f f^dt-c, f F(t)dt-c2

C2 (T) = — ^ jM :, (8)

where e0 = net earning cost per unit of time made by the production of working
unit, where eo>c1.

The corresponding équations of (6) and (7) for this model are rewritten as,
respectively,

TF{T)-\ F(t)dt=——, (9)
Jo eo-c1

(10)

(iii) Policy III

It is assumed that we make a minimal repair when the unit fails and the failure
rate is not disturbed by each repair. Then, the expected cost rate is, from [1]:

r(t)dt + c2

C3(T)= J o
 T , (11)

where r(t) = the failure rate of the failure time distribution F(t), i.e.,

r(t) = f(t)/F (t), where fis a density of F; cx =cost of minimal repair; c2 = cost

of planned replacement.

Differentiating C3 (7") with respect to T and setting it equal to zero, we have

-l' - . (12)

f00
Suppose that r (t) is monotonely increasing. Then, if tdr {t) > c2lc\ then there

Jo
exists a T% uniquely which satisfies (12), and the expected cost rate is

C3{n) = cxr{Tt). (13)

It is further sho wn that C3 (T) ^ Cx (T) if the respective costs for each policy are
the same.

Next, consider the same policy for a used unit. A unit is replaced ai times kT
by a used unit with âge of x. The failure rate of the used unit with âge of x after
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BLOCK REPLACEMENT POLICIES 355

time duration t becomes r{t + x). Then, the expected cost rate is

(14)

and the corresponding équations for (12) and (13) become

'T
Jo

Tr(T+x)- | r{t + x)dt= — , (15)

(16).

Actually, the cost c2 of replacement for a used unit could be cheaper than that
for a new unit, however, the number of failures could be greater than that for a
new unit. We compare the expected cost rates for a used unit and a new unit and
can détermine which kind of units should be used.

3. EXAMPLES

Suppose that the failure time distribution is a gamma distribution with a shape
parameter 2, Le.:

a2t
r(t) =

1+at'

~(

Then, we dérive the folio wing optimum planned replacement times Tf which
minimize the expected cost rates Ct(T) for i = \, 2, 3.

For Policy I, we have, from (2):

i f l r ) = f 2 . (17)

Thus, if cx lc2 ^ 1 /4, then we should make no planned replacement, i. e., a unit is
replaced only at failure. If Cj/c2< 1/4, then there exists a Tf uniquely which
satisfies (17) and the resulting expected cost rate is
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f 00

For Policy II, if tf(t)dt = 2/a^c2/c1> then we should make no planned

replacement. Iî2/a>c2/c1, then there exists a T% uniquely which satisfies

-[2-e-aT(2 + 2aT+a2T2)]=—,
a Ci

and in this case, the expected cost rate is

C 2 ( r î ) = C l [ l - ( l + a r f ) e - a r ! ] .

For Policy III, there exists T% uniquely which satisfies

and the expected cost rate is

4. BLOCK REPLACEMENT WITH DISCOUNTING

When we adopt the total expected cost as an appropriate objective function for
an infinité time span, we should evaluate values of all future costs by using a
discount rate. We apply the continuous discounting to the costs at the times
when these costs occur actually.

Let Ct (a; T) be the total expected cost rate for Policy i when the unit is
replaced at times kT (fc=l, 2, . . .)• Then, the expected cost between
replacements is the same, except for a discount rate, and hence, the total expected
cost is equal to the sum of the discounted costs incurred between individual
replacements. Let C£(a; T)be the expected cost ofone replacement cycle from 0
to T. Then, we easily have the following renewal-type équation:

ï.e.:

Thus, we have the foliowing results for each policy:

For Policy I:

Cl

Cita; T)=^L _ _ , (i9)

R.À.I.R.O. Recherche opérationnelle/Opérations Research
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e-«m(t)dt=—, (20)

(21)

For Policy II:

-OLT

— , (22)— Z \ — 5 — / i _ a '

-i:
a

For Policy III:

e-"<F(t)dt=—, (23)

(24)

•f (25)

rr
• r ( r ) " e" a t r (0dt= —. (26)

Jo Ci

c2. (27)

Note that lim a Q (a; T) = Ct{T) which is the expected cost rate with no
a - 0

discounting.

5. REMARKS

(i) Morimura [9] introduced the folio wing modification of block replacement
where a unit is replaced at the k-th failure and the (k — l)-th previous failures are
corrected with minimal repair. He obtained the expected cost rate

— (fc=l, 2, ...)> (28)fc-l fa

where R(t)= r(u)du. Further, if c2>cl and the failure rate is monotonely
Jo

vol. 13, n° 4, novembre 1979
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increasing, there exists k* which is uniquely given by obtaining a minimum k
such that

(29)

\[R(t)]k/k\)e'mdt
o

(ii) Consider a System with n identical units which operate independently each
other. Assume that ail together are replaced at times kT(k—l, 2, . . . ) and each
unit is replaced immediately upon faiîure. Then, the expected cost rate is

(30)

where d=cost of replacement for one failed unit; c2=cost of planned
replacement for all units.

If we make a minimal repair for each failed unit, then the expected cost rate is

cxn r{t)dt + c2

C3(T;n)= ^ . (31)

Finally, assume that any unit is replaced only at times /cJand a System failure
occurs when all units have failed. Then, the expected cost rate is:

'in)(t)dt + c2

C2 (T; n) = — ^ , (32)

where cx = cost of the time interval for System failure per unit of time; Fin) (t) = the
H-th convolution of the failure time distribution F(t) with itself.

(iii) We consider the inspection policy [1], p. 107, which is similar to block
replacement policy. A unit is checked at times kT(k= 1,2, . . . ) and a failed unit
is detected only by checking. The time required for checking is negligible and the
failure rate of a unit remains undisturbed by any inspection. Then, the expected
cost rate is

[c2fc+Cl(fcr-0]<*F(0

kTdF(t)

^ p ^ . 03)
R.A.I.R.O. Recherche opérationnelle/Opérations Research
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where cx =cost of the time elapsed between failure and its détection by checking
per unit of time; c2 = cost of checking.

Differentiating (33) with respect to Tand putting it equal to zero, we have

'=^— +c2Z F(kT)=-^. (34)

X F{kT) *=°

(iv) In the Policy I, it is sometimes useless to replace a failed unit by a new one
just before the planned replacement time, but we can not leave as it is until the
planned replacement is made. To overcome this, we can combine Policy I and
Policy III together. That is, a failed unit is replaced by a new one during (0, To]
and undergoes a minimal repair during (To, T) for 0 ^ To^ T. Then, the total
expected cost of minimal repairs during (To, T) is

where S(t) = an age of an operating unit at time t; c*=cost of minimal repair.

Thus, from [1], p. 58, we have

f r(t)dt

r(t-u)dt \F(T0-u)dM(u)}t\F(T0-u)dM(u)\ \

(35)
1

Evidently

CAT^CsiT; TI-

and

C3{T) = C5(T;0).

It is further shown that all expected cost rates Cx (T), C3 {T), and C5 (T; To) are
equal when failure times of units are exponential.

6. CONCLUSION

We have summarized the three block replacement policies in which a unit is
replaced at times kT (k= l, 2, . . . ) . Further, we have extended and modified
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block replacement models as remarks. These could be applicable to practical
fields.

In gênerai, the results are summarized as follows: The expected cost rate is

Jo
<p(t)dt + c2

Ct(T)= Jo
 f , (36)

where cp (t) is m(t), F(t), and r (t) for Policy i, respectively. Differentiating Ct (T)
with respect to T and setting it equal to zero:

T
Jo

- . 07)

If there exists a Tf which satisfies (37), then the expected cost rate is

Ci(T?) = ci<p(T?). (38)

For a discount case

f7" -«r - « r
Q(a; T)=—^ —-T , (39)

l—e~aT ÇT c
cp(7>- e~atq*(t)dt=^—t (40)

a Jo Ci

It has assumed that the time required to make a replacement or to make a
repair is negligible. It has further assumed that at any time there is an unlimitted
supply of units available for replacement. The results obtained hère could be
theoretically extended and be modified in such cases.

We have discussed only the block replacement policies. Other replacement
policies are referred to [1, 7, 10, 11].
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