@article{RO_1980__14_2_115_0, author = {Zuckerman, Dror}, title = {Optimal replacement under additive damage and self-restoration}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {115--127}, publisher = {EDP-Sciences}, volume = {14}, number = {2}, year = {1980}, mrnumber = {575659}, zbl = {0434.90044}, language = {en}, url = {http://archive.numdam.org/item/RO_1980__14_2_115_0/} }
TY - JOUR AU - Zuckerman, Dror TI - Optimal replacement under additive damage and self-restoration JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 1980 SP - 115 EP - 127 VL - 14 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/item/RO_1980__14_2_115_0/ LA - en ID - RO_1980__14_2_115_0 ER -
Zuckerman, Dror. Optimal replacement under additive damage and self-restoration. RAIRO - Operations Research - Recherche Opérationnelle, Volume 14 (1980) no. 2, pp. 115-127. http://archive.numdam.org/item/RO_1980__14_2_115_0/
1. Statistical Assessment of the Life Characteristic, Charles Griffin & Company, Ltd., London, 1964. | Zbl
,2. Markov Processes, 1, Academic Press, New York, 1965.
,3. Shock Models and Wear Processes, Ann. Probability, Vol. 1, 1973, pp. 627-649. | MR | Zbl
, and ,4. Optimal Replacement with Semi-Markov Shock Models, J. Appl. Probability, Vol. 13, 1976, pp. 108-117. | MR | Zbl
,5. Optimal Replacement with Semi-Markov Shock Models Using Discounted Costs, Math. Operations, Res., Vol. 2, 1977, pp. 78-90. | MR | Zbl
,6. Optimal Replacement Under Additive Damage and Other Failure Models, Naval Res. Logist. Quart., Vol. 22, 1975, pp. 1-18. | MR | Zbl
,7. A Finite Dam With Variable Release Rate, J. Appl. Probability, Vol. 12, 1975, pp. 205-211. | MR | Zbl
,8. Optimal Stopping in a Semi-Markov Shock Model, J. Appl. Probability, Vol. 15, 1978, pp. 629-634. | MR | Zbl
,9. Optimal Replacement Rule-Discounted Cost Criterion, Revue Française d'Informatique et Recherche Operationnelle, Vol. 13, 1979, pp. 67-74. | Numdam | MR | Zbl
,10. Optimal Replacement Policy for the Case where the Damage Process is a One-Sided Lévy Process, Stochastic Processes and Their Applications, Vol. 7, 1978, pp. 141-151. | MR | Zbl
,