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DISCRETE TIME ORDERING POLICIES
WITH MINIMAL REPAIR (*)

by Naoto KAIO (X) and SHUNJI OSAKI (*)

Abstract. — We treat the order ing policies wit h minimal repair which are operatedat discrete
times. We obtain the optimum policy which minimizes the expected cost rate in the steady-state
by introducing an expedited order, a regular order, a minimal repair, a salvage, and an inventory
cost s and a lead time. It is shown that there exists a finite and unique optimum policy under
certain conditions.

Résumé. — Nous traitons les politiques de commande comportant une réparation minimale
effectuées à des instants discrets. Nous obtenons la politique optimale qui minimise Vespérance
du coût par unité de temps dans le comportement asymptotique en introduisant une commande
accélérée, une commande régulière, une réparation minimale, un coût de récupération, un
coût de stockage, et un délai. On montre qu'il existe, sous certaines conditions, une politique
optimale finie et unique.

1. INTRODUCTION

In recent years, Systems have become more large-scale and compîicated,
such as cars, airplanes, and missiles. These Systems cause great damages
once they fail. Thus, the necessity of maintenance policies have increased
and many authors have studied such policies. For example, Barlow and
Proschan [1] discussed an âge replacement, a block replacement, and an
inspection policies, and Kaio and Osaki [2] discussed an ordering policy.
ïn the former the spares are provided immediately if necessary, but in the
latter the spares are not always provided instantaneously even if necessary
and there is usually any delay between ordered time and delivered time.

In this paper we treat the ordering policy with minimal repair which are
operated at discrete times (see Nakagawa and Osaki [3] and Weiss [5]),
and obtain the optimum policy which minimizes the expected cost rate in
the steady-state introducing some costs and a lead time. We show that there
exists a finite and unique optimum policy under certain conditions.
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2. MODEL AND ASSUMPTIONS

Consider a one-unit system, where each spare is only provided after a
lead time by an order. Each failure is detected instantaneously and for each
failed unit minimal repair [by which system failure rate is undisturbed
(see Barlow and Proschan [1], p. 96)] is made with negligible time. The
original unit starts operating at time point 0. The planning horizon is infinité.
If the original unit does not fail up to a prespecified time point TV
(N = 0, 1, 2, ...), then the regular order for a spare is made at JV and the
spare is delivered after a lead time L. If the original unit fails up to the delivery
of the spare, then the minimal repair is made for each failure, and immedia-
tely the original unit is replaced by the spare as soon as it is delivered. Also,
if the original unit does not faii up to the delivery of the spare, the delivered
spare is put into inventory until the original unit fails. At failure time point
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Figure 1. — Possible realizations of one cycle.
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the original unit is replaced by that spare and the minimal repair is made
for the failed unit simultaneously. The spare in inventory does not fail or
deteriorate. On the other hand, if the original unit fails up to N9 then at
failure time point the minimal repair and the expedited order is made simul-
taneously, and the original unit is replaced by the spare as soon as it is
delivered after a lead time L. If the original unit fails up to the delivery of
the spare, then the minimal repair is made for each failure. In this case,
the regular order is not made. Each replacement is made instantaneously,
and after a replacement the system starts operating immediately. The cycle
then repeats.

The lifetime for each unit obeys an arbitrary discrete time distribution
{Pj}j=i> ** e-> Pj *s ttxe probability that the unit fails at time point j
(j = 1, 2, 3, ...), with a finite mean l/X. Let us introducé the following five
costs. The cost cx is suffered for each expedited order made up to N, the
cost c2 is suffered for each regular one made at N9 and the cost c3 is suffered
for each minimal repair made at each failure time point. The cost k per unit
time is suffered for inventory, and furthermore the cost s is suffered as a
salvage cost at each replacement time point. We assume that ct > cz. These
assumptions seem to be reasonable.

Under the above assumptions, we define an interval from one replacement
to the following replacement as one cycle, and analyze this model (see Fig. 1).

3. ANALYSIS AND THEOREM

Let us define the failure rates as follows;

Pj, (D

N + L-l ! oo

s E P j ï Pj- (2)
j=N I j=N

Both functions r(N) and R(N) have the same monotone properties with
respect to non-negative N, as same as the continuons type.

Next, we obtain the expected cost per one cycle A (N):
(i) the expected order cost is

N oo N oo

E CiPj+ £ c2py = c t £ j?,. + c2 £ pj. (3)
j=X j=N+l y = l j=N+X
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(ii) when the original unit fails, the minimal repair is always made for
each failure. Then, the expected cost for minimal repairs is

[ N r j+L )
.Zjl + ̂ Z r(i)\pj

N + L ( N + L ï oo ~|

E 1+ E r(0U+ E Pj\
j = N+l (. i=j+l J j=N+L+l J

[ N j + L N + L N + L "1

1+ E E r(i)pj+ X X r(i)pj\.

(4)

(iii) when the spare is delivered, if the original unit does not fail, the spare
is put into inventory until the original unit fails. Then, the expected cost
for inventory is

00 00 00

k Z (j-N-L)pj = k Y Z Pj- (5)
j^N+L+l i=N+L+l j=i

Thus, from the above three expected costs and a salvage cost, A(N) is

A(N) = ct f Pj + c2 f Pj + cJl+Z l r(i)Pj
j=l j=N+l L l ijl

N + L N + L "| oo oo

+ E E r(i)Pj\+k E E P , + S- (6)

Also, the mean time of one cycle, B(N) is
N + L

E (N +
'~N+1

0 0

L)pj+ £ jpj
j=N+L+i

=

N + L

1/A,+ X
i=N+i

i-1

Z7 = 1

Thus, the expected cost rate in the steady-state C(N) is

C(N) = A(N)/B(N) (8)
(see Ross [4], p. 52), and

/ i ^ j c ] (10)

We can assume that C(N) < k, i. e., that the cost in the case that any
ordering policy is applied is cheaper than the cost in the case that only the
minimal repair is made.
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Define the following function from the numerator of the différence of C (N) :

(11)

Here, we have the following theorem for the optimum ordering time
point N* minimizing the expected cost rate in the steady-state C(N). The
proof is given in Appendix.

THEOREM 1; (1) Suppose that the failure rate is strictïy increasing:
(i) if q (0) < 0 and q (oo) > 0, then there exists afinite and unique optimum

ordering time point N * (0 < N * < oo) satisfying

q(N - l ) < 0 and q(N)^0; (12)

(ii) if q(0) ^ 0, then the optimum ordering time point is N* = 0, /. e.t
the order for a spare is made at when the unit is put in service\

(iii) il q (oo) :g 0, then the optimum ordering time point is N* —> oo, /. e.,
the order for a spare is made at the same time point as the first failure of the
original unit.

(2) Suppose that the failure rate is decreasing:

(0 If

+ ê E r(i)

then N* = 0;

(ü) If

f A Z ' ï>1 (13)i=1 J=1 - I

^ - • o o . L / *=i J=i
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4. REMARKS

We have treated the optimum ordering policies with minimal repair which
are operated at the discrete times. We have obtained a theorem on the
optimum policy minimizing the expected cost rate in the steady-state, and
shown that there exists a finite and unique optimum policy under certain
conditions.

In particular, we obtain the following results without assuming the
monotone properties of the failure rate. That is, if q (0) < 0, then there
exists at least one optimum ordering time point N* (0 < N* ^ oo), and
if q (oo) > 0, then there exists at least one optimum ordering time point N *
(0 ^ N* < oo). These facts can be verified from the asymptotic behavior
of the différence of log C(N) as N tends to 0 or oo.

APPENDIX

THE PROOF OF THEOREM 1

From the équation (11):

q(N+l)-q(N) = l(cx-c2) { r (N + 2)~ r

+ c3R(N+2) {r(N+L + 2)- }

+ [R(N+2)-R(N+l)'][{c3r(N+L + l)

+ k } B(N+1)-D (tf+1)]. (A.l)

First, we assume the case that tha failure rate is strictly increasing. Thus,
we have q (N+l) — q (N) > 0, i. e., q (N) is strictly increasing.

If q (0) < 0 and q (oo) > 0, then there exists a finite and unique N *
(0 < AT* < oo) which minimizes the expected cost rate C(N) satisfying the
équation (12) since ^(A^) is strictly increasing.

If q(0) ̂  0, then C(N+1)-C(N) ^ 0 for any non-negative N. Thus,
= 0.

If q(œ) g 0, then C(N+l)-C(N) ^ 0 for any non-negative N. Thus,

Secondly, we assume the case that the failure rate is decreasing. Thus,
we have q(N+l)-q(N) ^ 0, i. e., q(N) is decreasing. If q(0) > 0, then
q(oo) ^ 0 or q (oo) < 0, if q(0) = 0, then q (oo) g 0, and if q (ö) < 0,
then q(oo) < 0. Thus, C(0) or C(oo) is not greater than C(N) for any N.
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Thus, if C(0) < C(oo), i. e., the équation (13) holds, then N* = 0, and

if C(0) ^ C(oo), i. e., the équation (14) holds, then iV* -> oo.

Q. E. D.
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