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A TWO-LEVEL OPEN QUEUE NETWORK
WITH BLOCKING AND FEEDBACK (*)

by H. G. PERROS (')

Abstract. — The queue network model studied in this paper consists of two symmetrical
queues in parallel served by a first level of servers and linked to a second-level server with no
intermediate waitingroom. Bloçking of the flow of units through a first- e el server occurs each
time the server complètes a service, The server remains blocked and it can not serve any other
units until the bloçking unit complètes Us service at the second-level ̂ server. An approximate
expression of the generating function, g (z), of the queue-length distribution is obtained. The
queue-length distribution is then derived by inverting g (z). The results obtained compare very
well with simulation data, The exact condition for stability of the queue network is also derived.

Keywords: Open queue network, bloçking, exponential, two-level service, feedback.

Résumé. — Le modèle de réseau de file d'attente étudié dans cet article consiste en deux
files d'attente symétriques en parallèle, servies par des serveurs de premier niveau, et couplées
avec un serveur de second niveau, sans salle d'attente intermédiaire. Le blocage du des flot
clients à travers un serveur du premier niveau a lieu chaque fois que le serveur termine son
servive. Le serveur demeure bloqué et ne peut servir aucun autre client jusqu'à ce que le client
ait achevé d'être servi par le serveur du second niveau. Une expression approchée de la fonction
génératrice g (z) de la distribution de la longueur de la file d'attente est obtenue. La distribution
elle-même en est déduite en inversant g (z). Les résultats obtenus se comparent très bien
avec les données de simulation. La condition exacte de stabilité du réseau de file d'attente
est aussi déduite.

1. INTRODUCTION

The concept of open queue network with bloçking has proved useful in
modelling stochastic Systems, such as computer Systems, télécommunication
Systems, production Systems (see Konheim and Reiser [9], Perros [10], Hillier
and Boling [6]). Networks with bloçking consist of a set of arbitrarily linked
service channels some of which are of limited capacity. Bloçking occurs when
the flow of units through one channel is momentarily stopped owing to a
capacity limitation of another channel having been reached.

Queue networks with bloçking have proved difficult to treat in gênerai.
The simplest configuration of such a network is the one consisting of two
servers in series with a fmite intermediate waitingroom. The queue in front
of the first server is unlimited in length. A unit completing a service at the
second server may be fed back to the end of either queues. Bloçking of the first
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28 H. G. PERROS

server occurs when the intermediate waitingroom becomes full. This model
has been studied by various authors under different assumptions regarding
the service distribution, priority discipline and feedback. A survey of
the literature and new results on this model can be found in Asare [1].
A well known generalization of this network with bîocking is the one
consisting of k (k > 2) servers in tandem. The queue before the first server
is allowed to be infinité in size and a finite queue is allowed between successive
servers. A survey of the relevant literature and new results can be found in
Caseau and Pujolle [2]. Foster and Perros [4, 5] consider a gênerai class of
open queue networks with blocking consisting of n parallel symmetrical
queues served by independent first-level servers. Groups of these servers
are linked with a second level of servers and these are linked in groups with
a third level of servers and so on up to any number of servers. The queue
in front of each first-level server is unrestricted in length, but no queue is
allowed in front of any high level server. When a unit complètes its service
at a server that server immediately becomes blocked. The server remains
blocked until the blocking unit départs from the network having received
service by all the high level servers to which the server is linked. Approximate
and exact expressions for the trafîic intensity; x, of a first-level server were
derived for a two-level and a thxee-level queue network assuming no feedback.
For the gênerai «-level queue network, an expression for x was derived assuming
a processor-sharing type of service at ail levels of servers with the exception
of the first-level servers. Pittel [11] reported on two closed exponential queue
networks with blocking. A unit upon completion of its service sélects its
next queue according to a probability transition matrix. In the first model,
if the queue the unit sélects to join is full at that instant the unit returns back
to the last queue. In the second model, the unit randomly searches for another
queue which is not full. The time the unit spends searching for another queue
is assumed to be negligible. An asymptotic expression of the blocking proba-
bilities is obtained using non-linear mathematical programming techniques.

In this paper we examine an exponential open queue network model consist-
ing of two symmetrical queues in parallel served by independent servers
(first-level servers) and linked to a server (second-level server) with no inter-
mediate waitingroom. When a unit complètes its service at a first-level server
that server becomes blocked, i. e. it cannot serve any other units. The server
remains blocked until the blocking unit complètes its service at the second-level
server. Using the terminology introduced in Foster and Perros [5] this model
can be described as a two-level queue network with blocking and feedback.
An approximate expression of the generating fonction of the equüibrium queue-
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A TWO-LEVEL OPEN QUEUE NETWORK 29

length distribution is derived. The generating fonction is then inverted in
order to obtain a closed-form solution of the queue-length distribution.
This expression is validated using simulation techniques. The exact condition
for stability is also derived. We now proceed to examine the queue network
in detail.

2. THE TWO-LEVEL QUEUE NETWORK WITH BLOCKING AND FEEDBACK

The queue network studied hère is shown in figure 1. Let X, a, and p be
the input rate into each queue, the mean service time at a first-level server,
and the mean service time at the second-level server respectively. Ail inter-
arrivai times as well as service times are assumed exponentially distributed.
The two queues are unlimited in length. No queue is allowed to accumulate
in front of the second-level server. Both queues are served on a FIFO basis.
A unit upon completion of its service at a first-level server proceeds to receive
service at the second-level server. Upon completion of this service the unit
returns to its first-level server for further service, or it.départs from the queue
network with probability 0 and 1—0 respectively. A unit, therefore, may
cycle several times between its first-level server and the second-level server
before it départs from the network. A first-level server gets blocked upon
completion of a service. The particular server remains blocked until the unit
(call it the blocking unit) complètes its service at the second-level server. At
that instant, its first-level server becomes unblocked, and if the blocking
unit returns to the server for further service, the server becomes busy again.
Otherwise, if the blocking unit départs from the network, its first-level server
initiâtes a new service or it becomes idle depending upon whether there is
a unit waiting in the queue or not.

During the period of time, therefore, that a particular unit is in service
the state of its first-level server cycles between the states "busy serving" and

Figure 1. — A two-level queue network with blocking and feedback.
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30 H. G. PERROS

"blocked". Obviously, no more than one unit from each queue may be in
service at any time. The maximum number of blocking units, therefore,
competing for the second-level server may not exceed 2. The blocking units
are served on a "first complete its fîrst-level service first served" basis.

In view of the fact the second-level server is shared by units from both
queues, the effective service time of a first-level server is partially dependent
upon the activity of the other first-level server. This partial coupling of the
two first-level servers makes the queue network difficult to treat. In this paper
we analyse this model by studying only one of the two queues. The activity
of the other queue is taken into account implicitly. This approach leads to
the dérivation of an approximate expression of the generating function,
g (z), of the queue-length distribution. The closed form solution of the queue-
length distribution is then obtained by inverting g (z). The results obtained
compare very well with simulation data.

Let 7i be the conditional probability that a blocking unit upon completion
of its service at a first-level server will find the second-level server busy (by
a unit of the other queue) and, therefore, it will be forced to wait for its second-
level service. Then, the mean blocking time of a first-level server is p (1 + rc).
The conditional probability n has been derived in Foster and Perros [5] and
is given by the expression

y 0 ) 2 - 4 ^ 2 p 2 } . (2.1)
Let pu, i = 0, 1, 2, . . . , and j = 0, 1, 2, 3, be the probability that there are i
units in a queue waiting to be served (the one in service is not included),
and that the first-level server of this queue is in state y. A first-leve! server at
any instant may be in one of the following states: (a) idle (J =0); (b) busy
serving (j = 1); (c) blocked but its own blocking unit is waiting to receive
its second-level service (J = 2), and (d) blocked and its own blocking unit
is receiving service at the second-level server (J = 3). The steady-state équations
involying/>,-,• are given below. These équations were derived assuming that the
process{Zf, Yt}91 ^ 0, whereX, = 0,1,2, . . . ,and Yt = 0,1,2,3,ismarkovian.
This assumption isnot true as the memoryless property isnotalways satisfied:
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À TWO-LEVEL OPEN QUEUE NETWORK 31

The normalizing équation is
oo 3

;=o j=o lJ y

Let pn, n = 0, 1, 2, . . . , be the steady-state probability that there are n
00

units in a particular queue including the one in service. Let g(z) = £ z"^n.

An expression for the generating funetion g (z) is obtained in the following
section. This expression is approximate seeing that it is derived assuming
that the process {Xv Yt}, t ^ 0, is markovian. The closed-form solution of the
probability pn, n = 0, 1, 2, . . . , is obtained in section 5 by inverting the z-trans-
formation g (z). The inversion of g (z) is exact. However, the resulting solution
is in itself an approximation to the true queue-length distribution as it is
derived using the approximate expression of g (z). The exact condition for
stability of the queue network is derived in section 4. Finally, in section 6
we obtain an approximate expression for the mean queue length. The results
obtained in this paper compare very well with simulation data. Some minor
déviations were observed for an extreme case in which P » > a.

3. THE DERIVATION OF g(z)

Define the following generating functions

Then, the steady-state équations given in section 2 can be expressed as follows :

ng i ( z ) -a [X( l - z
n)g l(z) + ag2(z)

The normalizing équation becomes

The unknowns gx (z), g2 (z), g3 (z), and p00 can be determined from the
above System of linear équations. After some lengthy calculations we obtain

) , (3.2)
g2k(z) - toip (1 + *P (1 - z)) j»00/(l - 6) (1 + Xp (1 - n))

x(-Pz3 + Qz2-Rz+l), (3.3)
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and

+ l), (3.4)

where
3 2 (3.5)

(3.6)

n)). (3.7)

[Note that expression (2.1) for % is not used in the above expression as we
wish to maintain these expressions in a simple algebraic form.] Now, if we
consider the limit of each generating function at z = 1 and then take the
sum of these three limits we obtain

Using the normalizing équation (3.1) in the above expression we have

Poo = l-(V(l-e))(ct + P(l + *)). (3.8)

This expression for p00 is an exact one. For, let us assume that units which
complete their second-level service and are fed back for further service join
the end of the queues as in a round-robin model. Obviously, the total input
rate into each queue is Xj(l — 0) (see Jackson [7]). Now seeing that the effec-
tive service time of a first-level server is a + P (1 + ri), we have that the
utilisation of this server is(X,/(l — 0)) (a + p (1 + ri)). Hence, we obtain expres-
sion (3.8) as p00 is equal to the compliment of the server's utilization.

OO

We now proceed to dérive g(z). We have that g(z) = £ z"Pn> where p„
n = 0

is the steady-state probability that there are n units in a queue, including the
one in service. We have

00}-

After some lengthy calculations we can establish that

where p00, n, P, Q, and R are given by (3.8), (2.1), (3.5), (3.6) and (3.7)
respectively.
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4. CONDITION FOR STABILITY

We define the condition for stability of the queue network as the condition
for stability of a queue in the network, i. e.

Poo>O. (4.1)

Now, if we use expressions (2.1) and (3.8) in (4.1) we can obtain after some
calculations the following condition

?,<(l-e)(a + P)/((a+p)2 + p2). (4.2)

This is an exact condition. For 0 = 0 expression (4.2) reduces to the condition
for stability of the queue network with no feedback derived by Foster and
Perros [5] using a different method.

5 . D E R I V A T I O N O F T H E P R O B A B I L I T E S { > „ } , « - 0 , 1 , 2 , . . .

The closed-form solution of the probabüities {pn}, n = 0, 1, 2, . . . ,
is derived by inverting the z-transformation g (z) given by (3.9). Let us first
consider the series

£ (Pz3-Qz2 + Rz)n. (5.1)
o=0

The term \Pz3-Qz2+ Rz\ or | z\.\ Pz2-Qz + R\ is obviously less than
one for ail | z | < S, where 8 < 1. Therefore, the above séries converges to

l/{l-(Pzs-Qz2 + Rz)} (5.2)

for ail | z | < 8. We observe that the above limit is identical to the first term
of g (z) in (3.9). Now, we have that the.generating function g (z) is analytic
within the unit circle, and seeing that the numerator of g (z) has one real
root greater than one, the denominator may not have any roots within the
unit circle. It is clear, therefore, that expression (5.2), which is the limit of
the series given by (5.1), exists at all points within the unit circle and the
series converges for all | z | < 1.

Now, let us consider one term only of the series (5.1). We have

klllml
n = 0, 1, 2, •
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34 H. G. PERROS

where the summation extends over all non-negative integers k, l, m such that
k -f- l + m = n (see Feller [3], p. 66). Expression (5.3) can be written as
follows

()
kl II ml

n = 0, 1,2, . . . .

(5 .4)

for ail k, /, m as in (5.3). Now, if we substitute (5.4) in (5.1) and also use
expression (5.2) we obtain

ll{l-(Pz3-Qz2 + Rz)} = f S(-lV nl PkQîRmz3k+2l+m
9

n=o klllml

where the second summation extends over all k, l, m as in (5.3). Now, let us
consider the sum of ail terms in the right-hand side of the above summation
which correspond to the same power of z, say zrt. This is given by the following
expression

' PkQlRmz3k+2l+m
)

klllml

where the summation extends over all non-negative integers k, /, m such that
3 k + 2 I + m = n. Let

^ ± ! ± ^ ! , „ = 0 , 1 , 2 , . . . , (5.5)^ ( i y
K ! llml

where the summation extends over all non-negative integers k, I, m such
that 3k + 2l + m = n. Then, we have

1 / { 1 - ( P Z 3 - Q Z 2 + K Z ) } = Y,Anz\ (5.6)
n=O

where An is given by (5.5). The generating function g (z) can now be expanded
into the following series

g(zy=po(i-Bz)flAHz\ 5.7)
n=0

where p0 = p00 and B = \$ (1 — n)/(l + Â-p (1 — 7t)). Now, since Ao = 1
expression (5.7) can be written as follows

An_1B)zn. (5.8)
n = l
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Therefore,
Pn = P o ( A n ~ B A n - x ) 9 n £ l , (5.9)

where B = \$ (1 - 7t)/(l + A,p(l - ' n)), An, n = 0, 1, 2, . . . , is given by (5.5)
and the quantities />0 and TÏ are given by (3.8) and (2.1) respectively.

A very simple recursive formula for deriving the quantity An, n = 0, 1,2, . . . ,
can be obtained by deriving the exact closed-form solution of the probabiîities
{Pn}> {Pu}* and {pi3}9 i = 0, 1, 2, . . . This can be achieved by following
similar arguments as above. In particular, using (5.6) in (3.2) we can expand
gx (z) into a series from which {pn }, i = 0, 1, . . . , can be readily obtained.
We have

\ p / n=0

which can be expressed as follows

where Kx = Xa (1 + A-P)2/(l - 6) (1 + Xp (1 - n)) and C - Xp/(1 + A-P).
Similarly, the generating functions g2 (z) and g3 (z) can be expanded into the
following series

o, (5-11)
(̂  7 1 = 1 J

and

(5-12)

where K2 = A,7tp (1 + A,p)/(1 — 0) (f + À-P (1 — rc)) and ^ 3 = Xp/(1 — 0).
The quantities An, n = O, 1, 29..., B, R,p0 and TC are defined as above.
Now, from expressions (5.10), (5.11) and (5.12) we have

Poi =
(5.13)

Pi2 — K2(Ai~CAi^1)pOi

and
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36 H. G. PERROS

The quantity An, n — 0, 1, 2, . . . , can now be obtained by equating (5.9)
with (5.13), (5.14), and (5.15). We have that

Pn = Pn-l.l+Pn-l,2+Pn-l,3> H ̂  1. (5.16)

Also, we can easily establish that B + {Kx + K2 + K3) = R,
2KXC + K2C — K$B = Q and À^C2 = P. Using these expressions as well
as (5.9), (5.13), (5.14) and (5.15) in (5.16) we obtain

AH = RAm-x-QAn-2±PAn-3, n £ l . (5.17)

(It is assumed that for n négative An — 0.) For « = 0we have A0 = 1. The
quantities R, g, and P are given by (3.7), (3.6), and (3.5) respectively.

For the limiting case of a -> 0, P -> 0 and 9 -• 1 while a/(l — 0) and
P/(l — 0) remain finite we obtain a processor-sharing type of model. In this
case, a unit in service cycles infinitely quickly between its first-level server
and the second-level server receiving an infinitésimal amount of service at
each server (see Kleinrock [8]). Let g* (z) be the limit of g (z) as given by (3.9).
We observe that

g*(z) = p o / { l - ( P l + p2(l+7i))z}, (5.18)

where/?0 and n are given by (3.8) and (2.1) respectively and px = Xa/(l — 0),
p2 = A,p/(i — 9). Let p* be the limit ofp„9n = 0, 1,2, . . . Then p* can be
readily obtained from (5.18). We have

We observe that for this limiting case the approximate expression for g (z)
yields a queue length distribution that coïncides with tbat of an M/M/l
queue.

6. THE MEAN NUMBER OF UNITS IN A QUEUE

An approximate expression for the mean number of units, N> in a queue,
including the one in service, can be obtained by employing the quantity g' (1).
After some tedious calculations we can establish that

where n is given by (2.1).
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7. DISCUSSION

Queue networks with blocking have proved useful in modelling stochastic
Systems. However, the blocking process associated with these networks
seriously complicates the mathematical analysis of these models. As a resuit,
queue networks with. blocking have proved difficult to treat in gênerai. The
simplest configuration of such a network is the one consisting of two servers
in tandem with an intermediate finite waitingroom. This model has been
studied by several authors. However, it is interesting to note that the exact
closed-form solution of the joint queue-length distribution of this model
assuming exponentially distributed inter-arrival and service times has not as
yet been reported in the literature.

In this paper a two-level queue network model with blocking is studied.
An approximate expression of the generating function g (z) of the equilibrium
queue-length distribution pn, n = 0, 1, 2, . . . , is obtained by analysing
only one of the two queues. The activity of the other queue is taken into
account implicitly. The closed-form solution of pn, n = 0, 1, 2, . . . , is then
obtained by inverting g (z). The inversion of g (z) is exact. However, the
resulting solution is in itself an approximation to the true queue-length distri-
bution as it is derived using the approximate expression of g (z). The quan-
tity pn, n = 0, 1, 2, . . ., given by (5.9) as well as the mean number of units
in a queue given by (6.1) were calculated for various values of X, oc, ($ and 6.
The results obtained were then compared against simulation data. The simu-
lation model was written in GPSS. No significant déviations between the
numerical results and the simulation data were observed with the exception
of the extreme case in which P >>> a. In this case some minor déviations
were observed.
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