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OPTIMAL CONSTRUCTIONS
OF EVENT-MODE NETWORKS (*} V)

by Maciej M. SYSLO (2)

Abstract, — There are two types of networks in the scheduling and planning which represent a project
t, e., the activities together with their precedence relations, namely, the activity networks and theevent
networks. For each project, there exists a unique activity network without redundant arcs but since
there îs an infinité numher of different sized eventnetworks, the problem is tofind an event network with
the minimum number of dummy activities, The motivation behind this problem is to minimize the time of
the analysis of a network which is proportionai to the number of activities, induding the dummy ones.
Krishnamoortky and Deo proved thatthis problem is NP-complete, In sections 2 and 3 we characterize
activity networks for which there exist event networks without dummy activities and we show that the
question whether a given activity network requires dummy activities in the event network can be
answered in poiynomial time. We review some algorithmsforfinding an optimal event network and a new
approach is presented which gives rise ta an approximate algorithm and can lead to an optimal branch-
and-bound method. Some generalizations of this reaï-world problem are also considérée.

Key words à phrases: Complexité line digraph, network construction, network anaîysis (A.M.S.
classification; O5C2Q, O5C35, 68C25, 68E1O, 9OC35; C.R. catégories: 5.32).

Résumé. — H existe dans Vordonnancement et la planification deux types de réseaux qui
représentent un projet, c'est-à-dire les activités avec leurs relations de précédence : les réseaux
d'activités et les réseaux d* événements. Pour chaque projet, il existe un seul réseau d'activité sans arc
redondant, mais, puisqu'il y a un nombre infini de réseaux d'événements de tailles différentes, le problème
est de trouver le réseau d'événements avec le plus petit nombre &'activités artificielles. La motivation de
ce problème est de minimiser le temps d'analyse d'un réseau, temps qui est proportionnel au nombre des
activités, artificielles incluses. Krishnamoorthy et Deo ont montré que ce problème est NP-complet,
Dans les paragraphes 2 et 3 nous caractérisons les réseaux d*activités pour lesquels il existe des réseaux
d'événements sans activités artificielles et nous montrons que Von peut répondre en un temps poiynomial
à la question de savoir si un réseau donné d'activités exige des activités artificielles, Nous passons en
revue quelques algorithmes pour trouver un réseau optimal d'événements, et nous présentons une
nouvelle approche qui amène à un algorithme approché et peut conduire à une méthode arborescente
optimale. Nous considérons également quelques généralisations de ce problème concret.
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242 M. M. SYSLO

1. INTRODUCTION

In the scheduling and planning, there are two types of networks which
represent a project, i. e., the activities together with their precedence relations,
namely the activity-node networks and the event-nöde networks. The former are
sometimes called simply the activity networks and the latter the PERT, project,
or event networks. In this paper, we shall use the names activity network and
event network, resp. An activity network is a digraph D in which the nodes
correspond one-to-one with the given activities and there is an arc (w, v) in D if
activity u précèdes activity v. There exists a unique activity network without
redundant arcs for each project. In an event network E which corresponds to an
activity network Z), the given activities are represented by a subset of arcs of E
and the precedence relations are preserved. In gênerai, dummy activities (arcs
of E) are introduced to satisfy the last requirement and, since there is an infinité
nuîïiber of different sized evcni networks for each project, the problem is to find
for a set of activities and their precedence relations, an event network with the
minimum number of dummy activities. The motivation behind this problem is to
minimize the time of the analysis of a network which is proportional to the
number of arcs, including those which correspond to dummy activities.

Krishnamoorthy and Deo proved in [9] that the problem of finding the
minimum number of dummy activities in the event network which correspond to
a given set of activities and their precedence relations is NP-complete. In
section 2 and 3, we characterize the precedens relations for which there exists an
event network without dummy activities and show that the question whether a
given precedence relations require dummy activities in the event network can be
answered in polynomial time.

In section 4-6, we review some algorithms for finding the event network with
the minimum number of dummy activities and in section 7, a new approach is
presented which gives rise to an approximate algorithm and can lead to an
optimal branch-and-bound method.

The precedence relations of a real-world set of activities are consistant, that is
the corresponding activity network and the event network contain no circuit.
Cantor and Dimsdal [2] generalized the problem for not necessarily acircuit
digraphs and we investigate and explore here some graph-theoretic relations
between two pairs of digraphs, namely between an activity network and its event
network and a digraph and its line digraph.

For graphical terms not defined in this paper we referred to [7].
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2. DEFINITIONS. THE PROBLEM

Let D-(V, A) dénote a directed graph (simply, digraph}, where Kis the set of
nodes and À is the set oïarcs, that is, ordered pairs of nodes. An arc is denoted by
(«, v), To avoid misunderstandings, the set of nodes and the set of arcs of D are
sometimes denoted by V(D) and A (D). Let us define

rDv={ueV(D):{v,u)eA{D)}
and

T^v={ue V{D):(utv)eA(D)}9

where v e V{D). Notice that we allow D to have loops, that is, arcs of the form
(u, u), If in addition we allow D to have parallel arcs that is? arcs which connect
the same nodes, then D is called a multidigraph and A should be considered as a
farnily of pairs.

\ïuo,uu .. .,uk(k^l) are nodes ofD midiu^ UU;) e A (D) fox i= l, 2, . • ,,fe
then we dénote u0 -> uk and say that there exists a path from u0 to uk, A digraph
D is acircuit if it contains no uo-+uo. Notice that an acircuit digraph has no
loops. hciat =(ti0> v) and at~(w, ut). Ifv^worv-nv then we dénote ax -+at.

Let D be an activity network of a given project which consists of a set of
activities and precedence relations among them, that is there exists a one-to-one
correspondence between the nodes of D and the activities» and (uy v) e A (D) if
activity u précèdes activity v. D is an acircuit digraph. The problem of
constructing an event network for D with the minimum number of dummy
activities is to find a digraph E such that (1) there exists a one~to-one
correspondence oc : V(D) -> B, where B^A(E) such that u -> v in D if and only if
a(«) -* a{v) in E for any u, ve V(D\ and (2) the set of dummy activities (arcs)
A{E)—B has the minimum number of éléments among ail digraphs which
satisfy(l)*

Cantor and Dimsdal [2] dealt with the problem for digraphs which are not
necessarily acircuit. Let D be a digraph. The pair {Eyf)y where E is a digraph and
ƒ ; ¥(D) -> A (E) is an arc-dual digraph of D if for any pair uuu2e ¥(D), wê have
ux ~+u2 m D if and only if/{%)~> f(u2) in £. The arcs in A (£} — f(V(D)) are
called dummy arcs oîE, If £ is a digraph, then the pair (D, g)f where D is a digraph
and g : A (E) -+ V(D) is a node-dual digraph of £ if for any pair aua2 e A (E) we
have ax ™> a2 in E if and only if g (ax)-*g (a2 ) in D. It is easy to see that in the class
of acircuit digraphs, D may be considered an activity network and E a
corresponding event network.

Let S be a finite set. The family of subsets {St} t of S some of which may be
empty is called an improper cover ofSifXjS^S, If additionally for every kjeî,

ie/

if fc 7e / then ^ n S p 0 , then {Si} t is called an improper partition of S. Let F be a
digraph. Then < { U{-,}, { Wx} >,5 where { Ut}} and {W{}( are improper covers

vol i5, n°3, août 198Ï



244 M. M, SYSLO

(partitions) of V (F) is called an improper cover {partition) of a digraph F if
A (F)—\J Utx Wi9 where xdénotes the cartesian product of sets. Every

ïe/

digraph D has an improper cover, for instance if A (D) — {e1,e2, . . . , em } and
ei = (Uh vi) then Ui = {ui}1 and Wi = {ui} i5 where f = { l , 2, . . . , m}, see also
theorem 2 .1 .

We shall also consider line digraphs. If £ is a multidigraph then the line
digraph S£(E) of £ is defined as follows V (££ (E)) = A (E) and if ax =(ul9 v^,
a2=(M2> vi)> ai> &i^A (£) then (a1, a2) e A {<£ (£)) if and only if v1—u2.
A digraph D is said to be a Une digraph or réversible if there exists a multidigraph
£ such that D = if (£). There exist several characterizations of line digraphs and
hère we shall make use of the following.

THEOREM 2.1 [6]: A digraph D is a Une digraph if and only if there exists an
improper partition of D, •

It is easy to show that the last theorem is equivalent to the following.

THEOREM 2.2 [12]: A digraph D is a Une digraph if and only ifTD vlr\TDv2^Ç>
then TD v1=TD v2i where vlt v2 e V (D). Q

COROLLARY TO THEOREM 2.2: A digraph D is a Une digraph if and only if there
exists an improper partition { Vj}jofV(D)such thatforeachve V(D) thereexists
keJ such that TDv~Vk. Q

If £ is a multidigraph then ^ (E) is a node-dual digraph of £ . In this case, g is a
bijection and i f (£ ) need not be a node-dual digraph of £ with the minimum
number of vertices. Figure 2.1 (a) shows a digraph E and its line digraph, and
the node-dual digraph of £ with the minimum number of nodes is shown in
figure 2. l(b).

A

(a)

(b)
Figure 2 .1 .

R.A.I.R.O. Recherche opérationnelle/Opérations Research



OPTIMAL CONSTRUCTIONS OF EVENT-NODE NETWORKS 245

If D is a line digraph, i. e.s when there exists a digraph E sueh that if (£)=/)
then (E, h~x) is an arc-dual digraph of D and in thîs case h"1 is a bijection
between V(D) and A (£), that is, E contains no dummy arcs. Figure 2.2 (a)
shows a digraph D which is not a line digraph and for which there exists the arc-
dual digraph (E, ƒ ) without dummy arcs see figure 2.2 (b) [ft dénotes ƒ («,-)].
Notice, that S£ (E) is isomorphic to D', where V (D ' ) - V (D) and

4 (D) = A (D)u{(u2i

Since our goal is to minimize the number of dummy activities in an arc-dual
digraph (E, ƒ ) of D, first we should characterize a digraph D such that there exists
a map ƒ which maps V (D) onto A (E) .(ƒ is not necessarily to be bijective).

Figure 2.2.

If D is a digraph then let 1> dénote the transitive closure of D, i, e., V(D) — V(D)
and (M, Ü) e A (D) if and only if u -> u in D. A digraph D' is the transitive réduction
of D if (1) D' is a spanning subdigraph of D, i. e.:

V(D')=V(D) and E (Df)^E (D),

(2) D'=D, and (3) Z>' has the minimum number of arcs among ail digraphs which
satisfy ( l )and(2) .

THEOREM 2.3: A digraph D has an arc-dual digraph (E, ƒ ) without dummy arcs if
and only if there exists a digraph D' such that Df is a Une digraph and D = Df.

Proof: If for a digraph D there exists an arc-dual digraph (£, ƒ) such that ƒ
maps V(D) onto A (E) then we can construct the digraph D'such that D'is a line
digraph, (JS, ƒ ) is also an arc-dual digraph of D', and / ) ' = />. Let V(D')=V(D).
Then (u{9 u2)eA (Dr) if and only if, iîf(ui) = (vii wx) z.néf{u1) = {v1, w2) then
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246 M. M. SYSLO

wx =v2. It is easy to verify that D'is a line digraph. By the construction, we have
u -* v in D'if and only if/(u) -• ƒ (v) in E, therefore (E9 ƒ ) is also an arc-dual
digraph of D' and therefore D' — D. The proof of the converse we leave to the
reader as an exercise. •

In a digraph D, an arc (u, v) is redundant if there exists a path u -> v consisting
of at least three vertices. If D is an acircuit digraph then we haye the following.

LEMMA 2.1: If D is an acircuit Une digraph then D has no redundant arcs,

Proof: Let u0, ulf . . . , u,e V (D\ (u^uut) e A (D) (i= 1, 2, . . ., /, 1^2) and
suppose that (w0, M,) e A (D). Hence ux eTDuonrDul,1 and ux e TD u0 - TD ux _ u

therefore, by theorem 2.2, D is not a line digraph. •

THEOREM 2.4: IfD is an acircuit digraph then D has an event network without
dummy activities if and only if the transitive réduction D' ofD is a Une digraph.

Proof: If D is acircuit then every digraph D' such that D' = D is a spanning
subdigraph of D and by lemma 2.1, if D'is a line digraph then D' is the transitive
réduction ofD. •

In the next section we shali use theorems 2.3 and 2.4 to show that the problem
of linding whether there exists an event network without dummy activities can be
solved in polynomial time.

(a)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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(c)
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248 M. M. SYSLO

We conclude this section with an example which shows that in spite of the
results in [3] and [10], the number of nodes and the number of arcs in an event
network cannot be minimized simultaneously even if there are no parallel
activities (i. e., activities with the same sets of predecessors and successors).

The set of activities and their precedence relations are shown in figure 2.3 (a).
Figure 2.3(b) shows the event network E of D with the minimum number of
nodes, and figures 2.3(c) and 2.3(d) show how to decrease the number of
dummy activities in E by increasing the number of nodes.

3. THE COMPUTATIONAL COMPLEXITY OF THE PROBLEM

Krishnamoorthy and Deo proved in [9] that the problem of finding whether
there exists the event network with the number of dummy activities less than k for
a given set of activities and their precedence relations is NP-complete. In fact,
they proved a strenger resuît, that this prcblein is NPccmpiete even if we
restrict our attention only to the event networks with the minimum number of
nodes. The resuit of Krishnamoorthy and Deo follows from the fact that the
node-cover problem in simple graphs with vertices of degree two or three is
polynomially transformable to the problem considered hère.

Applying the results of the previous section we show now that the problem of
testing whether for a given digraph not necessarily acircuit there exists an arc-
dual digraph without dummy arcs, i. e., when k = 0, can be solved in polynomial
time.

Let consider first the real-world problem. The foliowing algorithm checks
whether for a given acircuit activity network D there exists an event network with
no dummy activities.

ALGORITHM 3.1:

1. Find the transitive réduction D' of D.
2. If D'is a Une digraph then there exists an event network of D which has no

dummy activities. •

THEOREM 3.1: Algorithm 3.1 tests in polynomial time whether an acircuit
activity network D has an event network with no dummy activities,

Proof: The correctness of the algorithm follows from theorem 2.4. Regarding
the complexity, step 1 needs O(n3) time or less, where n= \ V(D) | (see [1]) and
we encourage the reader to show that applying corollary to theorem 2.2, step 2
can be implemented in 0 (m) time, where m = | A (D) \. •

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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In gênerai, when D is an arbitrary digraph, the problem of testing whether D
has an arc-dual digraph with no dummy arcs can be reduced to that for the
condensation £>* of D. The vertices of Z>* are in a one-toone correspondence
with the strongly connected components of D and (t**s v*)eA (D*), where «*,
v*e¥ (D*) if and only if there exist u,veV(D) such that u and v belong to the
strongly connected components &* and t?* of D, resp,, and (u, v)eÀ(D).

ALGORITHM 3,2:

1. Find the condensation D* of D.

2. If | F (î>*) | > 1 then remove all arcs («J, «f ) of D* such that there exist u%>
u*, . . . , uf eV(D% (uî-u uf) 6 A (D*) ( i = l , 2, . . . , / ) and;

(a) />2, or
(6) 1-2, and

the component uf consists of one vertex ux e V(D), and {uu ux)i A (D).
3. If | ¥(D*) \ « 1 or D* is a line digraph then there exists an arc-dual digraph

of D which has no dummy arcs. •

THEOREM 3.2: Algorithm 3.2 tests in polynomîal time if a given digraph has an
arc-dual digraph with no dummy arcs.

We shall use the following lemmas to prove theorem 3.2.

LEMMA 3 .1: IfD is a strongly connected digraph then Ü is a Une digraph, D

LEMMA 3,2: Let Dbea line digraph, uQ,uu . . . , ute ¥{D\ («,.„ u ut) e A (D)
(i— 1, 2, . v„, I) l^3f and uQf ut and at least two vertices in {ux? u2, *.., ut^x }
belong to different strongly connected components of D then (wOs u^iAiD).

Proof: If (a0? û  ) e A (D) then ux e r f i % n r D î f h l and Uj € FD u0 — F 0 wf _ x, since
w0 and U{ and least two vertices in {wls . . . , ut-i} belong to different strongly
connected components of D. Therefore D is not a line digraph» •

Proof of theorem 3.2: First, notice that if a strongly connected component of D
consists of at îeast two vertices u and v then they have the same sets of
predecessors and successors and (M, M), (V, v)eA (D). Therefore the problem of
finding a digraph D'such that D' = Ù can be reduced to that for the condansation
D* of Z). The correctness of step 2 folio ws from lemmas 3.1 and 3.2, and step 3
is based on theorem 2.3 and lemma 3.1, Regarding the complexity of algorithm
3.2, the condensation D* of D can be found in 0(m) time, where m= \ A (D) |s
step 2 is a partial transitive réduction of D* therefore it can be done in time
bounded by O(n3)5 where n ~ | V (D)\ and step 3 needs 0(m*) time5 where
w ^ | , i ( D * ) | ( •

Notice that the problem of testing whether for a given activity network there
exists an event network without dummy activities is also significant from a
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250 M. M. SYSLO

practical point of view. The resuit of Krishnamoorthy and Deo suggests that a
polynomial approximate algorithm rather than an exact one should be used in
practice. Ho wever the former can produce some dummy activities even if they
are not necessary. Therefore, the testing if a given activity network has an event
network without dummy activities should be the first step of any method
designed to minimize the number of dummy activities, and, as it has been shown,
it can be done very efficiently.

4. A GENERAL APPROACH TO THE CONSTRUCTION OF OPTIMAL EVENT
NETWORKS

In this and in sections which foliow only acircuit digraphs are considered.
The results of the previous section suggest the folio wing gênerai scheme of any

algorithm which intends to minimize the number of dummy activities in the
event network corresponding to a given activity network D.

IMTIALIZATION: Remove all redundant activities from D.

MAIN STEP; If D is a line digraph then there exists an event network of D
without dummy activities, otherwise apply an algorithm which minimizes the
number of dummy activities. •

There are several algorithms that have so far been proposed and can be
incorporated in the main step. We review some of them in the next section and
hère we present only some basic results which lead to the minimization of the
number of nodes in the event networks, since all the algorithms reviewed intend
also to minimize that number.

Let { at} be the set of activités, and P (i) and S (i) dénote respectively the set of
immédiate predecessors and the set of immédiate successors of at and P (i) and
S(i) dénote respectively the set of all predecessors and the set of all successors
of ar

The following lemmas when applied to a set of activities and precedence
relations among them produce the event network with the minimum number of
nodes (for proofs see [2], [3] and [10]).

LEMMA 4.1: Activities i and j may start at the same node ij and only ij'

P{i) = P(j). •

LEMMA 4.2: Activities i and j may end at the same node ijand only if

S(i) = S(j). O
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LEMMA 4.3: The terminal node of activity i may be the initial node of activity j if
and only if

H S(k)~S(i), where ieP(j). D

5. A SHORT REVIEW OF ALGORITHMS FOR FINDING AN OPTIMAL EVENT
NETWORK

We start this section with an example of an activity network which appears to
be very hard for most of the algorithms.

Figure 5.1 (a) shows the activity network D, and the event network produced
by most of the algorithms and the network with the minimum number of dummy
activities are shown in figure 5.1 (b) and 5.1 (c), resp.

D
ia) (b)

vol 15, n°3, août 1981
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The first algorithm was proposée! by Dimsdal [4] and a counterexample that it
does not always produce an event network with the minimum number of nodes
and dummy activities is given in [5]. It fails also for the network D of figure 5.1.

The algorithm proposed by Fischer et aL [5], contrary to the authors' claim,
also fails to create the event network with the minimum number of dummy
activities (for instance, for the activity network shown in figure 5.1 (a), see also
[3]). For some activity networks it produces also dummy loops and some parallel
dummy activities.

The algorithm presented by Hayes [8] is a set of opérations which should be
performed to give an event network with the minimum number of dummy
activities but, as in the case of two previous algorithms, there is no proof of its
correctrïess and optimality. Ho wever it is mentioned in [8] that the number of
dummy activities can be decreased by increasing the number of nodes in the
event networks.

Cantor and Dimsdal [2] presented the algorithm which for a given digraph
constructs the arc-dual digraph with the minimum number nodes but their
algorithrn intreduces redundant dummy activities {sec the exarnpie in [2]) and
fails to produce the digraph E for the digraph D of figure 5.1. The algorithm for
finding the node-dual digraph with the minimum number of nodes is also
presented in [2],

Corneil, Gotlieb and Lee [3] (see also [10]) state that if an activity network does
not contain parallel activities then the number of nodes and the number of arcs in
an event network can be minimized simultanously and that to minimize the
latter number we may first minimize the former one and then minimize the latter.
Figure 2.3 shows however that in gênerai these statements are not true.

The algorithm of Sterboul and Wertheimer [11] minimizes the number of
nodes in the event networks by using the opérations which follow from lemmas
4.1-4.3.

6. APPROXIMATE ALGORITHMS WHICH ARE OPTIMAL IN A CERTAIN CLASS OF

METHODS

While constructing an event network if we do not intend to minimize neither
the number of nodes nor the number of activities then the foliowing event
network F can be created immediately. Let D dénote an activity network. Then

V(F)={ux,u2\ueV(D)} and

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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where:

At = {(uuu2)\ueV{D)} and A2= {(u2,vt)\(u9v)eA(D)}^

A2is the set of dummy activities.

If D is a digraph then D'is called a subdivision of D if it can be obtained from D
by a séquence of arc subdivisions. D' is the complete subdivision of D if every arc
of D has been subdivided. It is easy to see that 5£{F) is isomorphic to the
complete subdivision of D and that the dummy activities of F correspond one-to-
one with the nodes introduced to D by subdivisions. Evidently, if D is a line
digraph then we do not have to subdivide any arc of D to find the digraph F
such that £?{F)~D. Otherwise, some subdivisions are necessary and the
following question arises immediately; for a digraph D, what is the minimum
number of arc subdivisions which pröduce a subdivision D'of D such that D'is a
line digraph. This question is answered in [12], where an algorithm for finding D'
in polynomial time is also presented. In gênerai, even the minimum number of
subdivisions in an activity network produces a great number of dummy activities
in the corresponding event network, To improve the method, an arc set
subdivision has also been defined in [12] which introduces one new node for a
subset of arcs which form a complete bipartite subdigraph of D. D' is called
a gênerai subdivision of D if it can be obtained from D by a séquence of arc set
subdivisions. Paper [12] contains a polynomial time algorithm for finding a
gênerai subdivision of D which is a line digraph and has the minimum number of
new nodes.

It is easy to see that both opérations preserve the precedence relations. Once
the minimum subdivision or the minimum gênerai subdivision D'of D has been
found, the event network F such that S£ (F)=Df can easily be constructed. Since
both opérations: the arc subdivision and the arc set subdivision, and J^~*
preserve the precedence relations, the algorithms in [12] produce the
approximate solutions to the problem and these solutions are optimal in the
classes of ail solutions which can by obtained by performing the arc subdivions
and the arc set subdivisions, resp.

7. A NEW ALGORITHM FOR FINDING AN OPTIMAL EVENT NETWORK

The approach proposed in this section results from the relations between
réversible digraphs and arc-dual digraphs, and leads to the method which can
produce the event networks with the minimum number of dummy activities
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We shall make use hère of improper covers and improper partitions of a
digraph defined in section 2, where we have pointed out that every digraph has
an improper cover and a digraph has an improper partition if and only if it is a
une digraph.

Notice that in fact every method which for a given activity network constructs
an event network E transforms an improper cover of D into an improper
partition of a digraph Df such that F(D)g V{Df) and for every pair u, ve V(D\
u ~+ v in D' if and only if u -• v in D. The éléments of the set F (/>')- V(D)
correspond to the dummy activities of the event network E, and E satisfies

Such a transformation consists of a séquence of node insertions which preserve
the precedence relations. The nodes inserted correspond to dummy activities of
the resulting event network. Now we shall consider the reverse transformation to
find a gênerai form of this opération of a node insertion. Suppose that for an
acircuit activity network D with no redundant arcs we are given an event
network JE. If possible, we take E with the minimum number of dummy activities
and suppose that E contains some dummy activities. Let D' ~ if (£). Vcrticcs in
¥(0')— V(D) correspond to dummy activities in E. Since D'is a line digraph, it
has an improper partition and we take the foliowing one < { 17}}, { Wj} } j 9

where:

) , ueV(E)}9

Wf
f={(vp u) : (vh u) e A (El ueV(E)}

and;

V(E)={vi9v2t ...,vm}, - / = { l , 2 ^ . . , m } .

ïn other words, a pair ( Up W]) consists of vertices of D'which correspond to arcs
coming to and going out of vp where Vj e V(E). Since D is acircuit, so is E and D\
we may assume that the pairs {(Up Wfj)}j are topologicalîy sorted that is if
veW\ and veUj then i<j. The following algorithm transforms the improper
partition < { Uj}, { Wi } > j of D'into an improper cover of D.

ALGORITHM EA (from Event network to Activity network):
1, Set W}=W'pj^U2, _ ? m .
2, Find maximal index i0 such that Wif> contains a dummy arc Ü. If no such i0

exists, then go to 6.

3, Suppose v is in Ujo(jo>io). Replace WÎQ by Ŵ— {Ü} u Wjo.

4, Scan if the redundancy has been introduced by step 3. If there exist ve Ui0,
u,we Win and index k0 such that u e U£o and we WK then remove w from Win.

5, Go to 2.
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6. Remove all dummy arcs from the sets { U\}, Ut = U[ and remove all pairs
(Uf, Wj) such that Uj = 0 except the pair for which l/j= 0 5 W^ 0 and
Tô 1 Wj= 0 .Le t < { l / J , { W{) } h where I - {1, 2, . . . , n} dénotes the created
famiiy of sets. D

The following properties of ( { l / j } , {W7;})! follows from the relations
between digraph D and digraphs E and D', and from Algorithm EÀ.

PROPERTY 7 .1: The pairs {(17,-; Wt)}{ are topohgically sorted. Q

PROPERTY 7,2: For every maximal set Q = {u,v e V (D) :Tî)u = TD v} and R = {u,
veV(D): T~xu = r^lv} there exist fc5 IGI such that Q = Uk and K g
resp. •

PROPERTY 7.3: The families { C/£}, and { Wx}} constitue an improper partition

and an improper cover of V(D), resp., and A (D) = {J Ut x Wt. G
16/

Now we are ready to present an algorithm which for a given improper cover of
an activity network D créâtes an improper partition of a line digraph D' and
tends to minimize the number V(Df)— V{D). The digraph (or multidigraph) E
which satisfies <£{E) — Dr is the event network corresponding to the activity
network D,

Let D be an activity network, The algorithm starts with the improper cover
< { 17 j} , [Wi] >j of D, where Ut is the maximal set of vertices with the some
successors and W% = TD UtJ i e 1 = { 1, 2, . . . , n }. The families {Ui}l and { Wt }j
satisfy property 7.3 and the algorithm transforms them into two improper
partitions of a set which contains V(D). The transformation consists of a
séquence of node insertions which are created when some nodes of D occure in
more than one set W{. By lemma 4 .1 , the activities with the same set of
predecessors appear in the same set Wj and they may be considered together in
the algorithm and by lemma 4.3, an activity j e Wk for which there exists an
activity ie Uk such that i and j satisfy the condition of the lemma need not be
moved from Wk, such an activity j is said to be stable in Wk.

The algorithm works in the direction opposite to that of Algorithm EA,
therefore we assume that (1 ) the pairs {(17,-; W^)}, are topologicaly sorted, i. e., if
u € W) and u e 17 • then i<j;(2) iet u e W} be a stable activity in Wy If there exists
i # j such that u € Wt then i < j ; and (3 ) if W} a Wt then i < j . Notice that rules (1 )-
(3) do not order {(£7f; Wi)}} uniquely.

ALGORITHM AE (from Activity network to Event network).

Initialization : Let D be an acircuit digraph without redundant arcs.
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1. Form two families { Ut }7 and {Wj}/ of subsets of V(D) such that Ut is the
maximal set of nodes with the same set of successors and Wi = TD U\ {iel). If
{ W^j is an improper partition of V(D) then go to 9.

2. Order the pairs {(Ut; Wj) }j according to the rules (l)-(3) given above. Set
h = 0.

Node insertions:
3. Find minimal index i0 such that Wio contains a node which belongs to

another set Wj{j>i0). If no such i0 exists then go to 9.
4. Find a minimal number of sets Wkl9 Wkz, . . . , Wkp(kj>i0) which either

cover non-stable activities of Wio or cover non-stable activities of Wio and some
activities which are immédiate successors of activities in W^ If Wio or a part of it
cannot by covered in such a way then go to 7.

5. Introducé new nodes zh+u zh+2> • • *> Zh+P
 a s follows. Replace non-stable

covered nodes of Wio by zh+l, zh + 2, . . . , zh + p and set Ukj = Ukiu{zh + j} for
7 = 1,2, . . . , p . Seth = fc+p.

6. Go to 3.

7. Find a maximal subseî Y oï activities which are non-stable in sets lVii9

Wh, . . . , Wiq and ^ismaximal. Introducé new nodes ' z h + u z h + 2 , . . . , 2 h + 4 a n d a
new pair (zh+u zh + 2i ...9zh + q; Y) as follows. Replace Y by zh+j in
Wi^j—l, 2, ..., q) and locate the new pair immediately after the is-th pair,
where is = max{ij- :7= 1, 2, . . ., q}. Set h = h + q.

8. Go to 3.

Termination:
9. Let {(U[; W'^j dénote the family of pairs created in step Node

Insertions. •
It is easy to prove the following properties.

PROPERTY 7.4: ïf {([/{; WJ)}j is the family of pairs created by algorithm AE,

then: (i) \jU\ = \JW'{9 (ii) {U'^j and {W^}j are improper partitions of
ieJ ieJ

X = \jU'h (iii) ifD' dénotes the digraphfor which V(D')=X and < { U\}, { W\} >.,
ieJ

is an improper partition, then the digraph E such that ££f{E) = D' is an event
network of D; (iv) E is acircuit, and (v) E contains no redundant arcs. •

The last property 7.4 (v) follows from the fact that D has no redundant arcs
and that in step 4 we cover activities which are in distance of at most 2 from
activities in 17,.

'0

In gênerai, Aigorithm AE produces only a suboptimal solution {see examples
7.4 and 7.5) however one can easily verify that it needs only polynomial time.
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Sînce the problem of finding an event network with the minimum number of
dummy actiyities is NP-complete, it is unlikely that any polynomial time
algorithm can produce an optimal solution for every input. However it is not
difficult to show how using slightly modified versions of steps 4-5 and 7 to design
a branch and bound algorithm which will always solve the problem. To this end
we should take into considération that the initial order of pairs {(£/,; Wt) }/ is not
unique and that the resuit of the algorithm dépends on the order of steps 4 and 7
in the séquence of node insertions. The details are left to the Reader since our
goul was only to present an approach which can lead to the optimal solution and
to give an approximate algorithm, and the generalization is straigthforward. We
conclude this section with a number of examples which illustrate the main steps
and features of Algorithm AE.

Example 7.1: Let consider the activity network D shown in figure 5.1 (a).

i

1.. .
2 . . .
3 . . .
4.. .
5 . . .
6. , .

Ut

0
1
2
3
4

5,6,7

Wt

1, 2, 3, 4
.5 ,6 ,7

6,7
A
1
0

i

1.. .
2.. .
3., .
4,. .
5 . . .
6.. .

TABLE

UI

0
1

2,2,
• 3

4
5,6,7

7.1.

1,2,3,4

6,7
A
.1
0 '

i

1..
2. .
3. .
4. ,
5. .
6..

ut

0
1

2,2,
3,z2

4,23
5,6,7

Wt

1,2,3,4
5, zx

22> 2 3

6
7
0

The first three columns of table 7.1 show the families { C/,} and {Wt} after
two steps of Initialization. The stable activities are underlined. First, the
algorithm (step 3) finds i0 = 2 and two non-stable activities 6 and 7 which can be
covered by W3. Columns 4-6 of table 7.1 show the families { Ut} and {Wt} after
the insertion of node z±. In the next interation (step 3), W-$ can be covered by W^
and Ws. The last three columns show the improper cover of a digraph D' which
corresponds to the event network with the minimum number of dummy
activities. •

Example 1.2: Table 7.2 in the first three columns contains ordered pairs of
subsets of the improper cover of a network and the last three columns contain the
solution obtained by applying step 7 of the algorithm.

TABLE 7.2

i

1.
2.
3.
4.

Ui

0
b

c,d
ej,g,h

Wt

a,d
Juf>9
j\9,h

0

i

1.
2
3 . . . .
4.
5. , . . . .

vt

0
b

c,d
zltz2

ej,g,h

W-t

a,d
e, zl

22 , h

f, g
0
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Example 7.3: Let now consider the activity network D which corresponds to
the node-cover problem for the graph shown in figure 7.1 (see also [9]).

Figure 7 . 1 .

The set of activities of D consists of the nodes and the edges of G and one
additional activity x. Precedence relations of D are as follows:

v < u if either edge v is incident with node u

or v is an edge and w = x, v, ue V(D).

Paper [9] contains the proof that the minimum node-cover problem in graphs
with vertices of degree two or three, which is NP-complete, is polynomially
transformable to the problem of finding the event network with the minimum
number of dummy activities for the activity network constructed above. Let
apply Algorithm AE to the activity network corresponding to the graph G of
figure 7.1.

TABLE 7.3.

i

1.. .
•2.. .
3.. .
4.. .
5.. .
6.. .
!.. .
8.. .
9.. .

us

0
o
b
c
d
e
ƒ
g

1 , 2 , . . . , 6 , x

Wt

a>by ...,g
l , 2 , x
1,3, x
2, 4, x
3, 4, x
3 ,5 , x
4, 6, x
5,6, x

i

1..
2 . .
3 . .
4 . .
5. .
6..
7. .
8. .
9 . .

10..
11..
12.,

a
b
c

2 4 , 2 5

d
e

ƒ
9

1,2, . . . , 6 , x

a,by . . ., g
1,24
1,2,
4,25
2, x
4,2 2
5,23
3, x

4,26

5,27

6, x
0

i

1..
2..
3 . .
4; .
5..
6..
7..'
8. .
9 . .

10..
11..
12..
13..
14..
15..
16..

Ut

0
a
b

2i4> 2 1 5

C

2 4 , 2 5

- zltz2tz3

f
2g, 2 9 , Z 1 0

g
2i6> 2 1 7

2 6 , 2 7

^11, 2 1 2 , 2 1 3

1 , 2 , . . , 6 , X

IV,

a, b* - • -, 0
Z 4 , 2 1 4

2 i , Z1 5

1
2 5 , 2 8

2 , 2 1 1
2 2 , Z9

23» 2 1 6

3 , 2 I 2

2 6 , 2 ,o
4

2 7 > 2 l 7

5
6» 2 1 3

X

0
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The first three columns of table 7.3 contain the improper cover of D after
Initialization. Step 4 cannot be performed for any Wi9 and in step 7 we first find
F = { 3 , x} which belongs to W3, W5 and W6, and then F={2,x} and
F= {65 x } are found. Columns 4-6 show the families { Ut} and { Wt} after
performing these three node insertions. In the next steps we have F={4},
Y={x], Y={1} and Y= {5}, and finally we obtain the improper cover of D'
which is shown in the last three columns of table 7.3. The node-cover
corresponding to the event network E such that J£(E)=Df consists of three
vertices { 2,3,6 }. It is a minimum cover and therefore, by the results of [9], E has
the minimum number of dummy activities. D

Example 7.4: Consider now the activity network D shown in figure 2.3 (a) and
its improper cover (0; a, b, b'\ c, g, k, /), (a; h, g), (b; d9 e, ƒ, i), (bf; d, e, f, m), (c; d, ƒ,
j)9 (g; d), (k; e), (/; f), and (d, ej9 h, ij, m; 0). Following precisely the steps of
algorithm AE, we obtain the event network E shown in figure 2.3 (b). Suppose
however that we perform step 4 for activity einW2, step 7 for Y= { d9 e,f } in Wz

and W4i and then step 4 for successive sets Wt if necessary. Finally we obtain the
event network with the minimum number of dummy activities described at the
end of section 2. One can easily verify that if step 7 is all the time performed before
step 4 then we get the event network which has also the minimum number of
dummy activities however it has one more node then the previous one. D

Example 7.5: Let an activity network be given by its improper cover shown in
the first three columns of table 7.4. W2 can be covered by W3 and W4. W4 is
contained in W5 u W6 and ge(Ws u W6)- W4 is an immédiate successor of
k e W4 therefore W4 can also be covered by Ws and W6. Columns 4-6 of table 7.4
show the improper cover after these two steps. Next? activity g in W6 can be
covered by W7 because activities w and m are the immédiate successors of s. The

TABLE 7.4.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

c
d
P
V

h
k
s
q

g, m, r, w

c, d% h, p, v
r, q, k, s

X»S
q,k,s

m

c
2 l f

k
s
q

g, myr,w

c, rf, h, p, v

g, w, m
j£, m

m

Z 3 > D

h
Z 1 0

g, m, r, w

c, d, /t, /?, v

z3izA

k, Zg

q>zs>zi
s
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non-stable activities w and n in W1 can be covered by WSi and m in W8 — by W9.
Finally we apply step 7 to Y — {s }. The last three columns in Table 7.4 show the
solution obtained by Algorithm AE.
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