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OPTIMAL CONTROL
OF THE TIME-VARYING FLOWS

IN NETWORKS (*)

by Marc KALTENBACH (*)

Abstract. — Some aspects of a gênerai problem of controlling time-varying flows in networks are
addressed. Non-linear dynamical équations are obtained as a resuit ofletting theflow accumulate at the
end of the queues. It is found that an additional set of state équations offers a convenient way of
enforcing upper limits on link storage capacities. For this model, having non-smooth systemfunctions
and complex (state dependent) time lags, a procedure is describedfor Computing optimal open-loop
controls. Numerical expriments document the convergence properties of the approach.

Keywords: implicit model, reduced System, gradient.

Resumé. — On considère un problème de flots dynamiques dans un réseau. Un modèle à structure
logique complexe est formulé dans lequel il est tenu compte de la dynamique des queues pouvant survenir
aux nœuds du réseau et des contraintes de stockage de flot sur les arcs. Pour ce modèle on décrit une
procédure d'optimisation applicable à des modèles plus détaillés et réalistes. Un ensemble de résultats
numériques illustre les propriétés de convergence de Vapproche proposée.

Mots clés : modèle implicite, système réduit, gradient.
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INTRODUCTION

Many control problems of current interest involve Systems with network
structures. These problems are found in areas as diverse as the routing of data in
communication networks [1,2], water management in networks of pipes, canals
and reservoirs [3], urban traffic control [4, 5], to mention only a few examples.
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336 M. KALTENBACH

A network structure is characterized by a set of nodes and a set of directed arcs,
called links, joining the nodes. Dynamics are observed when the links act as
channels for the time varying flow of a commodity that may consist of either
messages, fluids, vehicles, etc. Due to insufïîcient or conflicting service
capabilities at the nodes, the flow of commodity may accumulate on the links,
forming queues. A major control objective is then to manipulate the node service
rates in order to optimize a function of the queues.

Analyticaî solutions have been obtained for problems in this class on the
basis of variational calculus, [4, 5,6]. Possibly the most advanced results to date
are to be found in [2]. Due to various assumptions still seriously curbing the
generality of application of these analyticaî results, less limited numerical
solutions have also been sought as an alternative. The principal methods
proposed so far have either been based on Lagrangian Theory [7], or on the
Simplex Algorithm of Linear Programming [8, 9, 10].

The present paper describes an approach which is novel and yet quite in line
with traditional nurncrical rnethöds in Opeu-Loop Optimal Controi [iij. Part ï
includes a mathematical model which is purposefully restricted to a few basic
features of time varying flows in networks. One of its important originalities rests
in the treatment of constraints on queue lengths. In the past, link storage
capacity limits have been treated as system state constraints. This could result in
system inconsistency or in optimization difficulties. In the present paper, these
constraints are replaced by additional variables and dynamic équations.

The model illustrâtes the need in Systems modelling to give a greater
importance to the structure of logical relationships bet ween Systems parts. The
difficulty is that the resulting system often becomes out of range of many classical
optimization techniques. This problem is now widely recognized and the basis
for a renewed interest in the Theory of Optimization [16].

In Part II, the paper illustrâtes the application of a straightforward
optimization technique to the model in Part I with its non-smooth system
functions and complex time lags. What is not straightforward though and should
still be considered as an active area for research is how to practically implement
the algorithm so as to obtain a very efficient algorithm. Due to the large amount
of space required for its proper exposition, this major aspect of the work
reported here is left to référence [17].

Numerical examples at the end of the paper document the quite remarkable
efficiency of the algorithm obtained by the proposed method.
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PARTI

DESCRIPTION OF TIME VARY1NG FLOWS IN NETWORKS

1. A network and its éléments

Consider the network in figure 1. The circles are nodes indexed in a natural
way. The directed arcs, or links, are indexed relatively to the nodes they are
incident to, as explained on the figure. The link indices form a set f\ link index /
equals zero if link / does not belong to the network. Also, let ƒ _M (respect, l + n)
dénote the nth link upstream (respect, downstream) of link I. Link î is an
entrance link if I^x —0, an exit link if / + 1 =0 .

2. Free flow on a link

The links act as channels for the flow of some commodity assimilated to a fluid.
A dynamic model is sought for the description of the distribution of commodity
over the network links at successive time instants £ = 0, A, 2À, . . . , JVA = 7\

At a particular time t e[0, 7], a queue may cover the front part of any link
/ e ^ / . On the remaining part, called the free flow part, the commodity, if any,
travels at the constant speed F. Figure 2 depicts such a link /, at £ = rcA,
superimposed over a set of coordinate axis. The ordinate axis measures flow rate
values, in units of commodity per second, over points of the free flow part. It is
assumed that the true length of link î is sufficiently well approximated by an
intégral number ht of segments called blocks; with L{ the length of link I and V A
the length of a block, h^LJV A. Figure 2 shows the free flow rate values to be
constant over the successive blocks corresponding to intervais (0, FA], (FA,
2 VA], . . ., etc. The above assumptions on link lengths and flow rate values are
made less restrictive by lo wering the value of A. A queue is represented in figure 2
by a thick arrow. The dotted line over it indicates free flow rate values that have
become inoperative following the inclusion of the corresponding amounts of
commodity in the queue.

During a time interval A, the free flow distribution in figure 2 is translated by
FA meters in the link direction. The free flow rate distribution can therefore be
expressed by way of successive service rate values at node I _ 1. Let q™1 (n) dénote
the service rate at node I in the interval [n A, (n +1 ) A). If a represents the link
length occupied by one unit of queueing commodity, then the queue is
progressing at speed aqojut(n). This implies that a queue behaves as an
incompressible fluid since changes of speed occur simultaneously over the whole
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338 M. KALTENBACH

length of the queue. Requirement that queue speeds be less than V leads to the
gênerai condition on ail free flow rate values q,

~. (1)

3. Queue dynamics

Let Xj (n) dénote the amount of commodity queueing on link / at time n A. Let
Aq}P(n) represent the amount of commodity joining queue xy during time
interval [nA, (n+l)A). Flow conservation implies,

(2)

(a) Description of qf (n)

A mathematical expression is sought for cj)"{n) when the ilow joins the queue
by its left end in figure 2. This leads to a new expression for (2).

At time n A, the number of blocks entirely covered by queue x} is:

where Int [z] dénotes the intégral part of the real number z (2).

The free flow rate values on link / are, in shortened notation:

^ O + ï - l - r , ) ; i = l , 2, . . . 5 r,; r, = h, -v,(n) , (3)

qt corresponds to the block in which xt terminâtes. The part of this block covered
by the queue is Fô, where:

S=^*/(n)-Av», (4)

8 is expressed in seconds and its meaning follows from the fact that ô/A is the
fraction of the block covered by a queue.

(2) Sign — dénotes an equality defining the symbol on its left.
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OPTIMAL CONTROL OF THE TIME-VARYING FLOWS IN NETWORKS 339

A question to answer is where to place the end of queue x ; at t = (n+1) A in
figure 3 representing the resulting distribution of commodity over link I. The
method of solution is recursive. Suppose this end has not been found in the
blocks, indexed ï = l , . . . , f e—1, corresponding to the qt values at t = nA,
translated by V A meters on the right in figure 3; assume the end is in block k and
define 5fc by specifying 5k/A to be the fraction of block k covered by a queue.

1+6

Figure 1. — A network with 6 no des.

units/sec.

1 I v a .
J T I ;

< f ree flow part >!<"-"--- queue part-->

0\ VA 2VA

node I- 1

3VA 4VA I 5VA 6VA

cixj (n)
\ meters
node I

Figure 2. — Flow distribution on link / at time n A.

VA 2VA 7 3VA 4VA 5VA 6VA meters

Figure 3. - Flow distribution on link ƒ at time (n+ 1) A.
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Now, (i) equate queue lengths with corresponding link lengths, Le.,

S]V9 (5)

(ii) write that Acf* (n) equals the amount of commodity over the parts (shaded in
figure 3) of blocks 1, 2, . . . , k that overlap with queue x{ at £ = (n-f-l)A, Le.,

(6)
£ = 1

From équations (2), (5), (6) obtain an expression for 5k which, substituted in (5),
gives,

VA F fc-i
j (7)

a valid expression only if x{ ends in block k, i.e., if:

[x,(n + l)-X;(n)](Y.<[(t-l) A-S] F. (8)

From (7), (8) dérive the relevant k as the smallest positive integer satisfying,

)
s-rw+z^^-Df (9)

Observe that (1) implies /c^l (and, if fc=l, S ^ ô ) ; conversely a value A
exceeding r} +1 would violate a condition insured by ulterior model spécification
(15). Hence the search for k is limited to l^fc^r ;-f 1. That search does not
constitute a computational burden in a simulation. It can be shown that for
realistic simulation figures, the k values obtained are small, most often k = 1. On
the other hand it seems there is no need to select a high hT value (r7 < ht ) in order to
obtain a good link length approximation.

(b) Détermination ofq°ut(n)

Dénote by Sj w;(n), n = 0, 1, . . . , N —1, the maximum flow rate out of link /
into link ƒ + x; Sj is a scaling parameter and Uj (n) is the control action during time
interval [nA,(n + l) A). In this model, the control action at a node is analogous to
that of a valve [2, 4] in the sensé that if / and V are two links incident to node /
then increasing the service rate capacity for one direction means decreasing the
service rate capacity for the other. This complementary is expressed by the
condition:

u r(n)=l. (10)
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Furthermore, in order to prevent service to be monopolized by one direction,
introducé the bounds,

In this model the actual flow rate out of node I will normally be

qT{n) = Sîu1{n\ « - 0 , 1 , . . . , i V - l , (12)

where, in view of (1),

However there may occur two cases in which the control action uI (n) ceases to be
effective and (12) does not hold.

(i) there may not be sufficient demand to fill the service capacity provided by
(12). Then, to prevent Xj(n+l)<Os impose:

_ouw„^(A-5)<h+x7(n)

(ii) due to storage capacity limitations, link J + 1 may not be able to admit ail
the flow from link /.

As an aside, let C, dénote the maximum storage capacity, in units of
commodity, allowed on link Je/\ then from Section 2, CJ^LJ/U. Defme also
AGj(n) as the total amount of commodity on link J at t = nA. Then Gj(n)
satisfies the conservation équation:

GJ(n+l) = GJ(n) + ^ t
i (n ) -q r (n ) . (14)

Returning to the main argument, it is required that AG/+) (n+1)^C /+ | which
combined with (14) for J = / + l s gives:

Finally, summarize (10), (13) and (15) in:

+X/(w); S/M/(n); ^ _GI+i (*) + < ( « ) ] . (16)
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342 M. KALTENBACH

This complètes the description of the dynamics associated with a generic link of
the network. Only slight modifications are needed to cover the case of en trance
and exit links; e.g., if I+1 = 0, omit (15) in (16) (infinité sink assumption).

4. System simulation

Form the System équations by collecting pairs of équations (7), (14) for all
networks links. Provide initial conditions x} (0). </,-. i = 1, 2, . . . , r„ V / e / and,
V le/ such that l.x ^0 , compute,

A 1 = 2

Select a control trajectory from the admissible set:

#={C/(n)|w = 0, . . . , N-l; Vector U(n) components

are the independent control actions at the network nodes,

andsatisfy (11)} (17)

Itéra.Le the system équations for ÏV time steps. Observe that within each time
step the individual équations cannot be iterated in arbitrary order since (16)
implies that q°jut{n) must be computed after ^ ( n ) if / + 1 ^ 0 . This apparent
obstacle to the possibility of further extending the model to networks allowing
flow circulation over cyclic paths may be overcome by deleting q^ (n) from the
Min argument in (16). This achieves link decoupling at the price of
underestimating link I + i capacity by:

a small quantity with A.

PARTH

OPTIMAL CONTROL

A common measure of performance is the sum over a prescribed control
period [0, T\ of ail delays incurred by units of commodity for reason of
insufficient service capacities at network nodes [2, 4]. This total delay is most
simply expressed [19] by setting a == 0 in the model just described and Computing,

P/-A £ £ x,(n); T=Nà. (18)
n = 0 ƒ£/
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Equation (7) then reverts to the fixed delay équation,

However équation (16) remains unchanged in form. On the other hand, the
model with oc>0 can be used to give a doser approximation [19] to total kinetic
energy loss, an important index of performance in urban vehicular traffic
networks [5], In this paper the major interest is not on the realism of the model,
but rather on optimization techniques for Systems with complex structural
features. Accordingly optimization of the proposed model with a>0 shall be
considered for (18) and for:

PI = £ X'(n)QX(n), (20)
n = 0

where vector X(n) has components x7(n), le/ and Q is a square matrix. This
quadratic PI may be viewed as a way of penalizing long queues.

1- Statement of an optimal control problem

A numerical strategy using successive approximations is sought for the open
loop optimal control problem:

Find a control schedule in °il (17), which minimizes PI in (18) or (20), subject to
a network flow System of generic dynamic équations (7), (14) with given (i.e.
fixed) initial conditions.

This problem is non-trivial as it involves non-smooth System fonctions and
complex time lags. On the other hand, the System représentation is
unconventional in the sensé that the complete forrn of the System différence
équations for a given network is never explicitly stated. Since the relevant parts
of the System équations are generated only when required in the course of a
spécifie simulation or optimization, the model is said to be implicit. Explicit
équations could be written, but they would involve such a large number of terms
that it would be difficult to put them to practical use. On the other hand the
complexity of an explicit représentation would seriously limit the computational
efficiency of an optimization algorithm applied to it. At present, the author is not
aware of an alternative optimization approach to the one described in the
following. It consists in the application of one of several possible gradient
approaches [11] to the system model in implicit form.
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2. Formai descent algorithm

Obtain reduced forms for the System équations by assuming k fîxed in (7) and
equating qojut{n) to the active argument of the Min operator in (16). Record this
information in an index IDX (J, n). Then array IDX, of components IDX (/, n),
Ie^.n^O, ..., N—l, characterizes the séquence of reduced System functions
associated with a particular System simulation. With respect to the entire set ^ ,
there is a fînite number p of different vectors IDX. Partition % with respect to the
équivalence relation which associâtes two éléments in % if they resuit in the
same IDX. Obtain the resulting family of connected subsets
SP={£7t\i = ly . . . , /?} where £7t is the subset corresponding to a particular
value of IDX denoted IDXt. If the nominal control trajectory, denoted u, with /
referring to a particular gradient itération and U^É^ , lies in the interior &*t of
set £fu then within some neighborhood of \ix the System functions can be
replaced by their reduced forms which are then differentiable throughout the
neighborhood. Any one of the classical gradient algorithms with well studied
convergence properties may be applied to this reduced System [11]. Now

A

assume uz belongs to the common boundary d£7ij = d£7i n ô Sf ̂  of two sets £f\

and Sfj. Since PI is continuous with respect to u e U, associating either IDXt or
IDXj to Uj does not change the value of PI. Observe that the reduced System
functions corresponding to IDXt (respt. IDXj) are directionally differentiable
with respect to ail directions in % pointing toward S? - (respt. &j). Let gt dénote
the gradient vector 3P//ôp,|li=^ computed assuming IDX = IDXi. If gt points
toward fru then the situation is the same as if \ix e Û* v If none of gt and g j have the
above property, a direction of descent is sought in dS^ij9 or within a
neighborhood of that set, by projecting g. and g} on 867^. For a local optimum at
u = uz it is necessary that both gt and g} be orthogonal to o£f iy This reasoning
extends to cases where \xl belongs to the common boundaries of more than two
sets in 9.

This formai approach reduces the given problem to a succession of
subproblems for which well founded methods of solution exist. Observe however
that the sets £f \ are very small and that computed directions of descent are most
likely to be valid over large groups of contiguous sets in ̂ \ This has motivated
experiments with the following simpler, accelerated descent algorithm.

3. Relaxed structure gradient algorithm

Step 0 : Set Z = 0; select u.j = [l/(0), . . . , U(N-l)]; détermine the
corresponding IDX value by iterating the System équations for
n = 0 , l s . . . , N - l .
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Step 1 : Compute the gradient dPI/d^ corresponding to IDX. This may be
done with the help of the algorithm in [12], Note that fixing IDX (for this step
only) results in differentiable reduced system funetions.

Step 2 : Perform a step size search along a direction derived from the gradient.
Set / = / + ! ; record the best PI with corresponding Uj and IDX values. The
controls are kept in % by the procedure indicated in [13].

Step 3 ; If a sufficient improvement of PI has been obtained at step 2, go to
step 1, if not stop.

The convergence of this simplified procedure has been studied theoretically for
the case a = 0 (storage at the nodes). It can be shown that the linear performance
index (18) defines a convex function over the closed convex set of admissible
controls. Precisely, the objective function surface is obtained as Max {Ht,
H2, . . . , Hm} where the if,.'s are hyperplanes in RUXN+\ and II dénotes the
number of links in the network. Consequently any non optimal solution admits a
direction of descent and any local minimum is a global minimum. The simple
version of the algorithm presented here does not rule out a possibilité of
"jamming" along an edge formed by two of the hyperplanes just mentioned.
However anti-jamming procedures may be added to the algorithm. One
procedure tested consists in combining descent directions derived from system
structures identified at successive descent steps, in accordance with the conjugate
gradient algorithm [11]. This procedure is applicable only when few structure
changes are involved in a descent step; which is the case when the algorithm
approaches jamming conditions. Note that if many structure changes were
involved in a descent step, the gradient information from past descent steps
would loose significance and only contribute to slowing and possibly prevent
convergence. This fact has been observed experimentally. Another anti-jamming
procedure [16] would consist in including in the gradient computation those
u}(n) variables which are within a small e range of defming an active reduced
system structure.

The gradient descent method just presented bears a close analogy to the GRG
approach [14] in that the gradient is computed with respect to a local system
structure (the set of active constraints) and the modification of the décision
variables along the négative gradient direction may extend beyond the strict
range of validity of the local system structure.

In the GRG approach the necessity of maintaining all variables in a feasible
domain [13] and explicity solving some implicit funetions in order to update the
local system structure, is of ten the source of much computational complexity
that is avoided in the present approach. In counterpart it will not always be
possible to lump external constraints in the system funetions as done in the
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present paper, and when possible, a difficult gradient computation may resuit.
Thus it appears that in some cases there will be a definite advantage to combine
the two approaches.

4. Numerical examples

For the network in figure 1, let V= 12 m/sec; a = 4 m; A = 4 seconds; N = 98,
Sj = 2.75for J = l , .. ., 12; C/min = l/3; l/max = 2/3. The System initial conditions
are all zero, except for some non-zero flow rates distributed periodically with
period 14A upstream on entrance links. Namely, iîdh i = l , 2, . . ., is aperiodic
distribution with first period [.6, 2, 2.5, 2, 1.5, .8, .3, 0, 0, 0, 0, 0, 0, 0], then for
links 3, 7 and 11, qt = Mm [1.3 di9 2.5] and for links 6 and 9, ^ = 0 if i<l and
qt = Min [1.3 dt _ 7,2.5] if i > 1. A first objective will be to minimize PI in (20), with
Q a (12 x 12) unit matrix. Several computer runs are started with different initial
nominal control trajectories, denoted CTRL(Z) 1=1, . . . , 4 . For Z=l, 2, 3,
CTRL(/) corresponds to constant control actions, respectively: uï{n)= Umin;
Mi(n)=.5 and W;(n)=t/max, for 7 = 1, .. .,6 and n = 0, .. . , JV-1. CTRL (4)
corresponds to the crude feedback law: Uj(n)=Umax if xI(n)>xI(n) and
W/(M)=C/min otherwise; / ' dénotes the vertical link incident to node /. Table 1
displays the PI values, corresponding to the four initial control séquences, before
and after optimization. A good agreement is obtained in the final PI values. The
slight variations in final values are attributed to the gradient algorithm
termination and step size sélection procedures as well as numerical round off
errors. A set of optimized control trajectories is represented by the thick lines in
figure 4. Observe that these trajectories rapidly fall into periodic patterns; this no
doubt reflects the periodic arrivais specifïed at the network en trances. A proper
phasing of the control actions at adjacent nodes may also be observed. In this
model, the optimal controls are not necessarily bang-bang. Bang-bang controls
where obtained in [6] for the case of cumulated arrivais at the network entrances
and removal of queue size constraints. In the present case, it is easy to formulate
a counter example for a one intersection network.

For the flow out of link J, the controls ut (n) are ineffective when
q°1

ut(n)<Siui(n)- Accordingly, in figure 4, the areas shadedb%%|(respect.fcs^sl)
dénote ranges of values ux (n) which have no effect on the flow out of horizontal
link ƒ (respect, vertical link V incident to node I). Consequently ut (n) values are
arbitrary in the range of areas shaded K8SS8I

In the above examples, convergence has been quite fast. All runs took less than
30 seconds cpu time on an IBM 370/168 computer operating under MVS (VS 2).
The fact that in ail cases 80 % of the cost réductions were obtained within the first
4 seconds of a run is significant because operational applications are unlikely to
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require such a degree of convergence as reported in table 1; ail intermediate
solutions are System feasible.

TABLE 1

Optimization results

Initial
control

séquences

CTRL(l)[t/min]

CTRL (2) [.5]

CTRL (3) [f/max]

CTRL (4) [Feedback]

Corresponding
quadratic
(linear)

PI values

105493
(18 600)

103051
(18452)

136961
(22 816)

95 769
(21 343)

Optimized
quadratic

and
Corr. lin.
PI values

54166
(15 240)

54101
(15228)

54165
(15 244)

54102
(15 224)

Optimized
linear

PI values

14416

14480

14424

14404

u D ru ib bU öb /U 7b

85 90 95 r00
time steps

30 3b 4U Mb 3b 60 85 70

U yb bu bb bu

5 90 95 r00
time steps

D !» ÎO ÏS 20 25 30 35 40 45 S0 55 60 65 70 75 80 85 90 95 f 00
1/3

Figure 4. — Optimized control trajectories
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Problems of numerical accuracy may restrict this approach to networks not
exceeding 13-17 nodes depending on the network topology, the selected PJ, the
number of time steps and the flow intensity.

CONCLUSION

This paper has reported the successful application of a gradient type
optimization technique to a model of quite complex logical structure.

In summary, the basic idea of the method is that of first looking for ways of
eliminating external constraints on the model dynamic équations and then
applying an optimization technique based on considération of only the local (or
active) structure of the System équations.

The interest of this approach is that it can be applied to more complex Systems
which are the rule, rather than the exception, in reality. For instance, the
network flow model can be extended [18] to the more realistic case of
compressible flows; the model obtained keeps track of various queue segments of
different densities. This causes a sharp increase in the number of logical
conditions to be checked at each stage of the System simulation as well as in the
number of possible local System structures.

At present, models of that type are expected to fall beyond the range of
appiicability of purely analytical methods of optimization. Even when
theoretically possible, the analytical solutions may require considération of too
many particular cases to be practical. The present approach éliminâtes this
diversity. However, its proper implementation still represents a major task. At
present the proper exploitation of special structure poses challenges at least
equal to that of developing gênerai optimization techniques in earlier times.

There are direct applications for the small network flow optimization
algorithm described in this paper. On the other hand the algorithm can be used
as one component of a (sub-optimal) feedback loop for the real time
decentralized control of flows in very large networks [17]. One major idea in that
scheme is to consider overlapping subnetworks optimized by parallel
computations. Coordination between the subnetworks is achieved naturally by
the overlapping of the subnetworks. More spécifie details are contained in the
author's thesis.
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