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SOLVIIMG MDP FUNCTIONAL EQUATIONS
BY LEXICOGRAPHIC OPTIMIZATION (*)

by Paul J. SCHWEITZER (*)

Abstract. — A vector which lexicographicalty maximizes the components of the return vector is
shown to satisfy the functional équations of infinité horizon discrete dynamic programming.

Keywords: Markovian décision process; functional équations; lexicographie optimization.

Resumé. — On montre qu'un vecteur qui maximise lexicographiquement les composants du vecteur
des revenus vérifie les équations fonctionnelles de la programmation dynamique discrète à horizon infini.

1. INTRODUCTION

Consider a discounted [10, 11] or undiscounted [5, 10, 11] semi-Markovian
décision process (MDP) in the stationary infinité-horizon setting. A central issue
is establishing existence of a policy which is optimal in every state: a policy which
simultaneously maximizes every component of the return vector (cumulative
discounted reward vector or gain rate vector, respectively). A direct proof is
given in [17], The simplcst existence proof consists of establishing existence of a
solution to the MDYfunctional équations (see below), and then showing that any
policy which simultaneously achieves all maxima in these functional équations
also maximizes all components of the return vector.

Establishing solvability of the functional équations is simplest in the
discounted case, where existence of afixed point to a contraction operator (or n-
step contraction operator) is always guaranteed [4]. This approach fails in the
undiscounted case, where the desiredfixed point is oï&non-contractive operator.
Several methods have been proposed for this case, and enumerated in [8]. The
earliest method, for both undiscounted and discounted cases, is the policy
itération algorithm (PIA) [5,10,11,19] which générâtes a séquence of return
vectors having finite convergence (if the state and policy spaces are finite) to the
maximum-return vector.
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The goal of this paper is to provide a concise alternate proof of the solvability
of thefunctional équations. It proceeds by initiating the PI A with a vector which
lexicographically opîimizes ail components of the return vector. The PI A is
shown to have immédiate convergence to this vector, which implies both that
this vector satisfies thefunctional équations and that some policy simultaneously
maximizes all components of the return vector. The new proof is of interest for
two reasons, aside from its simplicity: it provides an alternate characterization of
the maximal return vector, and it circumvents the technical issues of convergence
of the PIA which arise when there are infinitely many states or policies.

2. DISCOUNTED MDP's

The discounted case is presented first, due to its greater simplicity. The
functional équations to be solved are:

£ %% (1)
keKV) jeü

where Q = {1, 2, 3, . . .} dénotes the finite or denumerable state-space, K(i)
dénotes the action space in state i, K = X K{i) is the policy space, and q\ and

Mk
tj are the one-step expected reward and discounted transition probability to

state j if action k is chosen in state U These satisfy:

\q*\£A<co, M*j £ 0, X M*j ̂  P < 1.
yen

Foreachstationarypolicy/=[/(l),/(2)>/(3)> . . ,]eK, where/(i)eK(i) is
the action used in state /, defme:

and the return vector:

f M{f)nq(J\ (2)

which is the unique bounded solution ([^COL ^ A/(l — P)) to the équations:

v{f) = q{f) + M{f)v{f\ (3)
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We require that K be compact and that v (f) be continuous on K. These are met
automatically if the state space Q and every action space K (i) is finite, which is
the situation when numerical computations are undertaken. If Q is denumerable
or any K(i) is non-finite, additional technical assumptions are needed to meet
these requirements: if each K(i) is compact, then TychonofFs theorem [12]
ensures the compactness of K, while the continuity ofq(f) and M (ƒ ) ensures the
continuity of v(f).

Our goal is to find a policyƒ * e K such that v (ƒ * ) solves équation (1 ). It is then
straightforward to show [2] that:

i e n , (4)
feK

so that/* simultaneously achieves all maxima on the rightside of équation (4)
and is optimal in every state. Such a policy is obtained as follows.

Define {vi}™=1 and sets {Sj£ 0 E K recursively by:

= max{v(f)i\feSi_1}=Tüax{v(f)i\f€K and u (ƒ ).==£. for y < i},

1 = 1 ,2 ,3 , . . . ,

î = l , 2 , 3 , . . . ,

Note that the vector [v= vl9 v2ivZi ...) lexicographically maximizes ail
components of the vector v(f) = [v(f)1, v(f)2, • •.] over feK, and that:

If K is compact and v{f) is continuous on X, it is claimed that, for any policy
ƒ * e H St (this intersection is non-empty by a modification of Cantor's

i ^ i

intersection theorem [1, p. 77]) u(ƒ*) = !; satisfies (1).
To show this, note first that the expression defining v1 is the maximum of a

continuous function on a compact set, hence is achieved. Therefore Sx is non-
empty and is also compact. Inductively, each vt is well-defined and each St is non-
empty and compact.

Start the PIA [10,11] with v(f*) and do one policy improvement step. This
détermines a new policy h with either (a)h=f* andv(f*) solves the functional
équations (1), or (b) v{h)t ^ v{f*)t for every / with strict inequality for at least
one i.
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94 P. J. SCHWEITZER

To show that case (b) cannot occur, note that:

v1 = max v(f)1 ^'v(h)x ^v(f*)1=v1,

feK

so that AeS^ Then:

v2 = msLXv(f)2 ^v{h)2 ^ v(f*)2 = v2J
feS,

so that heS2. Proceeding inductively, i7(/*)j = üi = i?(A)i for every i. Case (a)
shows !>(ƒ*) satisfïes(l).

3. UNDISCOUNTED CASE

The procedure is illustrated for the case of 3 nested functional équations,
which anse when seeking maximum-biaspolicies [6, 7,14,19]. By discarding the
last équation, the procedure reduces to one for finding maximal-gain policies. A
straightforward extension to four or more nested functional équations will
generalize the procedure to higher-order optimality criteria [7,14, 20].

The nested functional équations to be solved are:

sf-maxE/^*], zeQ, (5a)
keK(i) jeil

wf= max fe»-£ H^gf+J^ P?,wJ], ied, (5b)
*eL(y»,i) jed jeu

yf= max [flf + X B t ^ - ^ Hfjwf+Z Pk
ijy% /eQ, (5c)

keMig*, tr*, /) jeQ jeSl jeQ

where:

/en

M{g*, w*, i) = {keL(g*, i)\wf=qî-Z
jeQ

yen

*,- ̂  0, I H .̂ g ̂ x < oo, HJ,.=0 if P», = 0,
yen

j ; ^ 0, E B?; g ̂ 2 < oo, Bîj=O if H^=0,
yen

| ^ |^^3<co, \a)\-^AA<co.
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For any policy ƒ e K = X K{ï), the équations:
ieCl

g(f) = P(f)g(f), w(f) = q(f)-H(f)g(f) + P(f)w(f), \ (6 b c)

y(f) = a(f) + B(f)g(f)-H(f)w(f) + P(f)y(f), | V ' '
will have a unique solution set {g if), w(f), y{f)} provided supplementary
conditions are supplied, one per subchain of P(f), to fix the arbitrary additive
constants in y(f), We require that K be compact and thatg(/), w(f), y(f) be
continuous on K. These are met automatically if the state and action spaces are
fmite. If not, additional technical assumptions are needed to meet these
requirements, including (a) P{f)9 H{f), £(ƒ), q{f), a(f) are continuous in/;
(b) every Tf = £ H^ ^ z1 > 0 (to ensure g(f) is bounded); (c) for every policy

feK, P (ƒ) has the same number of subchains (to ensure [16] that
P*(ƒ) = Cesaro-lïmit of P(f)n, and therefore g(f), are continuous in / ) ; (d) if
Py > 0, then Pk

tj ^ e > 0 (to ensure that the fundamental matrix of P(/) , and
therefore w(f\ is bounded). {a, b, c) are similar to the assumptions that g(/),
P(f) and P*(f) are each continuous in feK, used by Sheu and Farn
[18, thm. 3.3] to ensure existence of a stationary 1-optimal policy for a MDP
with finite state space and compact action space.

Defme {gi9 wi9 yt}T=i and sets {Si9 Ut, Zj?L0 recursively by:

So = K,

gt = maxg{f)h Ï = 1 , 2, 3, . . . ,

Note that any policy in Uo = D St lexicographically maximizes ail components

wt = max w(f)h f = l , 2, 3, . . . ,

Vi = {feVi_1\w{f)i = w^ î = l , 2 , 3 , . . .

Note that any policy in Zo = ç\ Ui lexicographically maximizes ail components

of w(f) = [w(f)l9 w(f)2, w(f)3, . ..] over ƒ eU0.

yt = max y(ƒ),., i = l, 2, 3, . . . ,
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96 P. J. SCHWEITZER

Note that any policy in Zm= C\ Zt lexicographically maximizes ail

components of y{f) = \y(f)u y(f)2> y(f)z> ] o v e r / e Z 0 . Formally, any
policy in Zm lexicographically maximizes ail components of {g ( ƒ ), w ( ƒ ), y ( ƒ )},
with outcome {g, w, ~y]. Note also the nesting property:

K 2 S1 2 S2 2 . . . 2 Uo 2 U1 2 t/2 2 . . . 2 Zo 2 Zx 2 Z2 . . . 2 Z^ # Ç>.

The procedure is well-defined if K is compact and #(ƒ), w(f), y{f) are
continuous on K: all maxima will exist and each Sh Ut, Zt is compact.

For any policy ƒ * E Z^, it is claimed that the triple
{g, w, y] = {^(/*), w^(/*), y (ƒ*)} satisfies thefunctional équations (5 a, b, c). It
is then straightforward [15, thm. 6.17] to show that:

feK

To establish the claim, enter the PIA for these 3 équations [14,19] with the
initial vector triple {g9 wy y} = {g(f*)> w(f*), y if*)}, and let one policy
improvement step produce a successor policy h. Then one of 4 cases holds:

(i) h=f* and {g(f*\ w(f*)9 y(/*)} solve (5),

(ii) g(h) ^ g(f*) and g (h) * g(f*),

(iii) g(h)=g(f*), w(h) ^ w(f*)9 and w(h) * w(f*),

g(h)=g(f*)> w{h) = w(f*)9(iv)
\y(f)±y(f*) and y(f)*y{f*).

Case (ii) is impossible via the same reasoning used in the discounted case to show
that v{h) — v (ƒ *). The same reasoning then shows case (iii) is impossible and that
case (iv) is impossible. The remaining case (i) confirms the claim.

4. GENERALIZATION

The gênerai structure encompassing the above examples involves the
functional équations:

x?= max Fi(x*9k), ieS, (7)
keA(x*,ï)

with Ft(x, k) a given continuous scalar function with arguments ieS — state
space, k e K {i) = action space in state i, and x = [Xj]jeS = return vector. The given
function A (x, i) is a non-empty set in K (i). The two requirements we impose are:

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Policy évaluation step: For each / = [ / ( l ) , ƒ (2), . . .}eK = X K(i) there
ieS

exists a unique x(f) = [x(f)j]jeS satisfying:

x(f)i = Ft(xW),f{i)), ieS. (8)

Furthermore, ƒ (z)e^4(x(/), z), ieS.

Policy improvement step: For any policy ƒ G K, define a successor policy
, A(2), .. .] where *(0e4(*(/"),i) achieves max Ft(x(f)9k) and

/z (z) =ƒ (?) whenever possible. Then [2] either x (h) ̂  x (f) lexicographically, with
x(h) # x(f), or else h=f, and x*=x(/ ) satisfies the functional équation (7).

Then with appropriate compactness and continuity assumptions on K and
*(ƒ), there exists a policy/* eK such that x(f) solves (.7). Namely, choose any
policy which achieves all maxima in:

fek

xt = max {x(f)i\feK with x{f)j = Xj fory < /}, i ^ 2,

and furthermore x(ƒ*) = £
To illustrate how the three coupled functional équations in Section 3 fit into

thisframework: takeS = {1, 2, 3} xQ. For i = (l,j)eS, takex(J j)=gjïïl=l9wJ

if /=2,and};,if/=3. F o r / = l , x * ) j ) = g | , ^ ( x ) 0 = ^Ü) )(7)is(5a),and(8)is
(6a). For 1 = 2, xfc j)-w*9 A(x9 i) = {fceX(j) achieving max X! ^ î^a .o} w i t h

A(x*, i) = L(g*J)9 (7) is (5b), and®) is (6b). For / = 3,

i4(x, i) = {fceJC(/) achieving max

with ties broken by achieving

is (5c) and (8) is (6 c).
This generalization provides a framework for understanding the PIA's

appearing in the generalized MDP's [3], Leontief substitution Systems [9,13],
and n coupled functional équations arising in higher-order optimality conditions
[7, 14, 19, 20].
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