
RAIRO. RECHERCHE OPÉRATIONNELLE

WILLIAM W. AGRESTI
Nonserial dynamic programming for optimal
register assignment
RAIRO. Recherche opérationnelle, tome 17, no 1 (1983), p. 63-97
<http://www.numdam.org/item?id=RO_1983__17_1_63_0>

© AFCET, 1983, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1983__17_1_63_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


R.A.I.R.O. Recherche opérationnelle/Opérations Research
(vol. 17, n° 1, février 1983, p. 63 à 97)

NONSERIAL DYNAMIC PROGRAMMING
FOR OPTIMAL REGISTER ASSIGNMENT (*)

by William W. AGRESTI (A)

Abstract. — Nonserial dynamic programming is used to model a décision process arisingfrom the
processing of computer programs. The spécifie probelm involves the optimal assignaient ofquantities
to index registers during the exécution of the program. The program may exhibit highly nonlinear
flow ofcontrol with hops and branches. The dynamic-programming model represents the system as
a multi-stage décision process and leads to a solution which spécifies the optimal décisions to be made
at each stage. An example featuring a feedforward loop is solved by the method and the recursion
équations are given for a much more complex example.
Keywords: dynamic programming, assignment problem.

Résumé. — Un problème décision se posant lors de la compilation d'un programme est modelisé
par la programmation dynamique non séquentielle. Il s'agit du problème de l'affectation des
indices aux registres d'index dans le cas général d'une structure de contrôle quelconque
(branchements, boucles). La programmation dynamique représente le système comme un
processus décisionnel à plusieurs étapes et fournit les décisions optimales pour chacune d'elles. Un
premier exemple est développé complètement tandis que sont formulées les équations de récurrence
associées à un second exemple plus complexe.

1. INTRODUCTION

We are interested in exploring one aspect of the interface between opérations
research and computer science — namely, applying an opérations research
model to a computer science problem. It is important that we don't take too
seriously the désignation "opérations research model". What we mean is
simply that the model and corresponding solution method are mathematical
approaches which have been associated with the practice of opérations
research,

The motivation for the present study arises from the situation which exists
every time a computer program is executed. A program written in a high-level
language like ALGOL or FORTRAN is first translated into machine
language. Then, this machine-language version (the object code) of the user's
program is executed. How good is this machine-language version? The answer

(*) Received in October 1981.
C1) Department of Industrial and Systems Engineering. The University of Michigan-Dearborn,

4901 Evergreen Rd. Dearborn, Michigan, U.S.A. 48128.

R.A.I.R.O. Recherche opérationnelle/Opérations Research, 0399-0559/1983/63/$ 5.00
© AFCET-Bordas-Dunod



64 W. W. AGRESTI

dépends on the compiler or translator which performed the translation. For
the identical user program, one compiler may produce object code which runs
twice as fast and yet takes up only half the space of the code generated by a
second compiler. The conventional term for this is that the first compiler
performed more "optimization" to produce the resulting code. Despite the use
of the term "optimization", the object code is not the "best" that could be
produced. Nevertheless, chiefly for historical reasons, the word "optimization"
has stuck. What really happens inside the compiler is the application of
transformations which improve (but don't optimize) the code.

Finally, we arrive at the more spécifie motivation for this study:

— to what extent is the object code really optimal?
— for particular transformations, can we specify what is truly the optimal

représentation?
— how can the traditional mathematical theory of optimization be applied?
The transformation that is singled out for study is register allocation. From

the earliest FORTRAN compilers until the present, this has been among the
best methods for making substantial improvements in the running time of the
object code. Register allocation involves determining how many of a computer's
hardware registers should be reserved for use with each program when it is
being translated. To be correct, our problem is better described as register
assignment — a much more difficult problem — which seeks to specify precisely
what should be the contents of each register.

The underlying economie considération is that a program will exécute faster
if the values it needs are in high-speed registers rather than in memory. If the
value of variable X is needed for a computation, more time is expended if the
value of X must be fetched from memory than if the value is already
conveniently in a register. Most computers for many years have had a number
of registers — for example, the IBM 360/370 machines have 16 general-purpose
registers. The compiler that can use these registers wisely can produce object
code which exécutes faster. Ideally, we would like to have quantities, which
will be needed in the next computation, available in registers, instead of in
memory. The source of the difficulty is simply that there are (usually) many
more candidates for storage in the registers than there are registers to
accommodate them. We have sketched, then, a décision problem: what
quantities should occupy registers at each step in the program so that program
runs as fast as possible?

Many operations-research approaches to such a décision problem present
themselves immediately. One candidate solution technique would be
mathematical programming, formulating some of the discussion above into an

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING

objective function with constraints. Possibly, stochastic programming is
indicated, because there seems to be some notion of the probability that a
given quantity will be needed at a given time in the exécution. A second
candidate solution technique would be network theory, because the flow of
control in the program will certainly be an issue in determining which values
are needed based on different paths having been traversed in the program. A
third approach would be to consider it to be a sequential décision process. The
state of the System might be the contents of the registers, with some stochastic
process representing the changes in state over time. The fourth technique, the
assignment method is mentioned because it immediately comes to mind with
something called "the register assignment problem". However, in opérations
research we know that the technique is appropriate only for a restricted case
of linear programming. Accordingly, it seems wise not to consider it further
as a separate entity. If it does have value then it should arise from the
considération of our first alternative of mathematical programming in gênerai.

Each of the three approaches above were used by the author to try to
formulate the décision problem for optimal register assignment. The model
that was chosen had strong intuitive appeal as well as possessing aspects of all
three methods. Nonserial dynamic programming [4] allows for the mathematical
programming approach, and also has some visual appeal as a two-dimensional
représentation (like a graph) and pro vides naturally for a staged décision
process.

The familiar use of dynamic programming is to transform a sequential,
multi-stage décision problem into a series of single-stage problems. The
domain is the sériai or "straight-line" structure, in which each stage looks like
( fig. 2). Dynamic programming was first used to model nonserial Systems in
connection with the chemical process industry. A diverging branch at a stage
in the model represented the flow of product passing through a separator,
splitting the pure product from the unrecovered raw material [3]. In analogous
ways, other material flows defined a combining stage (converging branch),
bypass (feedforward loop), and countercurrent flow (feedback loop). The
dynamic programming models of such nonserial Systems have been generalized
and adapted to other nonserial structures [4, 8].

Naturally, the nonserial structure influences the solution procedure. In a
diverging branch, for example, there is one stage which has two outputs, each
of these serving as the input to a separate sériai System. The two sériai Systems
are analyzed separately and combined at the diverging stage. With loops the
computations become more complex because, for some stages, the optimal
returns must be given as functions of two variables instead of one. The details
are provided elsewhere [4, 8].

vol. 17, n° 1, février 1983



66 W. W. AGRESTI

2. FORMULATION OF THE PROBLEM

Questions relating to the efficient use of a computer's registers have been
investigated in many different forms. The first study of interest [5] used a
graphical model but, significantly, the programs involved only straight-line
flow — no branches or loops. The procedure was given some technical
improvements by other investigators [6, 7]. In [6], Kennedy also suggested
how the straight-line procedure might be extended to handle a simple loop.
Agresti presented a method for handling branching (tree-structured)
programs [1]. The interest in the present paper is with very genera! branching
and looping structures that are représentative of real computer programs.

Registers which can be used for indexing are the special concern here.
Indexing is a valuable programming technique for operating on data which
are arranged in storage in some systematic way. It is a standard way, for
example, to access the entries in a table in succession. For such purposes,
indexing is widely used by assembly-language programmers, and it is found
extensively in the compiler-generated object code. Two types of instructions
are of interest. One type simply refers to the contents of an index register. For
example:

ADD 1, K(2)

means that one operand is in register 1 and the second operand is in memory
at location K plus the contents of register 2. Here register 2 is used for
indexing. A second type of instruction modifies the contents of the index
register. For example, if we added one to the contents of index register, then
the instruction would be of the second type. Where there are more indices than
registers, the problem is to devise a plan which spécifies which indices should
occupy index registers at each step in the program.

We will assume that for a machine with N index registers, the program calls
for M indices (M > N). Also there are M core locations reserved for the M
indices to keep track of their current values. This means that if the present
contents of an index register have not been modified, a new index can be
loaded immediately since there is a copy of the present index in memory. If
the present contents have been modified, the updated value of the index must
be stored in memory bef ore a new index can be loaded. The principal cost that
we will attempt to minimize is the number of memory références required.
This cost function is consistent with that used by other investigators [1, 5, 6].

The interest here is with programs that exhibit very gênerai flow of control.
Accordingly, a control flow graph will be a useful medium to represent the
complex flow. In such a directed graph, the nodes are basic blocks; that is,

R.ALR.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 67

straight-line séquences of instructions in which the only entry to the séquence
is at the first instruction and the only exit is at the last instruction. The arcs
dénote possible transfers of control. Four elementary nonserial structures are
represented by the control flow graphs in figure 1.

1. The Diverging Branch 2. The Converging Branch

3. The Feedforward Loop h, The Feedback Loop

Figure 1. — Foor Elementary Nonserial Structures

Referring to figure 1 provides a convenient way to characterize the previous
results and the present paper. The study by Horwitz, Karp, Miller, and
Winograd [5] considered only straight-line code, which is a single basic block
with no arcs. Agresti [1] studied tree-structure programs, which are replications

vol. 17, n° 1, février 1983



68 £W. W. AGRESTI

of the diverging-branch structure in figure 1. The present paper permits
afbitrarily complex flow, represented by combinations of the four structures.
As an illustration of the method, the dynamic-programrning procedure will be
applied to an example consisting of a feedforward loop (which itself can be
vie wed as a di verging branch folio wed by a con ver ging branch). Next, the
recursive équations will be given for a second example involving more
complex flow and including a feedback loop.

From the control flow graph, the information which is needed for index
register assignment is extracted in an index map. The structure is identical to
the flow graph; but, instead of instructions, the nodes contain only the indices
which are called for. For an instruction which modifies the index, an asterisk
is placed next to the index. This distinction is necessary because the costs are
greater: an additional memory référence is required to re-store a modified
index.

Let X= {xu x2, . . . , xm} be a finite set of indices, and let S = < su s2 > be an
ordered set of states of indices. An index in state Si is unmodified. When an
asterisk has heen placed next to an index, that index is in the modified state s2-
An index in state s2 has had its value changed since it was last loaded from
memory.

Associated with each state s* is a non-negative cost C(st), the number of
memory références involved in replacing an index which is in state s*.
Therefore, C (si) = 1 and C (s2) = 2. The cost — number of memory
références — of changing the state of an index from s( to Sj is given by c (sh s,).
For the index register assignment problem, c(su s2)=0; that is, there are no
memory références required when an index is modified. Alternatively,
c (s2, Si) = 1 because the modified index must be re-stored in memory.

DÉFINITION 1: An index map I is a triple (B, A, x) in which:
(i) B is a non-empty set of nodes;

(ii) A, disjoint from B, is a set of directed arcs;
(iii) x: A -• B x B is a mapping such that if a e A and x (a) = (b, c) then, arc

a is said to have b as its initial node and c as its terminal node.
Because it corresponds to a basic block in a program flow graph, a node

b e B will be called simply a "block" of the index map. A block is a séquence
of symbols from Xx S. Within each block the flow of control is linear so that
the j-th symbol is called the j-th step in that block Between blocks, however,
the flow dépends on x.

DÉFINITION 2: A configuration on N registers is an iV-tuple (qu <}2> •. •> QN)*

where qisXxS. Let n be a permutation of the set {1, 2, . . . , N} so that the

R.A.I.R.O. Recherche opérationneUe/Operations Research



NONSERIAL DYNAMIC PROGRAMMING 59

configurations (qu q2, . . . , qN) and {qnU qn2, . . . , qns] are identified. If
Qi=(ql qi •••, 4iv) and Q2 = (q\, ql, ••-, 3N) are two configurations, then
w*(ôi> Ô2) is the minimum cost of changing from configuration Qx to
configuration Q2:

1 = 1

where:

C(s) if x / x ' ,

and 7i ranges over all permutations of {1, 2, . . . , N}.

The developments thus far will be used to describe the index register
assignment problem as a multi-stage décision process. The methods of discrete
dynamic programming will be used to obtain solutions. The formulation
begins with any low-level language program. An index map is created by the
techniques* of this section. The program calls for M indices, and the computer
has N index registers (M > JV). There are M memory locations in which to
store the M indices. Each step j in the index map is a stage in the dynamic
programming model. The state of stage j is given by the configuration:

Qj — (qu <?2> •••> qN) w h e r e qieXxS.

This state vector provides the important data at each stage in the process:
namely, what are the current contents of the index registers. The only other
necessary information is the current symbol (x, s)xeX, se S from the index
map, because we must insure that the current symbol required at a given step
is indeed present in one of the index registers at that step.

At any stage j , a décision is made based on Qj and (x, s), the j-th symbol
in the index map. Six décisions are possible:

1. NO ACTION. This décision may be made if the required symbol is
present in the current configuration. That is, the j-th symbol is (x, 5) and
(x, s') e Qj for some s' ^ s.

2. MODIFY. If the j-th symbol is (x(, s2) and (x,-, sx) eQJ9 then the state of
xt is changed from Si to s2 so that (x(*, s2)eQj.

3. LOAD. If the j-th symbol (xf, Si) is not in any register, the current value
of xt is loaded into index register k. The contents of index register k, qk must
be in the unmodified state si. Because qk hasn't been changed since it was last
loaded into register fc, a copy exists in memory so that no "store" opération
is necessary.

voh 17, n° 1, février 1983



70 W. W. AGRESTI

4. LOAD AND MODIFY. They-th symbol is (xh s2) and xt is not present
in the current configuration. The value of index xt is loaded from memory into
some index register k whose contents qk are in state su so that, as in the
previous case, a "store" opération is unnecessary. Now the current contents
of index register k are qk=(xiy Si). But a modified index, (xb s2), is required
so the state is changed and qk = (xh s2).

5. STORE AND LOAD. The symbol (xi9 st) is required but not found in
the present configuration. The value of x; is to be loaded from memory into
some index register k whose contents have been modified (state s2). Because
of this, the contents first must be stored in memory before (x£, Si) can be
loaded into index register k.

6. STORE, LOAD, AND MODIFY. Here the requirement is (x„ s2) and
index x* is not present in any index register. The value of Xi is to be loaded into
an index register k whose contents have been modified. The necessary action
is to store the present contents of k into memory; load the value of x, into k;
and change the state of xt from Si to s2.

This décision information is expressed as an ordered N-tuple
D = (du d2, . . . , djv). Treating as a vector the configuration Q = (ql9 q%* . - -, 4AT)
where qiSXxS, state transition is accomplished by vector addition Q + Z>. As
an example, consider any two consécutive steps j and j + 1 in the program
flow. Assume that the current configuration at j is:

öj=(x3 , xf, x2> x9).

This notation indicates that, in a 4-register problem, the current contents of
the index registers are the indices x3, x5, x2, and x9 respectively. Further, x5

has been modified since it was last loaded so that an asterisk appears. Suppose
that the symbol at j-hl in the index map is x j . That index is not present in
Qjl so it must be loaded into an index register. Selecting that index register,
the central problem of register assignment, will be solved by algorithms of the
next section. Two cases arise, depending on whether the index to be replaced
is in the modified or unmodified state:

1. If the algorithm calls for loading xj into either register 1, 3 or 4, then the
décision is "LOAD AND MODIFY". The indices x3, x2, and x9 which are
currently in these registers are in the unmodified state. Their values have not
been changed since they were last loaded from memory into index registers.
Consequently, a copy of their current values exists in memory, so the quantity
in the index registers can be written-over safely. The current value of x 4 would
be loaded from memory into the appropriate index register 1, 3, or 4. Because
the actualy*+l symbol is x | , this indicates that the corresponding machine

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 71

language instruction changes the value of the index. Accordingly, an asterisk
is introduced so that the new configuration will exhibit x|, showing that index
x4 has been altered. The décision vector is constructed in such a way that the
new configuration Qj+1 will be formed from the addition of Qj and DJ+1.
Depending on which index — x3, x2, or x9 — is eliminated, D j + 1 and
would appear as follows:

(i) if x3 is eliminated:

Dj+1=(xÏ-x39 0,0,0)

= (x3s x?, x2s x 9 )+ (x ï -x 3 , 0, 0, 0)

= (x t xf, x2) x9);

(ii) if x2 is eliminated:

+ 1=(0, 0, x î - x 2 j 0 )

= (x3, xf, x2, x9) + (0, 0, x î - x 2 , 0)

= (x3, x?, xî, x9);

(iii) if x9 is eliminated:

J + 1 = (0, 0, 0, x î - x 9 ) ,

= (x3, xf, x2, x9)+(05 0, 0, x î - x 9 )

= (x3, x?, x2ï x$).

In any case, the cost of this "load and modify" décision is the same — one.
Only one memory référence is required: to fetch x4.

2. If the algorithm calls for loading x% into index register 2, then the correct
décision is "STORE, LOAD, AND MODIFY". The index x% which occupies
register 2 is in the modified state s2. The value of index x5 has been changed
since it was last loaded from memory into the register, The copy of x5 in
memory contains the value of x5 before modification. Consequently, the core

vol. 17, n° 1, février 1983



72 W. W. AGRESTI

copy of x$ must be updated to the current value in the index register bef ore
that value is erased. The first opération is to store the contents of index
register 2 into memory. Then load x4 and modify as in the case above. The
décision vector and new configuration look like this:

Dj+i=(0 ,x î -x î , 0,0)

= (x3, xf, x2, x9)+(0, x$-xf, 0, 0)

= (x3s x*, x2, x9).

The cost of this décision is two: one memory référence to re-store x? and one
to fetch x4.

Still needed in the représentation of the index register allocation problem as
a multi-stage décision process is a measure of the utility of a configuration — a
return function. The cost function w* (O1? O2); which was defined earlier, wijl
be used. Consider step 7 +1. Let Qj be the configuration before step 7 +1 and
Qj+i be the configuration which results from Qj and décision Dj+i. The
return rj+1 is defined by w*(Öj, Qj+i) where Qj+i = Qj + Dj+1.

The basic éléments of the dynamic-programming model — state variables,
décision variables, stage transformations, and return function — have been
specified. If 7 and 7 +1 are two consécutive steps in the index map, stage 7 +1
in the décision process can be représentée as in figure 2.

(Input) Q j + 1 (Output)

(Return)

Figure 2. - Typical stage;+ 1 in décision process

R.A.LR.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 73

3. STATE REDUCTION

Although dynamic programming could be applied now, there is some
question about its practicality. There are 2iVMAr~1 configurations possible at
each step; which means that the same number of states must be evaluated at
each stage in the recursion analysis. Fortunately, this number can be
significantly reduced by applying Rule 1 of [5], which proves that only minimal
change states need to be considered at each stage:

Rule 1; Only minimal change states must be analyzed by dynamic
programming. Let Qj~\ be a state associated with step;— 1, and let Qj be a
state associated with step ƒ Minimal change states are generated from the
following algorithm: call Qo the initial state of the index registers. Qj is a
minimal change state if:

(i) Qj is identical with gj-i- If Qj-i=(q{~\ q{~\ . . . , qÎT1) and
öj = (<?i, qj2, . . . , qid> we say Qj is identical with Qj-X if there exists some
permutation n of the set {1, 2, ..., N} such that:

qi = qir\ i=h 2, ..., JV;

(ii) Qj differs from Qj- x by exactly one element, the index required at step;.
Call the;-th element (x, s), xeX, seS. Now (x, s)^Qj-1 and 3fc, 1 ̂  k ^ N,
such that for some permutation n of {1, 2, ..., N}:

qi = qlr\ i=U . . . , k - 1 ,

implies that q{ — {x^ s).

(iii) Qj differs from Q3-x only in that a modified index in Qj is unmodified
in ôj-i- The;-th element (x, s2), xeX; and 3 fc, 1 g k ^ N, such that for some
permutation n of {1, 2, . . . , N}:

The example of the next section will demonstrate that Rule 1 provides a
major computational improvement.

vol. 17, n° 1, février 1983



74 W. W. AGRESTI

4. THE FEEDFORWARD LOOP

The index map in figure 3 contains a feedforward loop. This familiar
control structure can be viewed as a combination of a diverging branch
followed by a converging branch. There is a program statement (like IF-
THEN-ELSE) in which control can be transferred along either of two paths.
These two paths have a common termination point, a statement further ahead
in the flow. In [3], this structure was studied as the bypass of chemical
engineering processes.

Figure 3. — Index Map of Feedforward Loop

The feedforward loop as a décision process is presented in figure 4. The
dynamic programming is more difficult with such nonserial structures. The
difficulty is manifested in the increased dimensionality of the state description.
Consider the lower path in figure 4. The total return at any stage in that sériai
system must include the effects of both the input Qkl and the output Qkm from
the upper path, which we will call the bypass system. The key to the technique
is optimizing the sériai system ki through km separateiy, but describing its
total return as a function of two state variables, Qkl and Qkm. Carrying the
additional state variable increases the computational load. This expression for
the total bypass return can be combined with the sériai system (stages 1
through n) at either stage j or stage j +/>+!. Because of state inversion,
combining at either stage involves roughly the same number of calculations.

We arbitrarily décide to absorb the kt through km return at stage y instead
of ƒ+ƒ> +1. Then the solution procedure will take this form:

1. Backward recursion on stages n, n— 1, .. .,,ƒ+/>+ 1 to obtain ƒ (Q/+p+i).
2. Backward recursion on stages ku ...9km to obtain / ( ö * ^ QkJ, the

optimal return as a function of the bypass input and output.
3. Backward recursion on stages 7 +1 , j+2, . . . , ; +p to find

f(Qj+u ôkj , the optimal return still based on the output from the bypass.

4. Find optimal return ƒ (Qj) by optimizing, over Qkjt^ the returns at k± and
J+ U f (O*,, e*J> and ƒ (fiJ+1, QkJ.

R.A.LR.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 75

TT
+

j+
P

+
1

(T *

^•^>^>l*v*%—••vw

"X™

w^^N^O 3 04r i - «^i^N-^nA

Figure 4. — The Feedforward Loop as a Décision Process

vol. 17, n° 1, février 1983



76 W. W. AGRESTI

5. Backward recursion on stages j— 1, j — 2, . . . , 1 to find ƒ (Qo)-
We are solving the initial state optimization problem, so our solution will

be ƒ (Qo), the minimal cost as a function of an initial state.

The return at j+p+1 is the typical return at a converging stage:

In the same way, the divergence in stages k± and j+1 has the return:

r*t j+i(Ö* *>** Dj+i) = w*(Qj, Ökl)+vv*(O

The recursive équations for the feedforward loop are:

1. For stages7+/?+ 2, ...9n:

n-u Dn\

subject to:
Qn = Qn-l+Dn:

Di

subject to:

f (Qt-i) = mm {r;(Ö,-1, üt) + f {Qd

2. For stage j +p + 1 :

rj+p+l(Qkn, Qj+Pi Dj

3. For s tages7+ 2,7 + 3, . . . , 7 + / > :

QJ+P)},

subject to:

f(Qum, Qt-i) = mm{rt(Qi-u D0+/(Q* r f Qdl
Dj

subject to:
i=j + 2,j + 3, ...J+p-l.

4. For the bypass, stages k2, fc3, . . . , km:

f(Qkm-u QkJ = rainrK(Qk u D kJ,

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 77

subject to:

ƒ (Qi-i, Qkm) = mm{r.XQi-u Dt)+f(Qu

subject to:

5. For stages j + 1 and kx:

= min K . J + X

subject to:
and

6. For the remaining sériai stages 1, 2, . . . , ƒ•

subject to:

subject to:

The recursion équations make explicit what was discussed earlier concerning
the solution technique. The additional state variable Qkm is maintained in
computations for the optimal return at the following stages: j+p+ 1; j + 2,
; + 3, ...,;+/>; and fc2, fc3, .••> k«.

When the branches are combined in the recursion at stages fci and; +1, the
optimal return is determined over all values of Qkm. After this analysis, only
the customary single state variable is needed during stages 1 through j until the
P£ocess terminâtes.

There is an alternative to minimizing over values of Qkm, The advantage
would be that Qkm need not be retained as a state variable in the calculations
of optimal returns at the stages listed above. The technique is to find
Qkm initially and use a sequential search procedure (like Fibonacci search) to
identify new values when ƒ (ƒ) is found [8], p. 197. As the recursive équations
indicate, this method is not being applied to the feedforward loop.

vol. 17, n° 1, février 1983



78

5. AN EXAMPLE

W. W. AGRESTI

Figure 5 depicts a sample index map containing a feedforward loop. The
index map was extracted from a program which used five indices on a
computer with two index registers. To solve the example, Rule 1 will identify
the minimal change states at each step. Then the recursion équations will be
appiied to find the initial state optimal return, ƒ (Qo).

Step
kl k2 k3

Step 1 2 3 4 5 6 7

Figure 5. — Example of Index Map with Feedforward Loop

Directed by the solution procedure, we begin with stage 7. Six minimal
change states are associated with the final stage:

The recursive analysis at this final stage involves only one state variable. The
results are summarzied in table I in the usual fashion, listing the quantities
/ ( e a / M Ô ô ) , andQ7(Ô6):

We can proceed no further until the optimal return for the bypass is
determined as a function of the bypass input and output. We need values for

ks Qk3).

R.AJ.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING

Our first requirement is:

ƒ (Ô*2, Qk3)

79

and the values are presented in table IL
Now it may be more clear just what effect the additional state variable has

on the computation. Instead of a list of values for ƒ (6*2), we must maintain
a table of results for f{Qk2, ô*3). This is one illustration of an earlier
observation that an extra state variable increases the calculations exponentially.

TABLE I

Stage 7 recursion analysis

Qe = XtX2

Ql = X1X5

Ql^X2X3

Qt=-X2XA

Ql = X2X%
Q% = X$X*

Si (Qe)

0
0
1
1
1

1

Di (Qe)

1
1
2

2
2
2

Qi (Qe)

1
2
3
4

5
6

TABLE II

Optimal stage k3 return f (Qk
2, 6A3)

Ql2 = XlX3

Ql =X2X3

Ql =X}X4

Ql3=xlXs

l
2
2

3

2
1

2
3

1
1
1

2

2
2

1
2

25
fc3^x5

!
1
1

1

Continuing with the bypass stages, we proceed backward to stage k2i

seeking values (displayed in table III) for:

subject to:

vol. 17, n° l,.février 1983



80 W. W. AGRESTI

Explaining one entry from table III, consider:

The following discussion will explain how this value was determined. The
recursion analysis at k2 involved input configurations Qkl and output
configurations Qk2:

Qkt =Xl X4, Qk2
=xl X3>

kx =
 X2 X 4 , Qk2 — X2

TABLE III

Optimal stage k2 return f (Qki.

Qi =XlX4

Ql =X2X4

Ql^xtx.

Gl3-x

2
3
3

3
2
3

2
2
2

et,=x<x5

2
2
2

2
2
2

Four décisions are used to change Qlx =xx x4 into the output states of k2:

Dl2 : LOAD x3 (in place of x4);

Dl2: LOADx2; LOAD x3;

Dl2 : LOAD x3 (in place of xx);

Di2: LOAD x3 (in place of xx)\ MODIFY x3;

The four output states are produced by these transformations:

= (xi, x4)+(0, x 3 -x 4 )

= (Xi, X3),

= (Xi, X4)+(X2-Xi, X3-X4)

= (x2, x3);

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 81

x 4 ) + ( x 3 - x 1 , 0)

= (x3, x4)

- x 1 ; 0)

= (x%, x4)

The first component of f (Qkl, 6*3) is t n e single-stage return rkl(Qllt Dk2):

The second component of ƒ (g^, Q*3) is the optimal return at the last stage.
These values were presented earlier in the results of the stage k3 analysis:

f(Qï2,Ql3)=2,

Combining these two return components yields "2" as the cost in

[rk2(Q
l
kl, Dl2)+f(Ql2, Ql

ki)l

[rk2(öi„ Dt2)+f(Qt2, Ql,)]}

vol. 17, n° 1, février 1983



82 W. W. AGRESTI

subject to:

f(Qtt, Qk3)=mm{l + 1, 2 + 2, 1+2, 1 + 3},

= 2.

Continuing to follow the solution process outlined earlier, we are now able
to analyze stage (b) and then, stages 4 and 5. The method at stage 6 is similar
to that which was used in the converging stage in [3]. The only différence is
that the optimal return is a function of two states, Qk3 and Q5. Because we
have worked through the calculations necessary with two state variables and
because the technique at a converging stage is known, we wiü summarize the
results for stage 6. Table IV gives the values for / ( Q 5 , Qk3) with the output

TABLE IV

Optimal stage 6 return f(Qs, Qk3) and corresponding output state Q6 (
a)

3(et)
3(Si) 4(fiï) 2(Q|)

3(fiî)

Q where Q ^ X ^ ; g l -X 2 X 5 ; Öl = ^ 2 ^ 3 ; Q% = X2Xt Q% = X2X& Q% = X%X*.

state Q6 in parentheses. At the next stage, results for ƒ (Q4, ö*3) are obtained.
The values are given in table V in the same format.

We have reached that point in the solution process where the returns for the
two branches are combined. Using the recursive équations, we minimize over
values of the extra state variable Qkz thus eliminating it from any future
calculations. The optimal return can be expressed now as a function of one
variable Q3, which takes on two values:

x2 or Ql

R.A.I.R.CX Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING

TABLE V

Optimal stage 5 return f (Q4, ö*3) and corresponding output state Q5 (°)

83

Ql = XtX%
Ql = X%X%

(") where ö l = ̂

e

6 (e

*e

1)

l=xi*

fii,-*.'.

4(ei)
5 (ei)

5 (ei)
6 (ei)

3 (ei)
4(CÎ)

e:

5 (e1)

Table VI gives the results for the optimal return ƒ (ö 3), where:

ƒ (Q3)= min {rki;4(Ö3, Dkl,

subject to:
^ = 03 +Dkl and 64 = 63

The pairs of states in parentheses beneath each return entry in table VII
indicate the résultant states, Qkl and Q4., such that:

Qh1 = Q^+Dkl and 64 = 63+*>4-

TABLE VI

Recursion analysis at stages 4 and ku ƒ (Ô3) and corresponding output states Q4 (
ö) and Qki (

b)

_
-
-
-

(a) where Qi
O where g j

7

(Qi,; 2i)

10

(fi^; fii)
(Qi,; Ql)
(Ql,; Öi)
(fiïj; Ql)

-xtxtQi=

Ql3=x2x5

i

(ei,; ei)

9

(ê ; es
(Ql; ei)

-
-

XtXtQl-JP

Qï3-

(et
(0?

(0?

lx*

-x3x>

8

ii ei)
i; öi)
9

-
-

-

eï3

(e
(e
(e

6

i,; ei)
ît; Ci)

7

ï4; 03)
-
-
-

(e
(e
(e

10

1,; ei)
ï,; ei)

g

î,; el)
-
-
-

/(Os)

6

7
-
-
-
-

The listing of more than one pair of states acknowledges the existence of
alternative optima. For référence, the output states are repeated below.

vol 17, n° 1, février 1983



W. W. AGRESTI

The branching portion of the index map has been completed. All that
remains is the sériai dynamic programming stages 1, 2 and 3. Results of that
analysis are presented in table VIL

TABLE VII

Recursion analysis for stages 3, 2, and 1

Stage 3
Qi = XiX%

Stage 2
*£l=JVZ

Stage \

Qh=yz

/(Ô2
8

f(Qi
y

/(6o
10

)

)

)

03(62)
1

O2(6i)
1

0i (6o)
1

63

62

61

(6
l

(6
1
1

(6
l

2)

O

0)

The initial state optimization problem has been solved with the calculation
of:

f (Qh=yz)= 10,

in which the configuration (>z" indicates two arbitrary initial quantities which
are unrelated to the problem. Only ten memory références are needed for the
indices in a program corresponding to the index map in figure 5.

One of the advantages of dynamic programming is the simple récognition
of alternative optima. In the present example, re-tracing through the recursive
analysis identifies four optimal solutions, each requiring only ten memory
références. The four solutions are displayed in figure 6 by listing the register
configuration which must exist at each program step. Counting the total
number of memory références in each solution will verify the figure of 10
provided by the recursion analysis.

To place the solution in perspective, we are saying that if the compiler
makes use of results in figure 6, the resulting machine language program will
be truly optimal with respect to références to memory for quantities that are
used for indexing. In other words, the compiler should include, in the object
code, instructions which load and store indices as implied by figure 6. In this

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 85

way, the program will exécute the fastest that it possibly can (regarding our
restricted problem domain) by having the "right" quantities in registers during
each portion of the program.

Program Steps:

0 1 2 3 kl kl k* 6 7
4 5

Optimal Configurations:
Solution # 1:

yz X\Z X\ x j Xi X2 . A x j X4

Solution # 2:
X2 X4 X3 X4 X4X5

xfxt

Solution # 3:
X* X4 X3 X4 X4 X5

jyz Xi z X1X5 X2 x j x j X4 x*xf
xf xï xf x4

Solution # 4:
^3-^4- Xj JC4 X4.JX5

x | x | xf x4

Figure 6. — The Four Optimal Solutions to Feedforward Loop Example

6. APPLICATION TO AN ACTUAL PROGRAM

The nonserial dynamic programming method is now applied to an actual
program. Keep in mind the way in which the method will be implemented. We
would expect the method to be incorporated in an optimizing compiler. The
procedure détermines when load and store instructions would be generated by
the compiler to accomplish the optimal packing of index registers.

As an example of a familiar program which exhibits the feedforward flow,
consider (flg. 7). This FORTRAN program constitutes the inner loop of a

ÎF (A (I). GT. B(J)) GO TO 20
C(K)=A(I)
1 = 1 + 1
D(L) = C(K)
GO TO 30

20 C(K)=B(J)

30 K = K + 1

RETURN
END

Figure 7. - Example FORTRAN Program Segment

vol. 17, n° 1, février 1983



86 W. W. AGRESTI

mergesort algorithm. The same logic is also found in file update procedures.
The only différence here is producing an extra copy of one of the files in
array D, to make the indexing more interesting. The index map, corresponding
to this program, is presented in figure 8.

Figure 8. - Index Map Associated with FORTRAN Program

The program was run on the Amdahl 470 V/8 computer at The University
of Michigan which uses the Michigan Terminal System (MTS) as its opera ting
System. A listing of the machine language produced by the IBM FORTRAN G
compiler was obtained. Presenting a literal copy of this object code would
introducé unnecessary detail like opération codes and machine addresses. So,
the machine language was re-written in a more accessible form as a simple
assembly language-level program.

The organization of the Amdahl computer is similar to the IBM 370, having
16 general-purpose registers. The object program produced by the FOR-
TRAN G compiler used the same register repeatedly for arithmetic opérations,
so that register has been represented as "ACC" for accumulator. Likewise, the
object program used two of the registers for indexing, so we dénote them by
IR! and IR2 for index register one and two5 respectively.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING g7

Now the re-written object program in figure 9 should be understandable.
The instructions are given in a generic one-address format where, for example:

LOAD IRl5 I

means that index register one is loaded with the contents of symbolic address
I. Here we make the obvious associations that address I contains the value of
variable I; address ONE contains the value one; and so on.

Comment

ACC CONTAINS A,

COMPARE A^ Bj
if Ai>Bj, GOTO Lx
ACC CONTAINS Ai

STORE Ai INTO Ck
ACC CONTAINS I
I-I+l

ACC CONTAINS Ck

STORE Ck INTO Dj
BRANCH ALWAYS, L2

Li
ACC CONTAINS Bj

STORE Bj INTO Ck

J+-J+1

Instruction
LOAD
LOAD
LOAD
COMPARE
BRANCH
LOAD
LOAD
STORE
LOAD
ADD
STORE
LOAD
LOAD
STORE
BRANCH
LOAD
LOAD
LOAD
STORE
LOAD
ADD
STORE
LOAD
ADD
STORE
LOAD
ADD
STORE

IRi, I
ACC, A(IR0
IR2, J
ACC, B(IR2)
>,Li
ACC, A(IRi)
IR2, K
ACC, C(IR2)
ACC, I
ACC, ONE
ACC, I
ACC, C (IR2)
IRi, L
ACC, D(IR!)
ALWAYS, L2
IRi, J
ACC, B(IR0
IR2, K
ACC, C(IR2)
ACC, J
ACC, ONE
ACC, J
ACC, K
ACC, ONE
ACC, K
ACC, L
ACC, ONE
ACC, L

Figure 9. — Rewritten Object Program Produced by FORTRAN Compiler
(28 instructions)

In our past discussion, we distinguished between two types of instructions.
In this program, the instruction:

ADDIRx, ONE

is an example of one which changes an index, while

STORE ACC, C(IR2)

is an example of one which refers to an index. This latter instruction means
that we are storing the contents of the accumulator into memory at symbolic
address C plus the contents of index register two (that is, indexed by K, which
is the current value of IR2).

vol. 17, n° 1, février 1983



gg W. W. AGRESTI

The object program in figure 9 consists of 28 instructions. On the Amdahl
470 V/8 computer» all of the instructions we use here are the same length
(4 bytes) and the différences in exécution times are not great—for example,
there are no multiply or divide instructions which take significantly longer to
exécute. Accordingly, the size measure (28 instructions) can be used, in a
relative sensé, as a rough measure of the exécution time as well. Size and speed
are the two primary resources that an optimizing compiler seeks to conserve.

The index map ( fig. 8), which corresponds to the program, is solved using
the dynamic programming methods of section 4 for a feedforward loop. The
problem involves four indices (/, /, K, L) and two registers (IRi, IR2)- The
solution, given in figure 10, spécifies the optimal assignment of indices to
registers.

I
K
I*
K
L

Index

T
1

J

K*
L*

Map

J
K:

J*

Optimal
Register

Configurations
T _
1

IJ
IJ U
IK JK
I*K J*K
I*K
LK

LK*
L*K*

Figure 10. - Solution to FORTRAN Program Example

If the dynamic programming methods were incorporated as part of an
optimizing compiler, then the object program in figure 11 would resuit. Only
22 instructions are needed. Based on our assumptions about cost above, the
improvement in both size and speed is 21 %. The significance of this
improvement grows when we recall that the example represents the inner loop
of a mergesort or file-update program which easily might be traversed
thousands of times because of the sizes of the files.

In fairness» other considérations should be mentioned. The time to compile
the program will grow in order to perform the dynamic programming analysis.
Also, it is not always straightforward to assess properly the effect of a single
potential improvement like index register assignment. Many times in an
optimizing compiler, a particular transformation is effective only because
other transformations have created opportunities for it to be applied.

The dynamic programming procedures would be able to make good use of
some of the typical information which optimizing compilers collect about the
program. Use-definition chaining keeps track of the occurrences of a définition
or a use of each quantity. Such information is regularly gathered by an

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 89

optimizing compiler [2], p. 429. From this information, the dynamic program-
ming procedure could identify when it was able to leave modified indices in
registers (as was done in the last three lines of figure 11) or when it must re-
store the current value into memory for later use.

Comment

ACC CONTAINS As

COMPARE Ab Bj
IF Aj > Bj, GO TO U

STORE A; INTO Ck

Instruction
LOAD
LOAD
LOAD
COMPARE
BRANCH
LOAD
STORE
ADD
STORE
LOAD
LOAD
STORE
BRANCH
LOAD
LOAD
LOAD
STORE
ADD
STORE
ADD
LOAD
ADD

IRi, I
ACC, A(IRi)
IR2, J
ACC, B(IR2)
>, Li
IR2, K
ACC, C(IR2)
IRi, ONE
IRi, I
ACC, C(IR2)
IRi, L
ACC, D(IR!)
ALWAYS, L:
TP Tl?IKi , IK2
ACC, B(IR!)
IR2, K
ACC, C(IR2)
I R L ONE
IRls J
IR2, ONE
IRi, L
IRi, ONE

ACC CONTAINS Ck

STORE Ck INTO Di

IRi «- J
ACC CONTAINS Bd

STORE Bj INTO CK

Figure 11. — Object Program Using Dynamic Programming Procedures
(22 instructions)

7. ARBITRARILY COMPLEX FLOW

The incidence of both feedback loops and branches in the same index map
must be regarded as the most realistic situation in terms of actual computer
programs. Those programs for which efficient register assignment is important
would most likely possess a flow that is more intricate than the feedforward
loop examined thus far. The reason for studying an elementary System,
however, is to make use of the results in the solution of complex index maps.
The complex problems, which are admittedly more common, will be solved by
effectively decomposing them into the familiar elementary cases.

There is an important economie trade-off between recursive optimization
and optimizing over all variables simultaneously. When the straight-line
portions of the System are relatively long, the recursive approach is usually
préférable. 'The technique may be augmented by sequential search procedures
to help eliminate extra state variables. When the flow is characterized by
relatively short sériai segments with very elaborate nonserial structure,
optimizing simultaneously over all variables may be more efficient at certain
vol. 17, n° 1, février 1983



90 W. W. AGRESTI

times during the analysis. The reason is that the recursive optimization would
involve increased state variable dimensionality. The essential point is that
arbitrarily complex index maps can be solved within the present methodology
of nonserial dynamic programming.

Central to the solution process is the identification of elementary structures
in the complex index maps. Where the elementary structures are disjoint,
occurring sequentially in the program flow, récognition is easiest. Analyzing
such a case would involve merely the successive application of the recursion
équations for elementary Systems. More difficult is the nondisjunctive case in
which the basic graphs are nested, interlocked, and overlapped in the flow.
Such flow of control is not at all uncommon in computer programs; and,
therefore, it should be examined. Accordingly, a sample index map with
non trivial flow is offered in figure 12. The purpose here is to illustrate the

Figure 12. - Complex Example. As an Index Map

approach of decomposing such a map into its elementary structures. In this
way, the results for the basic loops and branches may be applied — with
appropriate modifications — to provide optimal index register assignment.

In terms of its elementary structures, the index map of figure 12 contains a
diverging branch and a feedforward loop embedded in a feedback loop.
Fig. 13 présents this same System as a staged décision process. Because the
flow is more complex, our notation has been augmented slightly from that
which was used with the feedforward loop. First, we label each block in
figure 12 with a letter. Second, in figure 13, we dénote the stages by a pair of
values — one giving the block name and the other giving the stage within the
block. Further, we use the upper case letter to indicate the number of stages
in the block. For example, stages (e,~l), (e, 2), . . . , (e, E) comprise block E.
As before, each stage in the décision process represents a step in the index

R.A.I.R.O. Recherche opérationnelle/Opérations Research



91

Figure 13. — Complex Example. As a Décision Process

vol. 17, n° 1, février 1983



92 W. W. AGRESTI

map. The désignation of décisions, returns, and states in figure 13 is consistent
with our earlier usage except for the stages now being represented by a pair
of values.

For the complex system of figure 13, no actual indices or configurations will
be specified, but the recursive équations will be given in full. Following these
équations for any M-index, N-register problem would lead to the optimal
index register assignment décisions that should be followed.

Possible program flow paths are understandably more numerous in such a
system. Represented by the séquence of blocks encountered in each path, some
flows of control from figure 12 are:

[1] BA
[2] B C E P S
[3] B C H P S
[4] B C E P L C E P S
[5] B C H P L C H P L C E P S

We will solve the initial state optimization problem, obtaining values for
f(Qbto), for some arbitary initiai configuration Q,b,o- The genera! solution
procedure is composed of the following séquence of events:

1. Backward recursion on stages of block 5, yielding ƒ (QSt i).

2. Backward recursion on stages of block L, yielding ƒ (Qit u g u ) .

3. Recursion analysis on stages (/, 1) and (s, 1), to obtain f(Qp,p, Qui)*

4. Backward recursion on stages of block P, resulting in ƒ (QPt u QI,L)-

5. Backward recursion on stages of block £, yielding ƒ (Q€t u Qe,E)-

6. Recursion analysis at the converging stage (py 1) to obtain

f(Qh,H, Ôe,£, Ql,l).
7. Backward recursion on stages of block H to find ƒ (6A, U QetE> Qui)-

8. Recursion analysis on diverging stages (e, 1) and (ft, 1), producing

/ ( G c c , Gi.1).
9. Backward recursion on stages of block C, finding ƒ (Qc, u Gi,i)-
10. Backward recursion for the diverging branch, block A, obtaining

/(Ci).
11. Recursion analysis on stages (a, 1) and (c, 1), yielding ƒ (fiitB).

12. Finally, backward recursion on stages of block B, to find the solution
to the initial state optimization problem, ƒ (ö&,o)-

The recursion équations which are needed at each step in the solution
process are given below. They will solve the index register assignment problem
for the system of figure 13.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 93

1. For stages (s, 2), (s, 3), . . . , (s, S) of block S:

ƒ (Qs,s-i) = minrSjs(Qs,s-u Ds,s),

Ds,j

subject to:
tj, 7 = 2, 3, . . . , S - l .

2. For stages (/, 2), (/, 3), . . . , (/, L) of block L:

f(Ql,L-U Ôl.L)=minrï,L(Ôl.L-

subject to:

t

3. For stages (/, 1) and (5, 1);

min

subject to:
Qs, 1 = 6 P , P + ^ 1 and

4. For stages (p9 2), (p, 3), . . . , (p, P) of block P

f(Qp.p-u öi.i) = min{r,.,(CP,F-1, Z)P

subject to:
QP.P = QP,P

f(Qp.j-u Qi,L)=mm{rPtj(QPij-u D,J+f(QpJ},
D

subject to:
Qp.j=Qp,j-i+E>p,j> ; = 2 , 3 , . . . , p - i .

vol. 17, n° 1, février 1983



94 W. W. AGRESTI

5. For stages (e, 2), (e, 3), . . . , (e, E) of block E:

subject to:
Qe>E = QetE-

e,j-u Qe,E)=min{retj(Qetj-u D€,j)+f(QmJ}9
D

subject to:
Qe,j = Qetj-l+Deij> 7 = 2, 3, . . . , £ - 1 .

6. For stage (/>, 1):

KH, Qe.E, Öi,z,) = min {rp,i(Ô*,H, Qe.E, DPtl)+f(Qp,u
D

7. For stages (h, 2), (h, 3), . . . , (/r, if) of block H:

htH, Qe,£,

subject to:

Qh, H — Qh, H - 1 + Dh, H,

f(Qh,j-u Q..B, QiL) = mm{rhtj(Qhtj-u DKj)+f(Qhjj, Qe,E,
Dh,j

subject to:
e* . j=e*. j - i+ö*. > 7 = 2 , 3 , . . . , H - i .

8. For stages (e, 1) and (h, 1):

subject to:
i and

9. For stages (c, 2), (c, 3), . . . , (c, C) of block C;

ƒ (öcc - i , Öi,L) = min{rCiC(ÖClC-i, ^

R.A.LR.O. Recherche opérationnelle/Opérations Research



NONSERIAL DYNAMIC PROGRAMMING 95

subject to:

f(Qcj-u e/,x)=

subject to:
Qc.j = Qc.j-i+De.j, 7 = 2, 3, . . . . C - l .

10. For stages (a, 2), (a, 3), . . . , (a, A) of block A:

f (Qa, A -1) = min rfl, x (Qa, A-U Da, A

Da,j

subject to:
Qa.j=Qa.j-l+DatJ, 7=2, 35 . . . , i 4 -

11. For stages (a, 1) and (c, 1):

f(Qb,s)=

subject to:
i and

12. For stages of block B:

subject to:
Qb, B~Qb, B-l +^fc, £>

f(Qb,j-i)=tnm{rbtj(Qbtj-u DbJ+f(Qb.j)},
Db,j

subject to:
Qb.j = Qb.j-i+Dbtj9 7 = 1 , 2, . . . , B - l .

The précise recursive équations will differ with each complex program
graph. Careful examination of the relationships above will reveal that familiar
équations from the feedforward loop examples are present. The key element

vol. 17, n° 1, février 1983



96 W. W. AGRESTI

in defining the recursive optimization of a complex system is appreciating the
dimensionality of the state space. Two state variables are required at many
stages above, just as in the bypass of the feedforward loop. New in the present
structure is the maintenance of three state variables in the recursion analysis
at stages {p, 1) and (*, 2), (h, 3), . . . , (h, H). The output state from blocks E
and L must be kept variable throughout these steps. Of course, as in the last
example, search techniques could be introduced to reduce the dimensionality.

Use of the équations above wouid find the minimum number of memory
références required for index register assignment in programs with index maps
like (fig. 12). The corresponding register configurations which must exist and
décisions which must be made at each program step also would be identified.

The solution of additional examples would follow the same approach. The
index map would be examined for occurrences of basic structures. Results for
sériai and elementary nonserial Systems would be carefully applied, being
especially aware of the particular state variables which must be present at each
stage.

8. CONCLUSIONS

Nonserial dynamic programming has been used as a model to represent a
décision problem arising from the translation of programs by compilers. The
result is a method which can be automated as part of an optimizing compiler
to improve the exécution speed of compiled programs.

ACKNOWLEDGEMENT

The contributions of an unnamed referee are sincerely appreciated. The
careful work of this person resulted in several corrections and suggestions
which have improved the paper.

REFERENCES

1. W. W. AGRESTI, Register Assignment in Tree-Structured Programs, Information
Sciences, Vol. 18, No. 1, 1979, pp. 83-94

2. A. V. AHO and J. D. ULLMAN, Principles of Compiler Design, Addison-Wesley,
Reading, Mass., 1977.

3. R. ARIS, G. L. NEMHAUSER and D. J. WILDE, Optimization of Multistage Cyclic and
Branching Systems by Sériai Procedures, A. I. Ch. E. Journal, Vol. 10, 1964,
pp. 913-919.

4. U. BERTELE and F. BRIOSCHI, Nonserial Dynamic Programming, Academie Press,
New York, 1972.

R.A.LR.O. Recherche opérationnelle/Opérations Research



NONSERÏAL DYNAMIC PROGRAMMING 97

L. P. HORWITZ, R. M. KARP, R. E. MILLER and S. WINOGRAD, Index Register

Allocation, Journal of the A.C.M, Voi. 13, No. 1, 1966, pp. 43-61.
K. KENNEDY, Index Register Allocation in Straight Line Code and Simple Loops, in
Design and Optimization of Compilers, R. RUSTIN, Ed., pp. 51-63.
F. Luccio, A Comment on Index Register Allocation, Communications of the
A.C.M., Vol. 10, pp. 572-574.
G. L. NEMHAUSER, Introduction to Dynamic Programming, John Wiley and Sons,
New York, 1966.

vol. 17, n° 1, février 1983


