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COMBINED REPLACEMENT MODELS (*)

by T. NAKAGAWA (X)

Abstract. — This paper summarizes ten replacement models which combine tkree basic
replacements: (i)age replacement; (ii)block replacement; (in) periodic replacement with minimal
repair at failure. The expected cast rates ofeach model are derived, using the usual caktdus method
ofprobabitity. As an example, we give an optimum policy to minimize the expected cost rate ofone
model

Keywords : Replacement; Three policies; Expected cost; Optimization.

Resumé. — Cet article résume dix modèles de renouvellement combinant : (i) âge de
renouvellement; («) renouvellement par bloc; (iii) renouvellement périodique avec réparation minimale
en cas dépanne. Les taux moyens de coût de chaque modèle sont calculés en utilisant tes méthodes
probabilistes classiques. Comme exempte, nous donnons la politique optimale pour minimiser le taux
moyen d'un des modèles.

h INTRODUCTION

Faiîure of a unit during actual opération is sometimes costly or dangerous.
It is important to replace an operating unit before its failure. Three
replacement policies were defined and studied for an infinité time horizon by
Barlow and Proschan [2]. Under these policies, we assume that replacement
and repair times are negligible.
(i) Age replacement

A unit is replaced at scheduled time T after its installation or at failure,
whichever occurs first The expected cost rate is :

(1)

where F (t)—distribution of the failure time of a unit, where F s 1 — F, cx =cost
of replacement^ c2=additional cost of replacement for a failed unit
(ii) Block replacement

A unit is replaced at scheduled times kT (k —15 2, . . . ) and at failure.

(*) Received m November 1981.
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194 T. NAKAGAWA

The expected cost rate is :

(2)

where M (t)=expected number of failures during (0, t], c 3=cost of replacement
for each failed unit.

(iii) Periodic replacement

A unit is replaced at scheduled times fcT(fc = l, 2, . . . ) . Minimal repair is
made at failures between successive replacements, so that the failure rate of
a unit remains undisturbed by any repair of failures. The expected cost rate
is:

C3(7) = [c1 + c4U(ï)l/T> (3)

where R(0=cumulative failure rate of the failure time distribution F(t), Le.,

R(0 = r(ü)du where r(i) (=f(t)/F(t)) is a failure rate and fis a density of

F, C4=cost of minimal repair for each failed unit.

Many authors studied modified or extended models of the above policies
and discussed optimum policies; e. g., [6, 8, 17, 20] for âge replacement,
[4, 9, 12, 22] for block replacement, and [3,10, 14, 24] for periodic replacement.
Similarly, it is of great interest to consider combined models. For example, a
unit is replaced at time T or at N-th failure, whichever occurs first, where
(N— l)-th previous failures are corrected with minimal repair [21]. The model
corresponds to âge replacement when N = 1 and to periodic replacement when
N=co. If there exists an N* (1 <N*<oo) which minimizes the expected cost
rate, this has a lower cost rate than two basic models.

This paper considers ten replacement models which combine âge, block and
periodic replacements, and obtains the expected cost rates of each model. It
is difficult to discuss optimum policies for such models. As an example, we
pick up only model 4 and dérive optimum replacement times which minimize
the expected cost rate.

2. COMBINED POLICIES

(1) The unit is replaced at scheduled time T or at N-th failure, whichever
occurs first, where (N— l)-th failed units are replaced by a new one. Then, the
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COMBINED REPLACEMENT MODELS 195

expected cost rate is easily given by:

N-l

Cl+c2^(T)+c3 x F® en
Ci2(T,JV)= rr — , (4)

where Fij)(i)=j-io\d convolution of F(t) with itself (/ = 1, 2, . . . ) , and:

i*0) (0 =1 for t^O, 0 for t< 0.

This corresponds to age replacement when N—l and to block replacement
when N= oo.

(2) The unit is replaced at each failure during (0, To] and at scheduled time
Tfor T ^ To. If the unit f ails during (To, 7), it is replaced by a new unit bef ore
time T. Then, the probability that the unit f ails in an interval (To, 7) is, from
Ross ([19], p. 45),

where y (t) = remaining life of the unit at time t in a renewal process. The mean
time to replacement after time To is :

i;tdt Pr {y ( To) g t - To} + TPr {y (To) > T- To}

= T0+\ T|F(0+ f F(t-u)dM(u)\dt.

Thus, the expected cost rate is :

C l + C 2

r ' r<>) rrr-" , . , . _ =j • <5)
T o + ^(0+ F{t-u)dM{u)\dt
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196 T. NAKAGAWA

This corresponds to âge replacement when To = 0 and to block replacement
when T= To.

(3) The unit is replaced at time T or at N-th failure, whichever occurs first,
after its installation. The unit undergoes only minimal repair at failures
between replacements. Then, the expected number of failures before
replacement is, from Morimura [10],

J V - l * T N-l- l *

£ jPj(T) + (N-l)
= 0 J o

J/ji} e~R(t\ which represents the probability that j failures
occur in (0, t]. The mean time to replacement is :

TtPN-i{t)r(t)dt+T \
o j=o >=o J o

Then, the expected cost rate is :

Cl T j v - 1 _ £ (N-l~j)pj(T)\
L j=o J

Cl3(T,N)= — jr^rp — " • (6)

Pj(t)dt

This corresponds to âge replacement when N= 1 and to periodic replacement
when N== oo. In particular, when T= oo, i. e., the unit is replaced only at iV-th
failure, the optimum policy was derived by Morimura [10] and Nakagawa [16],
and Park [18] in Weibull case.

(4) The unit undergoes only minimal repair at failures during (0, To]. If the
unit f ails in (TOs T), it is replaced by a new unit, while if the unit does not f ail
in (To, T), it is replaced at scheduled time T. The mean time to replacement
is:

T -
F(f)dt.1 f T F(T) 1 f

F(T0) J TQ F(T0) F(T0) J
Thus, the expected cost rate is :

_ , _ _ , C I + C 2 { [ F ( I ) F ( T O ) 1 / F ( T Q ) } + C 4 H ( T O )
Ci3(T, To)= A t _ — • (')

To+ F(t)dt/F(T0)
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COMBÏNED REPLACEMENT MODELS J97

This corresponds to âge replacement when To = 0 and to periodic replacement
when T~ To, The optimum policy was discussed by Tahara and Nishida [21],
and Nakagawa [14] when Tis constant.

(5) Consider the unit with two types of failures [3], When the unit f ails,
type 1 failure occurs with probability a ( 0 g a ^ 1) and is removed by minimal
repair, and type 2 failure occurs with probability (ï(=-l —a) and is removed
by replacement. The unit is replaced at time T or at time of type 2 failure,
whichever occurs first The expected number of type 1 failures before
replacement is :

00 CO /* y

E i <**/>, (7)+ l i ^ p Pj(t)r(t)dt = (*lfl)Fi(T),
j=0 j-O J o

where Fp(£)~ 1 — e~*R(t\ The mean time to replacement is:

TY< a?Pj(T)+ £ «*P f* tp,(t)r{t)it= f TFp(t)dL
i-O j=0 Jo J 0

Thus, the expected cost rate is :

•' o

This becomes the same âge replacement model by replacing Fp (t) and
C2~Hc4(a/p) into F(t) and c2, respectively. Further, this corresponds to age
replacement when <x=0 and to periodic replacement when a = L

(6) Consider a system with two types of units which operate statistical
independently. When unit 1 fails, it undergoes minimal repair and begins to
operate again. When unit 2 fails, the system is replaced. Unit 1 has a failure

time distribution G{i) with failure rate h(t\ ie. , h(t)sg(t)/G(t% where g is
a density of G, and unit 2 has F(t). Then, the expected cost rate is easily given
by:

JCr
F(t)h(t)dt

F(t)dt
Cis(T; G) = — n _ ° • . (9)

O
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198 T. NAKAGAWA

This corresponds to âge replacement when G (t) = 0 and to periodic replacement
when F (t) = 0.

(7) The unit is replaced at failures during (0, To] and at scheduled time T
for T^T0. If the unit f ails during (To, T), it undergoes minimal repair. The
expected number of failures during (To, T) is:

o LJ T

= F(To)[R(T)-R(To)}+ r°'[R(T-u)-R(To-ü)]F(To-u)dM(u),

where 8 (t) = âge of the unit at time t in a renewal process. Thus, the expected
cost rate is, from [12],

C23(T, To) =

v.

{T°[R(T-u)-R(To-u)]F(To-u)dM(u)\

(10)

This corresponds to periodic replacement when To = 0 and to block
replacement when T= To.

(8) In periodic replacement, we have assumed that the failure rate of an
operating unit remains undisturbed by any repair of failures. Suppose that the
âge of the unit after minimal repair becomes at (a^0) when it was t bef ore
failure. The expected number of failures during (0, 7] is, from [15],

The expected cost rate is:

C23 (T; a) = [Cl + c4 R (T; a)]/T. (11)

R.A.I.R.O. Recherche opérationnelle/Opérations Research



COMBINED REPLACEMENT MODELS 199

Noting that R(T; 0) = M(I) and R(T; l)=R (I), we easily see that this
corresponds to block replacement when a~d and to periodic replacement
when a = L ïf a< 1 then the unit is younger at each minimal repair and if a> 1
then it is worce than bef ore failure.

(9) Consider the replacement model of a cumulative damage model [1 î, 23]:
Assume that random variables Xj(j; = 1, 2, . . . ) are associated with a séquence
of inter-arrival times between successive shocks, and random variables
WjF (ƒ-1, 2, . . , ) dénote the amount of damage produced by the j-th shock.
It is assumed that {Wj} are non-negative5 independent and identically
distributed, and Wj is independent of Xt (i ̂  j). The unit f ails only when the
total amount of damage exceeds a failure level K

Suppose that Vr{Xjgt} = F(t) and Pt{Wj£x} = G(x) (j=l9 2, . . . ) • The
unit is replaced at scheduled time Tor at failure, whichever occurs first, Then,
the probability that the unit is repiaced at failure is:

and the expected number of shocks bef ore replacement is:

The mean time to replacement is:

X [Gu~l)(K)-GiJ)(K)} j tdF®(t)
0

oo

i=o

f'[i-

voL 17, ÏI° 2, mai 1983



200 T NAKAGAWA

Thus, the expected cost rate is:

C1+C2 E X

C12(T;K)= ^ — ^ , (12)
X ^-^(IQ-G^iK)] [1-F™(t)]dt

where c3 =^cost suffered for one schock. This corresponds to âge replacement
when K=0 and to block replacement when K= 00.

(10) In model 9, we assume that each shock occurs in a non-homogeneous
Poisson process (e. g., see Çinlar [5], p. 97), i. e.,

Pr {Xx

In a similar way of obtaining (12), the expected cost rate is:
ao j

E
C13(T;K)=

[G"-1} (K) - GW (K)] X f T pB (0 dt

This corresponds to âge replacement when K=0 and to periodic replacement
when X=oo. Further, note that models 9 and 10 become models 1 and 3,
respestively, in particular cases of Go> (K) = 1 for j g K, 0 for 7 > X and

3. OPTIMUM POLICY

Almost all models considered here become a problem of minimizing an
objective function with two independent variables, which extends three basic
replacement problems. It is very difficult to discuss optimum policies for such
models. As an example, we take up an optimization problem which minimizes
the expected cost rate Ci3(r5 To) of model 4. Tahara and Nishida [21] and
Adachi and Kodama [1] tried to obtain optimum times T$ and T*> however,
the proof was partially incomplete and troublesome to understand.

We seek optimum replacement times Tg and T* which ininirnize
Ci3(T, To) in (7). Suppose that the failure rate r(t) is strictly increasing to

R.AJ.R.O. Recherche opérationnelle/Opérations Research
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infinity and differentiable. Then, differentiating C i 3 (T, To) with Tand To and
setting them equal to zero, respectively, we have:

ïr(T) f T

L J r
(14)

c4. (15)

A necessary condition that finite T and To minimize C13 (T, To) are that they
satisfy (14) and (15).

(i) Suppose that c2<c4<Ci + c2. Letting:

q(T; T0) = lr(T)( * ~F(t)dt + F(T)]/F(To),]/

we evidently have:

q(T0; T0) = l<c 4 /c 2 ,

lim q(T; T0) = oo,
r->oo

dq(T; T0)ldT=r'(T) t * F(t)dt/F(To)>0.
J rj.

Thus, there exists a finite and unique T* (To < T* < oo) which satisfies (14) for
a fixed To. Further,

F(To) L J r0
(16)

f
/

f
since r(T0)<[F(7)-F(r0)]/ F(t)A for T>T0 from the assumption that

r (t) is strictly increasing. This implies that T* is an increasing function of To.
Next, prove that a solution 7$ to (15) exists and is unique, when T*(T0) is

given by a function of To from (14). First, noting that r(T)/r(T0)>q(T; To)
for 0 ^ To< T< oo from (16), we have the inequality;

r(T*(To))fr(To)>c4/c2. (17)

vol. 17, n° 2, mai 1983



202 T. NAKAGAWA

Differentiating the left-hand side of (15) with To and recalling that T*(T0)
is an increasing fonction of To, we have:

Further, for some To < To,

T)T(T*(T))R(T) as

because, in this case, T*(T0)-+ oc. Therefore, the left-hand side of (15) is
strictly increasing from 0 to infinity, and hence, there exists a finite and unique
T$ which satisfies (15).

(ii) If c4^Ci+C2 then TJ=0 from (15) and the model becomes âge
replacement.

(iii) If c^c2 then T* = T0 from (14) and the model becomes periodic
replacement.

From the above results, if c1<càe<ox
JrC1 then model4 has â  lower

cost rate than two basic modeis, and finite optimum times T% and
T* (0<T$<T*<oo) are given by the unique solutions of two équations (14)
and (15).

4. CONCLUSIONS

We have considered ten replacement modeis for an infinité time horizon,
which combine three basic replacements. As further problems, these modeis
would offer interesting topics to reliability theoreticians. However, it is very
difficult to discuss optimum policies for such modeis. One method of obtaining
the optimum policy for model 4 could be helpful in solving a problem of
minimizing an objective function with two variables.
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