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COMBINED REPLACEMENT MODELS (*)

by T. NakaGawa S

Abstract. — This paper summarizes ten replacement models which combine three basic
replacements: (i) age replacement; (i) block replacement; (iii) periodic replacement with minimal
repair at failure. The expected cost rates of each model are derived, using the usual calculus method
of probability. As an example, we give an optimum policy to minimize the expected cost rate of one
model.

Keywords: Replacement; Three policies; Expected cost; Optimization.

Résumé. — Cet article résume dix modéles de renouvellement combinant: (i)dge de
renouvellement; (ii) renouvellement par bloc; (iii) renouvellement périodique avec réparation minimale
en cas de panne. Les taux moyens de cotit de chaque modeéle sont calculés en utilisant les méthodes
probabilistes classiques. Comme exemple, nous donnons la politique optimale pour minimiser le taux
moyen d’un des modéles.

1. INTRODUCTION

Failure of a unit during actual operation is sometimes costly or dangerous.
It is important to replace an operating unit before its failure. Three
replacement policies were defined and studied for an infinite time horizon by
Barlow and Proschan [2]. Under these policies, we assume that replacement
and repair times are negligible.

(i) Age replacement

A unit is replaced at scheduled time T after its installation or at failure,

whichever occurs first. The expected cost rate is:

T —
Ci(D=le1+c. F(D) /f F()d, (1)
1]

where F(t) =distribution of the failure time of a unit, where F=1—F, ¢; =cost
of replacement, ¢, =additional cost of replacement for a failed unit.

(ii) Block replacement
A unit is replaced at scheduled times kT (k=1, 2, ...) and at failure.

(*) Received in November 1981.
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194 T. NAKAGAWA

The expected cost rate is:

C2(D=[c1+es M (DT, (2

where M (t) =expected number of failures during (0, t], ¢c3 =cost of replacement
for each failed unit.
(ii1) Periodic replacement

A unit is replaced at scheduled times kT (k=1, 2, ...). Minimal repair is
made at failures between successive replacements, so that the failure rate of

a unit remains undisturbed by any repair of failures. The expected cost rate
is:

Cs(D=[c1+ca R(DJ/T, 3

where R (t)=cumulative failure rate of the failure time distribution F(¢), i.e.,

R (t)sjlzr(u) du where r(t) (= f (t)/;‘(t)) is a failure rate and f'is a density of

F, c4=cost of minimal repair for each failed unit.

Many authors studied modified or extended models of the above policies
and discussed optimum policies; e.g., [6, 8, 17, 20] for - age replacement,
[4, 9, 12, 22] for block replacement, and [3, 10, 14, 24] for periodic replacement.
Similarly, it is of great interest to consider combined models. For example, a
unit is replaced at time T or at N-th failure, whichever occurs first, where
(N—1)-th previous failures are corrected with minimal repair [21]. The model
corresponds to age replacement when N=1 and to periodic replacement when
N=o0. If there exists an N* (1 <N* < oo0) which minimizes the expected cost
rate, this has a lower cost rate than two basic models.

This paper considers ten replacement models which combine age, block and
periodic replacements, and obtains the expected cost rates of each model. It
is difficult to discuss optimum policies for such models. As an example, we
pick up only model 4 and derive optimum replacement times which minimize
the expected cost rate.

2. COMBINED POLICIES

(1) The unit is replaced at scheduled time T or at N-th failure, whichever
occurs first, where (N — 1)-th failed units are replaced by a new one. Then, the
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COMBINED REPLACEMENT MODELS 195

expected cost rate is easily given by:
N—-1
Cy +62I‘(N) (T)+C3 Z FU)(T)
C12(T, N)= . : C)
f [1—F™(@)dt
0

where FY (t)=j-fold convolution of F(t) with itself (j=1,2, ...), and:

FO@1)=1 for t=0, 0 for t<O.

This corresponds to age replacement when N=1 and to block replacement
when N=c0.

(2) The unit is replaced at each failure during (0, T,] and at scheduled time
T for T= T,. If the unit fails during (T, T), it is replaced by a new unit before
time T. Then, the probability that the unit fails in an interval (T, T) is, from
Ross ([19], p. 45),

Pr {y(To) < T— To} =F(T)—f "F(T—t)dM (o),
o

where y () =remaining life of the unit at time ¢ in a renewal process. The mean
time to replacement after time T is:

f ) td,Pr{'Y(To)ét—To}"'TPr {'Y(To)> T— To}
T,

[}

=T, +J ' I:;'(t)+J‘ To;(t—u) dM (u)] dt.
T ]

]
Thus, the expected cost rate is:

cl+c2|:F(T)— f TO;(T—t)dM(t)]+c3M(To)

[

Ci2 (T, To) = (5)

To+f ! [F(z)+r°?(z—u)dM(u)]dz
T, 0
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196 T. NAKAGAWA

This corresponds to age replacement when To=0 and to block replacement
when T=T,.

(3) The unit is replaced at time T or at N-th failure, whichever occurs first,
after its installation. The unit undergoes only minimal repair at failures
between replacements. Then, the expected number of failures before
replacement is, from Morimura [10],

N-1 N—

) J'P;(T)+(N—1)jrp~-1(t)r(t)dt =N—1-3% (N=1-jpi(D),
0o

=0 i=o0

where p; (1)={[R (t)/'/j!} e"®®, which represents the probability that j failures
occur in (0, t]. The mean time to replacement is:

-1

T N-1 N T
f -1 (Or A+ T Y py(T)= pi@at.
0 j=0 i=0 v o

Then, the expected cost rate is:

citez Y, pj(T)+C4[N—1— )3 (N—l—j)Pj(T)]
j=N j=0

Cis(T, N)= T o7
)3 j pi(t)dt

i=0 Yo

(6)

This corresponds to age replacement when N=1 and to periodic replacement
when N=o0. In particular, when T= o0, i.e., the unit is replaced only at N-th
failure, the optimum policy was derived by Morimura [10] and Nakagawa [16)],
and Park [18] in Weibull case.

(4) The unit undergoes only minimal repair at failures during (0, To). If the
unit fails in (Ty, 7), it is replaced by a new unit, while if the unit does not fail
in (To, T), it is replaced at scheduled time T. The mean time to replacement
is

T F 1 (T=
— j F)+T= ) =To+ = J F(t)at.
F(To) J 1, F(To) F(To) J 1,

Thus, the expected cost rate is:

¢1+¢2 {[F(T) = F(To)l/F (To)} +ca R (To)
T — —
To +T F(t)dt/F(To)

Ty

Ci3(T, To)=

. )
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COMBINED REPLACEMENT MODELS 197

This corresponds to age replacement when Ty =0 and to periodic replacement
when T=T,. The optimum policy was discussed by Tahara and Nishida [21),
and Nakagawa [14] when T is constant.

(5) Consider the unit with two types of failures [3]. When the unit fails,
type 1 failure occurs with probability ¢ (0 <o =< 1) and is removed by minimal
repair, and type 2 failure occurs with probability B(=1—¢) and is removed
by replacement. The unit is replaced at time T or at time of type 2 failure,
whichever occurs first. The expected number of typel failures before
replacement is:

S jalp,(D+ st f Py @) (@) dt=(a/B) Fy (D),

i=0

where Fy(1)=1—e"PR®, The mean time to replacement is:

© © T T
TY alpy(D+ Y B | tp;0)r @ di= f Fo () d.
=0 0 0

i=0

Thus, the expected cost rate is:
citc2 Fy (T)+C4(OL/B)FB(T)

(8)
f F, (tydt
0

Ci3(T; o)=

This becomes the same age replacement model by replacing Fg(t) and
c2+ca(ot/B) into F(t) and c,, respectively. Further, this corresponds to age
replacement when o=0 and to periodic replacement when a=1.

(6) Consider a system with two types of units which operate statistical
independently. When unit 1 fails, it undergoes minimal repair and begins to
operate again. When unit 2 fails, the system is replaced. Unit 1 has a failure
time distribution G (¢) with failure rate h(t), i.e., h(t)=g(£)/G(t), where g is
a density of G, and unit 2 has F(z). Then, the expected cost rate is easily given
by:

-cl+czF(T)+c4f "Foh@a

0

Cia(T; G)= — . 9
r F(dt
. [:]
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198 T. NAKAGAWA

This corresponds to age replacement when G (¢) =0 and to periodic replacement
when F(t)=0.

(7) The unit is replaced at failures during (0, To] and at scheduled time T
for T=T,. If the unit fails during (7o, T), it undergoes minimal repair. The
expected number of failures during (7o, T) is:

J—U Tr(t~u)dt}duPr{6(To)§To—~u}
0 T,

- Ty —
=F(To)[R (T)—R(To)HJ [R(T—u)—R(To—u)] F(To—u)dM (u),

where & (t) =age of the unit at time ¢ in a renewal process. Thus, the expected
cost rate is, from [12],

‘C1+63 M (To)+cq {F(To) [R(T)—R(To)] )

C23(T, To)= i +IT° [R(T—u)—R(To—u));(To—u)dM(u)};
2 (10)

T

This corresponds to periodic replacement when To=0 and to block
replacement when T=T,.

(8) In periodic replacement, we have assumed that the failure rate of an
operating unit remains undisturbed by any repair of failures. Suppose that the
age of the unit after minimal repair becomes at (a=0) when it was ¢ before
failure. The expected number of failures during (0, T} is, from [15],

o ti+t,—t 2t tr—ty)+tz3—t
R(T,'a)=z f(ai+2 1)f[a_1+a(z 1)+t3—15]
=1V << <ysT F(aty) F[a2 ti+a(tz—1t1)]
I a2 (=) + .. ti1—tj—2)+t—t;-
f[a — l~+a (2 1)+ +a(l ! 1 2)+J J l]dt1dt2...dtj
Flad ' ty+ad 2t —ty))+ ... +a(tj—1—tj-2)]
The expected cost rate is:
C23(T; a)=[c1+ca R(T; a))/T. (11)
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COMBINED REPLACEMENT MODELS 199

Noting that R(7T; 0)=M(T) and R(T; 1)=R (T), we easily see that this
corresponds to block replacement when a=0 and to periodic replacement
when a=1. If a<1 then the unit is younger at each minimal repair and if a> 1
then it is worce than before failure.

(9) Consider the replacement model of a cumulative damage model [11, 23]:
Assume that random variables X;(j=1, 2, ...) are associated with a sequence
of inter-arrival times between successive shocks, and random variables
W;({=1, 2, ...) denote the amount of damage produced by the j-th shock.
It is assumed that {W,} are non-negative, independent and identically
distributed, and W; is independent of X; (i#j). The unit fails only when the
total amount of damage exceeds a failure level K

Suppose that Pr{X;<t}=F(t) and Pr{W;<x}=G(x) (j=1, 2, ...). The
unit is replaced at scheduled time T or at failure, whichever occurs first. Then,
the probability that the unit is replaced at failure is:

FO(T)[GY™Y(K)— GP(K)],

™8

It

ji=1

and the expected number of shocks before replacement is:

Y (—DHF (NG~ (K) -G (K)]
j=1

+ ¥ JGO(K)F(D)—F* (T =L FA (DGO (K).

j=1 j=1

The mean time to replacement is:

o ) T .

¥, (6979 (K) - G¥ (K] f LR (1)
j=1 0

+T Y, GO (I (D—F* (D)

j=0

= ¥ 697 ()-GO (K] f - @,
j=1 0
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Thus, the expected cost rate is:

crter ¥ FO(M[GY Y (K) G (K)]+¢s Y, F(T) G (K)
C12(T; K)= = — ., (12
) [GU“’(K)—GU’(K)JI [1—F9 (1)) dt

where ¢3 =cost suffered for one schock. This corresponds to age replacement
when K=0 and to block replacement when K= co.

(10) In model 9, we assume that each shock occurs in a non-homogeneous
Poisson process (€. g., see Cinlar [S], p. 97), i.e.,

Pr{X;+X;+ ... +X;St}= Y pa(0).

n=j

In a similar way of obtaining (12), the expected cost rate is:

a+er Y (DGO ®)+e T pi(D Y, 67 (K)
C13(Ti K)= j:ol j-j1=1 T = . (13)
Y IGIIE-GOK) Y, | pa(dr
i=1 n=0+v g

This corresponds to age replacement when K=0 and to periodic replacement
when K=oo. Further, note that models 9 and 10 become models 1 and 3,
respectively, in particular cases of G¥(K)=1 for j<K, 0 for j>K and
K=N-1.

3. OPTIMUM POLICY

Almost all models considered here become a problem of minimizing an
objective function with two independent variables, which extends three basic
replacement problems. It is very difficult to discuss optimum policies for such
models. As an example, we take up an optimization problem which minimizes
the expected cost rate C,3(T, To) of model 4. Tahara and Nishida {21] and
Adachi and Kodama [1] tried to obtain optimum times T§ and T*, however,
the proof was partially incomplete and troublesome to understand.

We seek optimum replacement times 7§ and T* which minimize
C13(T, To) in (7). Suppose that the failure rate r () is strictly increasing to
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infinity and differentiable. Then, differentiating C,3 (T, T,) with T and T, and
setting them equal to zero, respectively, we have:

[rm f F() dr+Fm]/F(To)=c4/cz, (14)
Ty

c2Tor(T)—c4s R(To)=c(+c2—cq. (15)

A necessary condition that finite T and T, minimize C,3 (T, To) are that they
satisfy (14) and (15).
(i) Suppose that ¢, <c4<c; +c,. Letting:

o (T: To)E[r(T) f TF(t)dr+F(T)}/F(To>,

we evidently have:

q(To; To)=1<c4/ca,
lim q(T; To)= 0,

T—

dq(T; To)/dT=r'(T)J ' F(t)dt/F(To)>0.

Thus, there exists a finite and unique T* (T, < T* < 00) which satisfies (14) for
a fixed Ty. Further,

dq(T; To) _

r(T
dTo "

0)
F(To)

—r(D+ [r(T)f TF(t)dz+F(T)]<o, (16)

T —
since r(Ty) <[F(T)—F (TO)]/_[ F(t)dt for T> T, from the assumption that
Ty

r (t) is strictly increasing. This implies that T* is an increasing function of 7.

Next, prove that a solution T§ to (15) exists and is unique, when T* (T)) is
given by a function of T, from (14). First, noting that r (T)/r (To)>q(T: To)
for 0Ty < T< oo from (16), we have the inequality;

r(T*(To))/r (To) > c4/ca. (17)
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202 T. NAKAGAWA

Differentiating the left-hand side of (15) with T, and recalling that T* (Ty)
is an increasing function of Ty, we have:

27 (T*(To))—car(To)+c2 Tor' (T* (To)) [T* (To)) > 0.

Further, for some Ty < T,

2 Tor (T*(To)) —ca R(To) > c; Tor (T* (To)) —ca R(To) > 0 as To— 0,

because, in this case, T*(Ty)—>oc. Therefore, the left-hand side of (15) is
strictly increasing from 0 to infinity, and hence, there exists a finite and unique
T¢§ which satisfies (15).

(i) If c4=cy+c, then T§=0 from (15) and the model becomes age
replacement.

(i) If c4Zc, then T*=T, from (14) and the model becomes periodic
replacement.

From the above results, if c;<cs<c;+c, then model4 has a lower
cosi rate than two basic modeis, and finite optimum times T3 and
T* (0< T4 < T* < o) are given by the unique solutions of two equations (14)
and (15).

4. CONCLUSIONS

We have considered ten replacement models for an infinite time horizon,
which combine three basic replacements. As further problems, these models
would offer interesting topics to reliability theoreticians. However, it is very
difficult to discuss optimum policies for such models. One method of obtaining
the optimum policy for model 4 could be helpful in solving a problem of
minimizing an objective function with two variables.
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