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THE HOTEL OVERBOOKING PROBLEM (*)

by Gary GOTTLIEB (1) and Uri YECHIALI (2)

Abstract. — M hotel rooms are available T daysfrom nom. Typically, a policy of overbooking is
exercised. Customers may cancel their conjirmed réservations and management may choose not to
accept new requestsfor réservations. In addition, management may reserve (sell) rooms through an
agent at some cost (discount) or cancelpreviously acceptée réservations at some cost to the hotel Each
occupied room T days hence brings some revenue and the management objective is to maximize that
revenue minus incurred cost (discounting and management cancelling cost).

We study a continuous control model oj the problem and show that a 4-regionpolicy is optimal For
each point in time there exists a lower, an intermediate and an upper bound so that ij the " inventory"
level oj conjirmed réserva tions is below the lovoer bound, managemen t should sell rooms to ge t the level oj
réservations up to the lower bound, and ij the inventory level is above the upper bound, they should
cancel enough réservations to reach the upper bound. Finally, they should accept new réservations ij and
only ij the inventory level is below the intermediate bound.

Keywords: Inventory Control; Continuous Review; Control Limits.

Résumé. — M chambres d'hôtel sont disponibles T jours à partir de maintenant. Typiquement, on
exerce une politique de « overbooking ». Les clients peuvent annuler leurs réservations et la direction,
peut choisir de ne pas accepter de nouvelles réservations. La direction peut en outre réserver (vendre) des
chambres à un prix donné (escompte) à travers une agence, ou bien annuler à propre dépense des
réservations préalablement acceptées. Chaque chambre occupée àpartir de ce moment pendant T jours
représente un revenu spécifique et Vobjecîij de la direction est de maximiser ce revenu moins la dépense
rencontrée (dépense d'escompte et dépense d'annulation).

Nous étudions un modèle de contrôle continu du problème et nous démontrons qu'une politique de 4-
régions est optimale. Pour chaque point dans le temps il existe une limite inférieure, intermédiaire et
supérieure, dejaçon que si le niveau « inventaire » de réservations confirmées est en dessous de la limite
inférieure, la direction devrait vendre les chambres dejaçon à obtenir un niveau de réservations jusqu'à
la limite injérieure; et si le niveau inventaire est en dessus de la limite supérieure, elle devrait annuler
sujjisement de réservations jusqu'à obtenir la limite supérieure. Elle devrait enfin accepter de nouvelles
réservations si et seulement si le niveau inventaire est en dessous de la limite intermédiaire.

INTRODUCTION

In this paper we consider the problem of a hotel réservation manager who
wishes to achieve as nearly as possible full occupancy at a given specified date T
days in the future (e. g., New Year's Eve) with a minimum of hotel cancellations
of réservations and with as few as possible rooms "rented" through an agent at
discounted prices. We consider a continuous-time model where customer arrivai
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344 G. GOTTLIEB, U, YECHIALl

and self-cancellation are continuous-time processes and where management has
the option at any time to accept or not new réservations, to cancel confinned
réservations or to "buy" new réservations at some cost

The model we study is related to that of Liberman and Yechiali [1978] where
the overbooking problem is studied in a discrete f ramework. Other earlier papers
inciude Ladany [1976] and Rothstein [1974]. A description of these papers can be
found in Liberman and Yechiali [1978].

In our model we allow both continuous and impulse controls where the
continuous control relates to accepting or not new requests for réservations and
the impulse control relates to acquihng or cancelling réservations. To the best of
our knowledge, the simultaneous considération of both types of control is new.

We show that for any time t,T—t days bef ore the target day T, where there are
X(t) confinned réservations in hand, there exist three numbers
O - ^ i W ^ ^ W ^ i ^ O ) ^ 0 0 s o that ïï X{i)>n$(t), no new réservations shouid
be accepted and — n3 (t) 4- X(t) réservations shouid be cancelled. If
n2 (?) £X(t)S n3 (?), no new réservations shouid be accepted. If
n1 (?) ̂  X(?) < «2 (O* anY n e w request for a réservation shouid be accepted and if
X(i)<nl(t), nï(t) — X{t) réservations shouid be bought

In section 1, the model is presented. In section 2, it is shown that the "value" of
having / réservations on hand at time t is a concave séquence in /, from which
the optimality of thefour-region control policy is shown to follow. We also show
that for some directly determined intervals of time no buying or selling shouid be
done, regardless of the inventory level

1. THE MODEL

Consider a target day T days hence with X(t) the number of confirmed
réservations at time te[0, T\. If there are / réservations on hand at time t, at
which time we buy (cancel) q réservations, we say that X(?) — / and
X(f-h) = i + ( - ) ç . If the final state of the process is X ( T + ) = ^ the reward
(income) received is j(j), where/ attains its maximum aty*=M, M being the
number of rooms available. We only assume that/ is concave. Note that it would
be natural to assume that/ is of the following form:

(1) [fU)=Pd forj<M> px>Q,
\j(J)~PiM-U-M)p2 for j^M, p2>0.

p1 — revenue per room;

Jp2=cost of last-minute management canceüatïon.
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THE HOTEL OVERBOOKING PROBLEM 345

While we don't make such a spécifie assumption about/, the assumption of
concavity is motivated by the above example.

Requests for new réservations arrive as a non-homogeneous Poisson Process
with rate X(t). Each customer holding a confirmed réservation at time t9 acting
independently of the others, will cancel his réservation on [t, t + At] with

r t+At
probability \i(s)ds + o

At each time fe[O, 7], the manager rnay buy m^O réservations at a cost
g(t).m, may cancel r ̂  0 réservations at a cost h(t).r, and may accept or not any
new requests in a deterministîc or probabilistic manner. We assume that h(t)
and g(t) are continuous and strictly positive on [0, 7]. To avoid ambiguity, we
henceforth refer to management cancelling as selling and to customer
cancellations as cancellations.

The objective is to characterize the policy which maximizes the expectation of
the reward received at time T+ minus the cost incurred by the buying and
selling during the period [0, 7],

We now introducé the required notation. Any policy <p can be represented by
the triple cp(/, (ù)~(a(t, co),è(r, co)?P(?, co)) where co is an element of the sample
space Q, and

(i) a(t, (ù)=m means: buy m réservations at time r,

(ii) b(t, cû) = r means; sell r réservations at time t,

(iii) p(7, (ù)=p means: if there is an arrivai at time t, accept it with
probability p.

We wishto characterize the optimal policy over the class of Markov policies.
However, for technical reasoiis, we will occasionally consider non-Markovian
policies.

Let ft be the set of all policies satisfying the characterizations (i), (ii) and (iii)
given above, with the additional conditions that each policy cp has an associated
upper bound L, so that if X(t)^L, no new réservations will be accepted or
purchased at time t and that cp (i) is measurable with respect to the history of the
process X(s) up to time t. Let II <= ft be the set of all Markovian policies in ft.

For a given policy (p e ft, let Nx (t) (N2(t)) be the number of purchases (sales)
made on [0, /) and let JV1(f + )(N2(f + )) be the number of purchases (sales)
made on [0, r]. Let ^ b e the time of the z'-th purchases/^N1(71+)and I^bethe
time of the z'-th sale, z;gN2(T-\-) (a purchase (sale) of q réservations is handled
as q simultaneous but different purchases (sales)]. Let D (t) be the total number of
cancellations on [0, t] and let Z(t) be the total number of réservations accepted
on [0, t].

vol. 17, n° 4, novembre 1983



346 G. GOTTLIEB, U. YECHIALI

Then:

(2a) X(t) = X(Q)+Z(t)-D(t)+N1(t)-N2(t).

(3b) X{t + ) = X(t)+ï}=l-ÏJ)^ = X(t) + Y V , - I 1B,-,.
i l i i

Note that, as defined, X(t) is neither right nor ielt continuous, but has both ielt
and right iimits. Having adopted a policy cp, if a réservation arrives at time t, it
will e accepted with probability P(r), and if accepted, we have:

) where X(t-) = \imX(s).
st

It a(t)>Q(b{t)>0), then we buy a(t) (sell b(î)) réservations at time t and:

Defming C(t) to be the reward (income) received at time T+ minus the cost
incurred on [t, 7], we have:

(3) C ( 0 = - I g(Ag)-

Associated with each policy <p is an expectation operator E^. We set

and:

v(t9 0 =
epen

We point out that v(t, /) satishes the lollowing dynamic programming
characterization:

(4a) v(tj)^ max {v(tJ + i-k)-ig(t)-kh(t)}=A(tJ)

^ - sup {

sB(ï, 0

(4c) („(f>/)

(Ad) c(r,/)=max

R.A.LR.O. Recherche opérationnelle/Opérations Research



THE HOTEL OVERBOOKING PROBLEM 347

Letting W = {(t9 l)\v(t, l)>A(tyi)}, we note that for (r, I) e W, no buying or
selling should be done and that for (t, /)$ W, we should buy i*(f, /) and sell
k*{t, /) réservations where;

max

is obtained at i* = /*(*, 0» k^k*(t, /).

Note that the optimality oi the iour-region controi policy implies that:

O if
nx{t)-l if Kn^tX

Letting p* (t9 /) be the optimal p controi at t il X (t) -19 the four région controi
policy implies that:

0 if Kn2(t).

so? we will show that the optimal policy for each controi i*,k* and P* is a controi
limit policy.

In order to show the optimality ol the four-region controi limit policy we must
first show that v(t, /) is concave in ieN+ foralHefO, T\, This is done in the next
section initially under the assumption that X(t) = X>0, \i(t) == \i> 0, all te [0, 7].
The methodology is to first consider those policies which only change at points of
time on a lattice. The concavity of v(t, l) will be shown to follow by a limit
argument as the lattice is made fmer. Then, loosening the conditions on %(t)
and ]u(0> one gets the same result onv(t, l) by a minor modification of the
arguments.

2, DERIVATION OF THE OPTIMAL POLICE

The major work of this section is proving the preliminary result that v(t9 f) is
concave in./. Assume until otherwise stated that X(t)=z%>0, ix(i)~\i>0, all

vol. 17, n° 4, novembre 1983



3 4 8 G. GOTTL1EB, U. YECH1AL1

Fix an integer j>0 and dehne A= J/2J and Afc = T-kA s ior 0^A:^
that the dependence of A upon j is not explicitly expressed by the notation). Let
Lj = {Ak}%=0. Let l l jcf i with (peu, if:

(i) çefl
(ii) a(ty œ) = 0, ail t$Lj9 ail ©.

ô(r, ©) = 0, ail t$Lj9 ail ©.
(iii) p(*. co) = p(A„ ©), all te[Ak> A,_J, ail ©.
In other words, (pell^ corresponds to a policy which is only reviewed on a

lattice with ail purchases and sales being done on that lattice. Let
n^-^n^o-o, 6(0=0}.

Define u,(f, /) = supt>9(/, /) , and Vj{t + ,1)= sup v9(t, /).

THEOREM 1: {^(A^, 0}f^o ' J û concave séquence in leN + Jor eachj^l andk

Prooj: We will ùrst show that ^(A^ /) is concave in leN +. First note that
{a0, i) is concave as/(/) is concave. Given a choice of p, and given that

= n, it follows from Kleinrock [1975], p. 82, that X(T) is equal in
distribution to the sum of two independent random variables, U1 and l/2,
where Ux has a Poisson distribution with parameter p:

(5) p = P(X/|i)(l-e-^)

and U2 has a Binomial distribution with parameters n and/? = e~Al\
For convenience, let y(/) = üJ(A0, 0- Hence:

(6) D J (A 1
+

) / )= sup

where p satisfies (5) and Ep t is the expectation operator with respect to U1

and U2 having the corresponding parameters p, / and p.
Extend y to a concave, right-differentiable function y on R+ with y(l) = y(I)

for /eJV + .
Extend / on the right-hand side of équation (6) to R+ with the interprétation

that U2 is now the sum of two independent random variables, one binomial with
parameters [i\ and/?, where [/] is the integer part of /, and the other taking
values l — [H and 0, with respective probabilities p and 1 —p.

Define \|/(p, t) = E^l\y(U1 + U2)] and let p(/) be the smallest value of p
(0^p^(X/iO(l—e~A|1))for which \|/(p, 0 attains its maximum f or a given /. Let

= \|/(p(/)) ƒ)= sup EPtl\y{Ux + U2)y We will show that q>(7) is concave in

R.A.LR.O. Recherche opérationnelle/Opérations Research



THE HOTEL OVERBOOK1NG PROBLEM 349

ieR+ which implies that Vj(A^, /) is concave for leN+, implying the concavity
ofu;(A1,/)for/eiV+.

Assume that p(/) is right differentiable. lf not, the below arguments still hold,
though they are more involved. Take all derivatives in the foUowing to be right-
derivatives.

A probabilistic argument or direct ditlerentiation shows that;

As y{x + 2) — 2y(x4-l) + y(x)^0, ail x, ^-^
dp2

Similarly:

= e~»AEo A ~ y(U, + £, + /-[/]) I where B, is a binomial,, ^rj'(C/i+B1 + /-[/])
31

random variable with parameters [l\ and p:

Finally:

ôl2 dl2 dp2\ ôl J dp ôl2 '

Now, either p(/) is on the interior of the set [0,(X/u)(l — e"***)], in which case
ô\\f/dp — 0, or if not, ô2p(l)/dl2=O, In either case, 52(p/ôl2^0, showing the
concavity of cp.

Hence, Vj(Af, l) is concave. So vJ{A1, t) is concave. Assume that v^A^ l) is
concave for i^k<2K Note that Vj(Ak+1) /) has exactly the same relation to
Vj(Ak, l) as does üj(Aj*", 0 to ÜJ(A0)./). As Vj(Ak,.l) is concave by the induction
hypothesis, t>j(A^"+ls /) is concave. Hence, ^(Afc+i,./) is concave, pro ving the
theorem.

QO

THEOREM 2: For ail te {J LJ9 leN*, lim Vj(t, l) = v(t, /).

vol. 17, n° 4, novembre 1983



350 G. GOTTLIEB, U. YECHIALI

Prooj: Clearly, Uj(f, 0 = ü(*> /) and, as TIj is an increasing set of policies,

(7) ]imvj{

To prove the reverse inequality, we choose a le N +, an arbitrary policy (peu
with an associated upper limit L^l, and with ^ (0 , /) fmite.

For afixedy>0, we will construct a policy ocell^ which ''resembles5' cp such
that:

(8) as;->co.

We define oc as follows:

Assuming no cancellations or réservation requests on [Ak, Ak_ x) and given the
policy (peu, and the value of X(A% ), X will have a deterministic sample path
on [Afc, Afc_i). Let Xk(U ©)> ïe[Ak, Afc_!), be that sample path.

Let p(Ak) ©)= % f""1 p(j, Xk(5î ©))&.
7 J A,

Note that P(Afcî œ) dépends only on A (̂A ,̂ oo) and (p.

Dehne a séquence ol random time-transformations:

pk: [Ak, Afc_ J ^ [Ak, Afc_i] as follows:

if P(Ak, X(Afc
+,œ))>0.

P(Ak5Z(Ak
+

5cû))

f, if

Let:

^ i , ©)= , œ)-[D(r, œ)-D(Ak
+,

re(A t , Afc_J

, ©)-[D(r, ©)-D(Afc
f,

In a sensé that we will soon specify, the poücy (a, h, j^ellj- ££resembles" q>
except that, if there is more than one réservation request or cancellation in an
interval, this "resemblance" no longer holds. So, we mustfirst go through some
further technical details. We explicitly construct the cancellation times. For

R.A.LR.O. Recherche opérationnelle/Opérations Research



THE HOTEL OVERBOOKING PROBLEM 351

n = 1, 2 , . . . , L let { Tntj }f= x be i. i. d. Poisson renewal séquences with rate u...
Let Tn j be the time of a real cancellation if X (T~ j) = n. Otherwise, refer to Tn> .
as the time of an imaginary cancellation.

Define:
r\ = max { 2j jgk > 0: there is more than one event on [Afc, Afc_ x] where an event

is a réservation request or a cancellation (real or imaginary)},
where max 0 = 0. Note that r| does not depend upon the policy used. We now
complete the construction of oc.

We let:

and:

a(Aks a>) =

5(Ak, ©) =

ö(Ak9 ©) = 0,

S(Ak9 ©) = 0, k<r\9

Finally, let a e ri, with associated triple (a, S, $). The key observation is that the
joint distribution of the vector s :

) , . . . , X(T+))9

X.. . , N1(T+)\ (N2(0 + ),

conditioned on { r| =0} , is identical under policies cp and ot.

Using this observation we have:

(9) i>.(0, 0 - ^ ( 0 , l) =

The sum of the first four terms of (9) is bounded below by

(10) £ f ( N 1 ( r + ) + W2(r+)).o(l) (asy-^oo),

where the o(l) term is due to the uniform continuity of g and h on [0, 7],
On {n = 0}, the processes evolve similarly in the sense that the number of

vol. 17, n° 4, novembre 1983



352 G. GOTTLIEB, U. YECHIALI

purchases (sales) on (Afc, Afc_ J under policy <p has the same distribution as the
number of purchases (sales) at Àfc_ x under policy a. In addition, X(7"4- ) has the
same distribution under either policy.

Now:

(11)

(12)

Further,

So, combining (10), (11) and (12) gives:

(13) ^ ( 0 , / ) - ^ ( 0 s

OÙ

By identical reasoning, for any te \J Ly\

The theorem now follows from (7) and (14).

LEMMA 3: c(/, /) is a continuousjunction in /e[0, T\Jov each /eiV^.

Prooj: We begin by noting a set oi inequalities:

(i) u(*,0*min/(0;

(ii) \v{t, l+r)-v{t9 t)\£g*r vthere g*=max {g(0, h(t)}.

(iii) i?(f-Ar, l)^v(t, / ) - ^ A ^ * + o(Ar).

To see (i), choose y e n with y=(0, 0, 0). Trivially, vy(t, 0*min/(i). To

see (iii), use the above policy y on the time interval [î — Ar, t].

Let:

/ (M)-min / (0

where g+= min {^(0, h{i)}. Recall that j(M) = maxJ(i)<00. We can see

from (i) that il X(t) = li it can never be optimal to buy or sell more than t(t)
réservations at time t.

R.A.LR.O. Recherche opérationnelle/Opérations Research
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Thus:

(15) t>(*,/)= max {v(t,l + r)-rg(t)9v{t,l-r)-rh{t)}.

Let ly be the time of the tirst réservation request or cancellation (real or
imaginary) af ter t — At:

max {t;(f,/+r)-r#(f-Af, 0»

where:

g(t-At, 0= min

h(t-At, t) = min
se[t — At, t]

Combining (15) and (16) and using the continuity of g and h leads to:

v(t-At9 t)-v(t9 0è / (M) O(Ar) + Ç(0 o(l) = o(l) (as A/^0) . (17)

Finally, équation (17) and inequality (iii) prove the lemma.

THEOREM 4: v(t9 /) w concave in leN+ jor each /e[0, 7].

Prooj: The theorem is an immédiate conséquence of Theorems 1 and 2,
Lemma 3 and the fact that the limit of concave functions is concave.

We now drop the assumption that X(t) and jx(r) are constant and make instead
the weaker assumption that each function is piecewise constant with points of
jumps all on L,, some J > 0 . We further assume that X(t) is bounded above
by X< oo and that \i(t) is bounded above by |x< oo.

THEOREM 5: Theorem 4 holds under the new assumptions on X(t) and \i(t).

Prooj : Fory^ J, Theorem 1 holds under the new assumptions with only a
trivial modification of the proof. The proofs of Theorems 2 and 4, and of
Lemma 3 are identical under the new assumptions on X(t) and \i(t).

vol. 17, n° 4, novembre 1983
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THEOREM 6: There exist threejunctions {n1(t), n2(t), n3(t), QStST}, each
integer valuedso thaï ai time t, given thatX(t) = l, the optimal policy is as follows:

(1) If I>n3(t), set P = 0 and sell / — n3(t) réservations.
(2) !f

(3) If

(4) If /< / Î 1 (? ) Î set P = l and buy n1(t) — l réservations.

Proqf: From Lemma 5.1 of Yushkevich [1977], il X {t) — l, P should be choosen
to maximize:

Setting TÎ2 (0 to be the smallest value of / for which v(t, 0 attains its maximum,
the resuit about P follows directly from the concavity in / of v(t, /)•

As for the impulse control, we have from a modification of Theorem 2.2 of
Robin [1976] that we should do no buying or selling if:

v{t9 0>max {max [v(t, l+i)-ig(t)]> max[v(t9 l-k)-kh(t)]}. (19)
k>Q

If (19) does not hold, we should choose an i (or k) which maximizes the right-
hand-side of (19) and then buy i (or sell k) réservations. So, set:

n3(t) = sup{k:v{t,k)>v{t,k-l)-h(t)}

and:

«xCO^inf {i: v{t, i)>v(t, i+l)

where sup 0 = 0 and inf 0 = oo.
The resuit about buying and selling then follows from the concavity of v{t, /)•

THEOREM 7: (i) Let B = \s: se[0, T) where 3 te(s, T\ with

- \i(z)dz \>. Then, if seB, n1{s)^0, (Le., never buy
J « JJ

for seB).

(ii) Let

S « l s: se[0t T) where te(s, T] with h(s)>h(t).cxp\

Then, if seS, n3(j) = oo, (Le,, never sell for seS).

R.A.LR.O. Recherche opérationnelle/Opérations Research
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THE HOTEL OVERBOOKING PROBLEM 355

Proqf: We only outline the proof of (ii). A particular réservation can be
cancelled by management at time s at cost h(s). Alternatively, management can
wait until time / and then cancel that réservation unless it has already cancelled

itself. The expected cost of the later course of action is h(t) exp — \i(z) dz .

Assertion (ii) follows from this observation.
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