Optimal tour planning with specified nodes
RAIRO - Operations Research - Recherche Opérationnelle, Tome 18 (1984) no. 3, pp. 203-210.
@article{RO_1984__18_3_203_0,
     author = {Laporte, Gilbert and Mercure, H\'el\`ene and Norbert, Yves},
     title = {Optimal tour planning with specified nodes},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {203--210},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {1984},
     mrnumber = {770186},
     zbl = {0559.90090},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1984__18_3_203_0/}
}
TY  - JOUR
AU  - Laporte, Gilbert
AU  - Mercure, Hélène
AU  - Norbert, Yves
TI  - Optimal tour planning with specified nodes
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1984
SP  - 203
EP  - 210
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1984__18_3_203_0/
LA  - en
ID  - RO_1984__18_3_203_0
ER  - 
%0 Journal Article
%A Laporte, Gilbert
%A Mercure, Hélène
%A Norbert, Yves
%T Optimal tour planning with specified nodes
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1984
%P 203-210
%V 18
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1984__18_3_203_0/
%G en
%F RO_1984__18_3_203_0
Laporte, Gilbert; Mercure, Hélène; Norbert, Yves. Optimal tour planning with specified nodes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 18 (1984) no. 3, pp. 203-210. http://archive.numdam.org/item/RO_1984__18_3_203_0/

1. G. Carpaneto and P. Toth, Solution of the Assignment Problem, ACM Transactions on Mathematical Software, Vol, 6, No. 1, 1980, pp. 104-111.

2. G. Carpaneto and P. Toth, Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem, Management Science, Vol. 26, No. 7. 1980, pp. 736-743. | MR | Zbl

3. G. B. Dantzig, D. R. Fulkerson and S. M. Johnson, Solution of a Large Scale Travelling Salesman Problem, Operations Research, Vol. 2, 1954, pp.393-410. | MR | Zbl

4. S. E. Dreyfus, An Appraisal of Some Shortest-Path Algorithms, Operations Research, Vol. 17, 1969, pp. 395-412. | Zbl

5. R. S. Garfinkel, On Partitioning the Feasible Set in a Branch-and-Bound Algorithm for the Asymmetric Travelling Salesman Problem, Operations Research, Vol. 21, 1973, pp. 340-343. | MR | Zbl

6. M. Held, Influences of the Travelling Salesman Problem, Paper presented at the XI. International Symposium on Mathematical Programming, Bonn, 1982.

7. T. Ibaraki, Shortest Path Problems Visiting Specified Nodes, Electronics and Communications in Japan, Vol. 53-A, 1970, pp. 10-18. | MR

8. G. Laporte and Y. Nobert, A Branch and Bound Algorithm for the Capacitated Vehicle Routing Problem, Operations Research Spektrum, Vol. 5, 1983, pp. 77-85. | Zbl

9. G. Laporte and Y. Nobert, Finding the Shortest Cycle through k Specified Nodes, Cahiers du GERAD G-83-07, Ecole des Hautes Études Commerciales de Montréal, 1983, 11pages. | MR | Zbl

10. G. Laporte, M. Desrochers and Y. Nobert, Two Exact Algorithme for the Distance Constrained Vehicle Routing Problem, Networks, Vol 14, 1984, pp. 161-172. | Zbl

11. P. Miliotis, G. Laporte and Y. Nobert, Computational Comparison of Two Methods for Finding the Shortest Complete Cycle or Circuit in a Graph, R.A.I.R.O, (recherche opérationnelle), Vol. 15, 1981, pp.233-239. | Numdam | MR | Zbl

12. J. Munkres, Algorithms for the Assignment and Transportation Problems, Journal of S.I.A.M., Vol. 5, No. 1, 1957, p. 32. | MR | Zbl

13. J. P. Saksena and S. Kumar, The Routing Problem with "K" Specified Nodes, Operations Research, Vol. 14, 1966, pp. 909-913. | Zbl

14. D. M. Shapiro, Algorithms for the Solution of the Optimal Cost and Bottleneck Travelling Salesman Problems, Ph. D. Thesis, Washington University, 1966, 157 pp.