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A CLASS OF COMBSNATORIAL PROBLEMS
WITH POLYNOMIALLY SOLVABLE LARGE SCALE
SET COVERING/PARTITIONING RELAXATIONS (*)

by M. MINOUX (*)

Abstract. - We introducé and study a whole class of combinatorial problems which can be
formulated as very large size set covering/set partioning problems whose linear relaxations are
either solvable in polynomial time via the Ellipsoid Algorithm, or simply efftciently solvable by
using generalized linear programming techniques. An extension to set packing problems is also
considered. This class is shown to contain both already well-known combinatorial problems as well
as a number of apparently new ones, stated her e for thefirst time. Moreover it is shown that, for all
these problems, proving they belong to this class automatically provides new attractive computational
approaches. Two recent important practical applications of these methods are mentionned: one
concerns an optimization problem arising in satellite communications; the other concerns crew
scheduling problems in airline companies.

Keywords : Combinatorial optimization; set covering, set partitioning; generalized linear
programming; column génération.

Résumé. - On introduit ici toute une classe de problèmes combinatoires qui peuvent se formuler
comme des problèmes de recouvrement/partitionnement de très grandes dimensions dont les relaxa-
tions continues : ou bien sont solubles en temps polynomial par l'algorithme des ellipsoïdes; ou bien
peuvent être résolues de façon efficace par des techniques de programmation linéaire généralisée.
On montre que cette classe contient non seulement des problèmes combinatoires bien connus, mais
aussi un certain nombre de problèmes apparemment nouveaux et décrits ici pour la première fois.
De plus, on montre que pour tous ces problèmes, le fait de montrer Vappartenance à la classe
fournit automatiquement de nouvelles méthodes de résolution a priori intéressantes. Deux récentes
applications pratiques importantes de ces méthodes sont mentionnées : Vune concerne un problème
d'optimisation de système de Télécommunications par satellite; Vautre le problème des rotations
d'équipages dans les compagnies aériennes.

Mots clés : Optimisation combinatoire; problèmes de recouvrement et de partitionnement;
programmation linéaire généralisée; génération de colonnes.
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106 M. MINOUX

1. INTRODUCTION

The purpose of this paper is to exhibit and study a large class of combinato-
rial optimization problems, ail of which enjoy the following nice properties:

(i) they can be reformulated as very large size set covering or set partitioning
problems (with possibly one additional constraint); the "very large size"
attribute will be made more précise in the paper. Also, an extension to set
packingproblems will be suggested in section 4.6.2.);

(ii) due to some special structure of the constraint matrix, the linear
programming relaxations of these large size set covering set/partitioning pro-
blems can be solved exactly by using generalized linear programming techni-
ques (column génération). Moreover, the polynomial solvability of these linear
programming relaxations can be proved by using a property of the EUipsoid
Algorithm (Shor 1977, Khachian 1979) first exhibited by Grötschel et al
(1981).

It will be shown that this class contains a number of well-known problems,
or problems already treated by other approaches, such as:

— simple plant location problems;

— partitioning the edges of a graph into forests;

— the so-called graph partitioning problem;

— the chromatic index problem;

— clustering problems arising in such contexts as locating (TV or radio)
broadcasting stations, or services (fire, médical etc.).

For all the above-mentioned problems, the gênerai solution method sugges-
ted in this paper provides a new alternative computational approach.

However, an additional interesting feature of this work is that it led us to
identify quite a few new problems, stated hère for the first time to our
knowledge, some of which might have important potential practical applica-
tions; for instance:

— the fe-center-sum problem (see §4.1 .3) ;

— minimum weighted partitioning of a matroïd with bases or independent
subse.ts (see § 4 .4 . 3);

— minimum weighted partitioning with subsets belonging to the intersec-
tion of two matroïds (see §4.5);

— packing the edge set or arc set of a graph into cutsets (weighted and
un weighted cases) (see § 4.7).
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A CLASS OF COMBINATORIAL PROBLEMS 107

2. FIRST EXAMPLE: THE TV BROADCASTING STATION PROBLEM REVISITED AND
NEW EXTENDED MODEL

As an introductory example, we first focus on a very classical textbook-
example which can be found almost everywhere as a typical illustration for
set covering problems.

Suppose that, on a given geographical area, we have to locate TV broadcas-
ting centers so that the TV signal is appropriatedly received by any of p
given cities with known geographical position. Suppose that n possible sites
for the broadcasting centers are given, and for each site j(1 ^j^n) we know:

— the subset Vi of cities "covered" by a center installed on site j;

— the corresponding cost c} of installing a center on site j . With each site
;', associate a binary (0—1) variable Xj (with the meaning that Xj=l iff site;
is actually selected in the solution) and dénote by A the p x n 0—1 matrix
where, for; = 1, 2, . . ., n, Ap the^-th column of A, is the characteristic vector
of subset Vj. Then the problem of "covering" all the cities at minimum cost
can be simply stated as the set covering problem:

n

Minimize £ CJXJ subject to

(TV 1)

J = I

xe{0, 1}"

where 1, at the right-hand side of the set covering constraints, is the /?-vector
with ail components equal to 1. (Observe hère that it doesn't matter if some
city is covered more than once in the solution, so the relevant model is indeed
set covering rather than set partitioning).

Typical values of p and n for practical problems ranging from a few tens to
about 100-200, the above can be coped with via existing integer programming
techniques such as:

— cutting planes: see e. g. Delorme 1974;

— branch-and-bound techniques: see e. g. Lemke, salkin and Spielberg
1971;

— more involved techniques combining cutting-planes, branch-and-bound,
and subgradient optimization as suggested in Balas and Ho (1980).

However, if we take a more realistic point of view, it could be objected
that the applicability of currently available integer programming tools, as
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108 M. MINOUX

those mentioned above, only results from the fact that we restricted indeed
to a very simplified (if not simplistic) model. As a matter-of-fact, in real
situations, broadcasting stations featuring various possible power levels (not
only a single power level) can be installed on any site j , resulting in a whole
family of (cost, covered subset) pairs say: (cJl9 vn)\ (cJ29 vj2), • • -,
(cjk., vjk). Observe that it is natural to assume that the cost is a monotone
nondecreasing set function, i. e. it increases in the weak sensé when extra
éléments are included in the subset.

We thus introducé and discuss hère a more gênerai and realistic model, in
which it will be assumed that each broadcasting center on any site j can be
assigned a continuüm of power levels ranging from 0 to some maximum
value Pmax (the value which would be necessary to reach all the p given cities
from j).

For any fixed j9 define Ttj as the minimum cost of a broadcasting station
located at j capable of reaching city i (i. e. the cost corresponding to the
assignment of the minimum power level required at j to reach i). Note that
each F^. value can take account of the possible perturbations in the propaga-
tion of the radio waves between the spécifie pair (i, j) of locations, due to
geographical accidents (mountains etc.), so that the model is able to fit very
accurately any given practical situation.

With the above data at hand, the exact minimum cost of a broadcasting
station located at j and covering all the cities contained in any subset
F c { l , 2, . . ., p} is readily obtained as:

{Tij}. (1)
ieV

Observe hère that, for any fixed ;, at most p distinct subsets (let us call
them active subsets) have to be considered. This is because, if i0 is the element
in V for which the maximum in (1) is obtained, then the subset
V'ioj={i/rijsrioj} has same cost as V but (usually) contains more éléments.
Since we do not care about covering some city more than once, it is clear
that optimality is not lost in the set covering model by restricting to the
active subsets such as V.

Note that there are at most/? of these, each one corresponding to an
element i0 in {1, 2, . . ., p}.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



A CLASS OF COMBINATORIAL PROBLEMS 109

As a whole we get a new set covering model, call it (TV2), with/?
constraints but q = nxp columns (p distinct subsets for each possible site j):

(TV 2)

P n

Minimize £ £ T^ xtj subject to:

P n

= 0. or ( î = l , . . . , / ? ; j = l , . . . , n),

where, for ail j = 1, . . ., n, for ail i= 1,...,/> the double subscript (i, ;) relates
to the active subset:

with cost T.p and incidence vector Atj

Example: We illustrate the above model by means of the following small
example with 5 cities and 5 possible locations (in the cities themselves). The
inter-city distance matrix (in kilometers) is:

Ö

30

110

50

20

30
0

80

70

30

IIÖ
80

0

90

60

50
70

90

0

40

20
30

60

40

0

We assume that the cost c(d) of installing a broadcasting station at any
place with enough transmission power to reach any other city within distance
d has a simple analytical form such as:

c(d) = 0Ad for
c(d) = 2 for d^

(d expressed in kilometers).

Thus, for a station placed in city 1, the minimum cost required to reach
city 4 (d = 50) is 0.1 x 50 = 5 = T 4 4 . The corresponding subset of cities covered
is in this case {1, 2, 4, 5}. Similarly, covering only cities 4 and 5 by means of
a station located in city 4 would cost: 0.1 x 40 = 4 = r5>4.
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110 M. MINOUX

The resulting set covering problem (TV 2) would be in this case

1
2
3
4
5

2

1
0
0
0
0

1 21

3

1
1
0
0
1

r s i

11

1
1
1
1
1

r41
5

1
1
0
1
1

r 5 1

2

1
0
0
0
1

r22
2

0
1
0
0
0

r32
8

1
1
1
1
1

r
4 2

7

1
1
0
1
1

3

1
1
0
0
1

r 3 3

2

0
0
1
0
0

r43
9

0
1
1
1
1

r 5 3

6

0
0
1
0
1

r44
2

0
0
0
1
0

r 5 4

4

0
0
0
1
1

r 5 5

2

0
0
0
0
1

(end of example).

If p and n are large, say /? = 500 and n = 200 we are then confronted with a
large size set covering problem, unsolvable by the current integer program-
ming techniques (105 binary variables) However, what we now in tend to
show is that, in spite of its large size, (TV 2) has some structure which can
be exploited from a computational point of view.

Consider the linear relaxation of (TV 2) obtained by dropping the integrality
requirements on the variables :

Minimize Ttj xtj subject to:

(TV 2)
z z 4j*</£i

i=l 7 = 1

i = l , . . . , / > ; 7 = . . , n .

Even though (TV 2) is recognized as an ordinary linear program, the actual
possibility of solving it by the simplex method for large n and p is not
obvious (just observe that for p = 500 and n = 200, the average number of
nonzero éléments in the constraint matrix would be > 107, so just storing
the constraint matrix would be out of range of most avaiiable computers).

However, the important observation is that (TV 2) can be efficiently solved
by generalized linear programming (column génération or constraint généra-
tion) techniques (see Dantzig 1963). This is because there is, in this case, an
efficient (polynomial time) column generator algorithm (see e. g. Minoux 1983)
which works as follows:

at any stage of the column génération process, a partial set-covering
problem, restricted to only a small number of columns out of (TV2), is
solved to optimality via the simplex algorithm. Let nu TC2, . . . np the optimal
dual variables (simplex multipliers) obtained. The next step is to find the
minimum reduced cost column. This is easily done for fixed j because, for
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A CLASS OF COMBINATORIAL PROBLEMS 111

any active subset V' corresponding to city i ( F = {/ / ry^ry}) the reduced
cost of the corresponding column is:

ieV'

Note hère that the computation of the p values Ytj can be carried out in time
complexity (9(p) since, sorting the Ttj values according to nondecreasing
values in such a way that:

the p active subsets corresponding to j are:

OiK {h, h}> {h> h> h}> • •> 0i> h> • • •>

The minimum reduced cost column

P
n

in thus obtained in time complexity O(np).

If Fio Jo ^ 0 then global optimality has been reached and the whole column
génération procedure terminâtes. Otherwise, the new column is added to the
current restricted set covering problem and the process is repeated with this
new augmented restricted problem.

The (generalized) TV broadcasting location problem is thus an example of
a combinatorial problem for which it is possible to define a large scale set
covering linear relaxation amenable to efficient solution through generalized
linear programming.

Indeed, it will be shown is section 3 that, as a direct conséquence of the
existence of a polynomial generator algorithm, the polynomial solvability of
the large scale set covering linear relaxation is obtained.

Finally section 4 will be devoted to show that there is a large number of
interesting combinatorial problems which share these properties.

3. THE GENERAL SET COVERING/SET PARTITIONING MODELS AND COMPLEXITY
OF THEIR LINEAR RELAXATIONS

3.1. Définitions and notations

Let £ = { 1 , 2 , . . . , / ?} be a given set of p éléments (ground set) and let
^ = { Sl9 S2, . . ., Sq} be a finite family of q subsets of E.

vol. 21, n° 2, mai 1987



112 M. MINOUX

We will consider later on a huge variety of specializations for the pair (£,
^). For instance, we may think of & as 9 (E\ the power set of E. Or, else,
we may think of E as being the edge set of some given unoriented graph G,
& being the set of all subtrees (connected cycle-free partial subgraphs) in G.
In what follows, we will be especially interested in the cases where 3F is allowed
to contain a very large number q of éléments (e. g. growing exponentially in
p, the cardinality of the ground set), while requiring that SF is a whole family
of well-identified combinatorial objects (e. g. all the subsets of E; all the
subtrees of a graph; all the paths bet ween two vertices in a graph, etc). The
TV broadcasting location problem presented in section 2 was a first example
of this.

The incidence matrix of SF in E is defined, in the classical way, as the p x q
0-1 matrix

= ( * ! ƒ ) « = 1 . . . . . *

where aij=l if and only if Sp the j-th member of the family &, contains
element i of E.

Suppose now that, to each element Sj of J^, we attach a real number
Cj=y (Sj) called the cost of member Sj in J*\ Let us associate with each Sj in &
a binary (0-1) variable xp and consider the following 0-1 integer programming
problem (set covering):

4

Minimize £ CJXJ subject to:

SC[E,*9y] • (2)

V;, x, = 0 or 1, ; = 1, . . . , g .

where, for all j = 1,2, . . ., q, Aj dénotes the ;-th column of A (characteristic
vector of Sj in E) and 1 the /j-component vector of all I's.

This problem is denoted by SC [E, &, y] to indicate that it is a set covering
problem perfectly determined by specifying the family SF on E, and the cost
set function y.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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The linear relaxation of the above set covering problem is denoted by
SC[E, &, y] and is clearly obtained by replacing the integrality requirements
on the variables ( ^ = 0 or 1) by

In a natural way, when the inequality constraints (2) are replaced by equality
constraints, we obtain the set partitioning problem:

Minimize £ CjXj subject to

SP[E9*9y] • (3)

Xj = 0 or 1, j=l,...9q.

t h e continuous relaxation of the above problem is denoted:

As will be seen, the above gênerai formulations will already allow us to
model many combinatorial problems. However the class of problems can still
be significantly enlarged by considering a slightly more gênerai model in
which the x vector is restricted to belong to some polytope X c [0, \]q

represented by linear equality or inequality constraints.

In most cases of practical interest (see § 4) these constraints will assume a
very simple form such as:

Z xj = k (4)

(k is a given positive integer).

It will then be convenient to use the notation SC[E, &, y, X] for the
problem:

i

Minimize £ CJXJsubject to

xeIc[0,
,.=0 or 1, j

vol. 21, n° 2, mai 1987



114 M. MINOUX

and SP [E, &9 y, X\ for the corresponding set partitioning problem. Of
course, the linear relaxations of these problems will be respectively denoted
by SC [£, F9 y, X] and JP [E, &9 y, X\.

In a natural way, problems SC [E, &9 y] or SP [E, &9 y] in which no extra
constraint is imposed, will of ten be identified with special instances of SC [E,
&, y, X\ or SP [E, &9 y, X\ in which X=H = [0, l]q, the whole unit hypercube
in g-dimensional space.

We note here that it would also be possible to define set packing problems
associated with specified triples [E, &9 y]: such an extension will be considered
in section 4.6 in connection with path-constrained network flows, and in
section 4.7 in connection with cutset packing problems in graphs.

3.2. Efficient solvability and the polynomial column génération assumption

Now, what we are basically interested in, here, are combinatorial problems
which, when stated into the form of SC [E, &9 y, X\ or SP [E, &9 y, X\ for
some spécifie choice of E, # \ y and X, result into efficiently solvable linear
relaxations SC [E, &9 y, X\ or SP [E, &9 y, X\.

Of course, the motivation behind the requirement of efficient solvability
of the linear set covering/set partitioning relaxations is to eventually use them
to provide lower bounds which, if not computationally too expensive to
obtain, can subsequently be exploited within branch-and-bound procedures
to get exact optimal integer solutions to the problems under considération.

Since we have in mind possibly large values of p (the size of the ground
set, a mesure of the size of the original problem) and we want to allow for
families & having cardinalities growing exponentially with p, the only known
pratical ways (2) of solving linear programs such as SC[E, J% y,X\ (or
SP [E, &9 y, X\) rely on generalized linear programming (column génération)
techniques.

Moreover, it is clear that the overall generalized linear programming
procedure cannot be efficient if the column génération subproblems cannot
be solved efficiently at each génération step.

In view of this, we will focus here on problems such that, once formulated
in terms of SC [E, &9 y, X\ or SP [E, &9 y, X\, the following polynomial

(2) Apart from very special cases such as submodular cost functions for which a spécifie
efficient algorithm exists (the greedy algorithm). See § 4 . 1 . 6 below.
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A CLASS OF COMBINATORIAL PROBLEMS 115

génération assumption (PGA) holds:

Given any set of real numbers nl9 n29 . . . np associated with the
éléments of the ground set £, there exists a polynomial algorithm
(column generator) for finding a member S* of 3F such that:

(PGA) y(S*) = y(S*)- £ T i - M i n h ^ - X M (5)
ieS* Se& ieS

(y(S*) above is the reduced cost of the minimum reduced cost
column).

(Hère polynomial means polynomial in p, the cardinality of the ground set).

We show in section 4 that (PGA) indeed holds for a huge variety of
interesting combinatorial problems, when reformulated in the above frame-
work. For all these problems, of course, generalized linear programming will
provide an efficient practical way:

— of getting good lower bounds (see the few computational results mentio-
ned in section 4 for some problems to which the approach was already
applied) leading to search trees of reduced dimensions ;

— of solving sometimes the integer problem itself (either because the
continuous solution obtained happens to be intégral, or because the family
3F and the cost function y have properties guaranteeing the integrality of the
solution).

However, we first end up this section by stating a nice resuit showing that
the class of combinatorial problems for which (PGA) holds is interesting,
not only from a practical and computational point of view, but also from a
theoretical point of view.

3 .3. Polynomial solvability of the linear relaxations under the (PGA) assump-
tion

For convenience, we restrict hère to consider the set covering case, since
an identical proof would follow, step by step, for the set partitioning case.

Denoting by 7i = (7i1,7i2, . . .,7tp) the vector of dual variables, the linear
program dual to SC[E, ̂ , y] reads:

P

Maximize £ 7if subject to:

DSC[E,3?,y] i=1

I nt£y(Sj) (forail5,.in3F)
i e Sj

71,^0, 1 = 1 , . . . , ƒ ? .
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Though, in cases of interest to us, this problem has a very large number of
constraints, it can be solved efficiently by a generalized linear programming
simplex algorithm: this leads to a constraint génération scheme which is just
the dual to a column génération scheme.

However, another alternate way of solving a structured linear program
with many constraints such as DSC [E, &, y] is to apply the ellipsoïd algorithm
(Shor 1977, Khachian 1979). In this approach, a séquence of ellipsoïds êx

with geometrically decreasing volumes is generated, each of which contains
at least one optimal point.

Moreover, the réduction factor in the volume between gx and êt+1 is, in
the worst case, equal to a constant ( < 1) depending only on the dimension p
of the space (the number of variables of the problem) and thus it can be
shown that the number of necessary itérations to get an ellipsoïd containing
at most one extreme point of the polytope Q of feasible points is bounded by
a polynomial in p (the dimension of the space) and log2 T where T is the
rationality constant of the polytope Q. More specifially, assuming that the
extreme points of Q have rational coordinates, T is the largest absolute value
of any integer appearing as a numerator or a denominator in the coordinates
of any extreme point of Q.

Since all the coefficients in the constraints of DSC[E, 3F, y] are 0 or 1, it
can easily be shown that the largest possible determinant of a basis is bounded
by pp, hence that (provided that the y values are integers, which is not a
restrictive assumption hère) in this case, log2 T=p log2p which is indeed a
polynomial in p. So, applied to DSC[E, &, y], the ellipsoïd algorithm will
require a number of itérations polynomial in p.

Thus we can apply to our problem the argument, first suggested by
Grötschel, Lovâsz and Schrijver (1981) in a somewhat different context (3)
namely that the polynomial solvability of DSC[E, J^, y] only dépends on the
polynomial solvability of the so-called séparation problem (SEP) stated below:

Given any n= {nl9 . . . np}, find whether ïzeQ or else produce
(SEP) SjG^ such that the corresponding constraint is violated, i. e.:

(3) The class of problems considered in Grötschel, Lovâsz and Schrijver paper were essen-
tially polynomially solvable integer problems, whereas we are concerned hère with a new class
of problems containing mainly NP-complete problems.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



A CLASS OF COMBINATORIAL PROBLEMS 117

Clearly, under (PGA) the above séparation problem is polynomially solvable
(see § 3.2) hence DSC[E, #", y] is polynomially solvable.

Also it is easily checked that exactly the same kind of arguments apply to
~SC[E9&9y9X\ and JF[E9^9y9X\ when the set Xcz [0, l]q is defined by a
single constraint such as (4) (see §3.1). We have thus obtained:

PROPERTY 1: Under (PGA) the linear relaxations of SC[E, !F9 y] and
SP[E, 3F 9 y] are polynomial-time solvable. This extends to SC[E, 3F 9 y, X\
and SP[E, &, y, X] e. g. when I c [ 0 , l]« is defined by a single linear
constraint such as (4).

4. A LIST OF A FEW TYPICAL EXAMPLES

We now turn to describe a number of typical problems belonging to the
new class of combinatorial optimization problems studied in sections 2-3
above. Unless otherwise specified, each problem listed below meets the (PGA)
assumption.

In each case, a proper statement of the column génération subproblem is
provided, together with the complexity of solution algorithms usually expres-
sed in terms of the cardinality of the ground set E.

For clarity, we found it convenient to organize them into a few main
subclasses, each subclass corresponding to a spécifie choice of the pair (E, #").

4 .1. Cases where J* is the power set of some ground set E

Consider E= {1,2, . . .,/?} and 3F =

We first assume her e that, for any unordered pair (i, j) of éléments in E, a
real number dl} is given (and, for all i, du = 0). dXJ may be interpreted as a
"distance" or "dissimilarity index" or "cost" between i and;.

4 .1 .1 . The extended broadcasting center problem

Consider the case where the cost y (S) of any S in ^ (S is thus a subset of
E) is given by

y . (6)
i e S j e S

In the case of a set-covering problem (SC) with no extra constraint (i. e.
X=H = [0, \]p) we find again the generalized broadcasting center problem
introduced in section 2.
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Associate with each element i e £ a binary (0-1) variable yt (yt = 1 if element
i belongs to the optimal —minimum reduced cost —subset looked for). The
column génération subproblem can be stated as minimizing:

g (y) = Min Maxd^j ,— £ WJ (7)
i e £ j e E j e E

over a l lye{0,1 }p.

This problem is polynomially solvable as explained in section 2.

Suppose that the index i0 achieving the minimum in the first (Min-Max)
term in (7) for the optimum solution is known. Then the problem reduces to
minimize:

o
jeE jeE

which can be done in time (9 (p) (exactly as explained in section 2) by sorting
the dioj values according to nondecreasing order

*OJ1= *0J2= * * * = hJp

and Computing the minimum reduced cost among the p active subsets

Hence the minimization of (7) can be carried out in time complexity (9(p2)
(we do not take into account here the sorting opération which can be done
once for all in a "preprocessing" step before starting the column génération
process).

4.1.2. Extended broadcasting center problem with cardinality constraint

When in problem 4 .1 .1 , an extra constraint of the form (4) is imposed

A \
£ Xj=k j then we find an extension of the generalized broadcasting center
ï=i /

problem where the number k of centers is imposed. The column génération
subproblem remains essentially unchanged in this case, and the resulting
complexity for column génération is still 0 (p2).

The same remark would apply to the case of extra constraints of the form

or
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4.1.3. A new location problem: center-sum and k-center-sum problem

E, 3F and y being as in section 4 .1 .1 , consider now the case of set
partitioning (instead of set covering). The problem is then recognized as
partitioning the ground set E into subsets (classes) Sl9 S2, . . . ,Sh , the cost
of any subset S in the partition being given by (6), in such a way as to
minimize total cost. In location theory (see e. g. Hansen et al. 1985) the
element i0 achieving the minimum in (6) is called the center of the class (or
subset) S, and y (S) which is the maximum "distance" from i0 to any other
element of S is the radius of S. We thus want to détermine a partition
minimizing the sum of the radii. Since the only différence between this
problem and the ones in sections 4 .1 .1 and AA. 2 is that set covering is
replaced by set partitioning, the column génération subproblem is essentially
unchanged, hence solvable in the same way in time (9{p2). In accordance
with the common terminology in use in Location Theory, P. Hansen (1986)
suggested the term of center-sum problem.

The cardinality constrained version [in which an extra condition of type
(4) is imposed] is referred to as the k-center-sum problem. For this problem,
which doesn't seem to have been studied bef ore, the present paper pro vides
a readily available computational approach for getting good lower bounds.
Computational results will be presented in a forthcoming paper.

4.1.4. Médian and K-median problems

E and £F being as above, we now define the cost of any subset Se^ by:

£ d y } . (8)
i e S j e S

In location theory, the element i0 achieving the minimum in (8) is called
the médian element of the class (subset) S.

In case of set partitioning with cardinality constraint of type (4), the
problem is thus recognized as the well-known K-median problem (Hakimi
1964, Maranzana 1964).

Given simplex multipliers nl9 n2, . . -, np associated wiih the éléments of
£, the column génération subproblem consists in minimizing, for each i in E:

Z di]yj- Z *jyj= E (^—^M (9)
ie E je E jeE

and then taking the minimum of the resulting quantities over all i in E.
Clearly, for each given i in £, the minimum in (9) is readily obtained by:
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and the required computational effort is (9 (p).

As a whole, the column génération process has complexity 0 (p2).

4.1 .5 . The simple plant location problem or uncapacitated facility location

This a slight variation of the previous problem in which there is a fixed
cost ft to be paid whenever element i is chosen as the médian element in the
subset S.

Hence, in this case, the cost y (S) of any subset S should be replaced by:

y(S)=Min{fi+ £dy}. (10)
ieS jeS

It is easy to check that the column génération subproblem remains essentially
unchanged in this case, therefore being solvable in time (9 (p2). For a bibliogra-
phy on the simple plant location problem see e. g. Hansen et al. (1985).

4.1.6. Polymatroïd optimization problems

Again, we consider & as 0>(E) with E= {1,2, . . .,/?} a set of p éléments
(ground set). In addition, we assume that y (S), the set function giving the
cost of any subset S in 3F is a nondecreasing submodular set function (see
Edmonds 1970). Consider, first, the case of a set covering problem without
extra constraint SC[E, 3F, y].

It is easy to chek that the dual to SC[E, 3F', y] is nothing but a standard
polymatroïd optimization problem (for an introduction to polymatroïd optimi-
zation, see e. g. Gondran and Minoux 1983 chapter 9). This problem is
known to be efficiently (polynomially) solvable by the so-called greedy algo-
rithm (Edmonds 1971).

We note that, in this case, our generalized linear programming approach
is unlikely to be compétitive, since the column génération subproblem would
involve the minimization of the submodular set function:

y(S)- £ nj. (11)

Though the above problem has been shown to be polynomially solvable
by means of the Ellipsoïd algorithm (Grötschel, Lovâsz and Schrijver 1981)
no efficient purely combinatorial algorithm is known at present for solving
the gênerai case of an arbitrary submodular set function. However, it should
be observed that there are various interesting special cases of submodular
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functions for which efficient combinatorial algorithms exist for solving (11);
e. g. pseudoboolean functions with the Rhys-Balinski property (Rhys 1970),
submodular quadratic and cubic pseudoboolean functions (Billionnet and
Minoux 1985). Consider now the case of a set covering problem with an
extra constraint of type (4): SC [E, #", y, X\.

The dual to the relaxed problem SC [E, 3F, y, X\ is no longer a standard
polymatroïd optimization problem (due to an extra column with all entries
equal to 1 in the constraint matrix). However this "extended" polymatroïd
optimization problem is still solvable by the greedy algorithm as shown by
Billionnet and Minoux (1984).

For this problem, too, the column génération subproblem is essentially the
same as (11).

4.2. Cases where E is the set of nodes of a given unoriented graph and 3F is
the power set of E

Let E = { 1, 2, . . . , / ? } be the vertex set of a p-nodç unoriented graph G,
and 3F = 2P{E) the family of ail possible subsets of nodes.

4.2 .1 . The graph, partitioning problem

For any unordered pair of vertices (i, j) we assume that there is a number
dtj associated such that:

— dtj= 1 if (i, j) is an edge in G;

— dtj = 0 if (i, j) is not an edge in G.

Associate with any subset of nodes S e 3F a cost equal to:

Y ( S ) = - I I dtJ (12)
ieS je S, j>i

i. e., up to the "— " sign, y (S) is the number of edges of G having both
endpoints in S. X being defined by a cardinality constraint of type (4) the
set partitioning problem SP[E, 3F, y, X] is then recognized as the problem
of finding an optimal partition of the nodes of G into k subsets such that
the sum of all the edges within the subsets be maximized. Accordingly, it can
be vie wed as minimizing the number of edges joining distinct subsets in the
partition: this is the so-called Graph partitioning problem.

The column génération subproblem in this case can be stated as minimizing
the quadratic pseudoboolean function:

ieE jeE, j>i jeE
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over all ye{0,1 }p.

Since ail dtj are nonnegative, g (y) given by (13) is known to be submodular
(see e. g. Fischer, Nemhauser and Wolsey 1978) and we are in the case where
minimizing (13) is equivalent to solving a max-flow-min-cut problem (see e. g.
Billionnet and Minoux 1985) on a graph with/7 + 2 nodes.

This can be carried out in time (9(p3) e. g. by using the algorithms by
Dinic (1970), Karzanov (1974) or the simplified version of these described in
Tarjan(1984).

4.2.2. The weighted graph partitioning problem

This is the weighted version of the graph partitioning problem in which,
with each unordered pair (i, j) of vertices, corresponding to an edge in the
graph, one associâtes a nonnegative number Wtj [the weight of edge (i, j)].
Moreover, it is agreed that Wtj = 0 if (Ï, j) is not an edge. It is required to
partition the vertex set of G into k subsets such that the weighted sum of the
edges within the subsets be maximized (equivalently, the weighted sum of
edges joining distinct subsets be minimized).

Ail that has been said in section 4 . 2 . 1 . above readily extends to this
weighted version, the column génération subproblem being in this case, to
minimize:

g(y)= ~ Z Z Wijyiyj- I njyj (14)
ieE jeE, j>i jeE

which is, again, a quadratic submodular pseudoboolean function, whose
minimization can be performed in time O (p3) through a maximun network
flow algorithm. Computational experiments about this approach to the Graph
Partitioning problem are under way, and will be presented in a forth coming
paper.

4.3. Cases where the éléments in J^ are matchings in a given graph

We now consider the case where E is the edge set of some given unoriented
graph G and 3F is the whole family of matchings in G.

4.3.1. Minimum edge coloring o f an arbitrary graph (chromatic index)

Take the cost y (S) of any matching S eïF as being equal to 1. The problem
SP [E, &, y] can then be interpreted as follows: find a partition of the edge
set of G into a minimum number of matchings. This problem is well-known
in graph theory as finding the chromatic index of G. Though polynomially
solvable for some special classes of graphs (such as bipartite graphs, see e. g.
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Berge 1970, chapter 12) it is known to be ATP-complete in the case of an
arbitrary graph (see Holyer 1981).

Given simplex multipliers nu n2, . . ., np associated with the edges of G,
the column génération subproblem which can be stated as:

Minimize{ 1 — Yu ni} (15)

is recognized as looking for a maximum weight matching in G, when the edges
ieE are assigned weights nt. The problem can be solved efficiently in time
0 (n3) (n being the number of nodes in G) by using efficient implementations
of Edmonds' algorithm (Edmonds 1965) such as those described by Lawler
and Gabow (see Lawler 1976, Gabow 1973).

4.3.2. Minimimum weighted edge-coloring o f a graph and application to a
class of scheduling problems

As in section 4 .3 .1 above, E is the edge set of some given unoriented
graph G and & is the family of matchings in G. Now, assuming that with
each edge f in £ a weight Wt has been attached, the cost of any matching
S e 3F is defined as:

f} (16)

The problem SP [E, &, y] then consists in looking for a partition of the edge
set of G into matchings, such that the sum of the costs of the matchings in
the partition be minimized. We note that, if S is a matching and S'a S, then
S'is also a matching and y(S/)^y(S). As a conséquence, an optimal solution
to SP[E9 !F9 y] can be readily deduced from an optimal solution to
SC[E9&9y].

It is worth observing hère that the above problems SP[E, #", y] or
SC[E, 3F 9 y] correspond to an interesting class of scheduling problems with
only disjunctive constraints (no precedence constraint). Indeed, the edges of
the given graph G can be viewed as corresponding to a set of specified tasks
1,2, . . . , / ? the weights Wl9 W2, . . ., Wp being the durations of these tasks.
It is assumed that any number of tasks can be carried out simultaneously
provided that the corresponding edges in the associated graph do not have a
common endpoint (i. e. form a matching in G). Determining a schedule of
minimum duration for the whole set of tasks thus amounts to divide the
tasks into subsets of independant tasks (to partition the edges of G into
matchings) so that the sum of processing times for the various subsets of
tasks is minimized.
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But the time needed for processing a subset S of tasks corresponds to the
longest processing time for the tasks in the subset: thus it is exactly equal to
y (S) given by (16). As an application of the above model, it is interesting
here to point out the connections with the traffic matrix décomposition problem
arising in Satellite Communication Systems optimization. (Ito et al 1977,
Inukai 1978). In this case, the underlying graph G is bipartite, its nodes
corresponding to the rows and columns of some given traffic matrix. The
weights associated with the edges correspond to the traffic values attached
to tbe various row-column pairs, expressed in time units. The minimization
of the total switching time (the "length of the frame") then amounts to
determining a minimum weighted edge coloring of the (bipartite) graph G as
described above. Solving this problem as a large size set covering (or set
partitioning) problem via a generalized linear programming approach was
first suggested by Minoux (1984 a).

The column génération subproblem in this case is a follows. If nu n2, . . .,
np are the simplex multipliers associated with the edges of G, then we have
to détermine a matching S* such that:

| = Min{y(S)}

where, for all S cz E:

(17)

The problem of finding, in a combinatorial family #^ an optimum element
S* with respect to a combined Min-Max-Min-Sum objective such as (17)
seems to have been stated an solved for the first time in Minoux (1984 a) in
the context of the traffic matrix décomposition problem mentioned above.
The idea is to convert the problem into a séquence of standard (Min-Sum)
weighted matching problems via a threshold approach. Let the éléments of E
be ordered according to nondecreasing weights Wtl S Wi2 :g . . . ^ Wt and,
for each t(l^tSp) let S* be the matching such that £ nt is maximum over

ieS*

all the matchings of the partial graph of G induced by the subset of edges
(il9 i2, . • ., if). Then S*e^ minimizing (17) is given by:

y(S*) = Min {y(S0}
t=i, . . . , p
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where:

ieS'

As shown by Minoux (1984 a), in the case of a bipartite graph G with
|£ |=/7 edges and n vertices, the whole computation above can be carried
out in time O (pn2).

The gênerai problem of minimizing combined Min-Max-Min-Sum objecti-
ves over many classes of combinatorial families £F is studied in Minoux
(19866) and leads, in particular, to the following resuit:

THEOREM 1: Suppose that the combinatorial family ^ on E is such that
finding an optimal min-sum member, with respect to arbitrary weights 7Uf on
the éléments o f E can be performed in polynomial time T(E, #").

Then an optimal member S* with respect to a combined Min-Max-Min-Sum
objective such as (17) can befound in polynomial time G (p. T(E, ^)).

The traffic matrix décomposition problem provides a good illustration of
the relevance of the large scale set covering/set partitioning reformulation of
a difficult combinatorial problem (it is JVP-hard as shown by Rendl 1984) in
view of building tight relaxations for deriving strong lower bounds, eventually
useful within Branch-and-Bound schemes. Over all the test-problems treated
in Minoux (1984 a) and Ribeiro, Minoux and Penna (1986) the generalized
linear programming bounds always provided the exact integer optimum value.
This resulted in Branch-and-Bound trees of very small size, less than 10 nodes
say, even for the largest problems considered: problems of size up to 15 x 15
were solved to optimality, whereas previous approaches (based on much
weaker lower bounds) did not succeed in providing guaranteed optimal integer
solutions to problems of size greater than about 6 x 6 (see e. g. Vismara 1982).

4.4. Cases where the éléments in J* are bases or independent sets of a
matroïd

Let 3F be the family of independent subsets in a matroïd on

£ = {1,2, . . . , / > } .

4 .4 .1 . Partition or covering into a minimum number of independent subsets

The problem SP[E, &, y] where y(S) = l for any independent subset Se^
is recognized as partitioning the ground set E into a minimum number of
independent subsets.
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The column génération subproblem in this case simply reduces to determi-
ning a maximum weight independent subset, where the éléments of E are
given weights nt equal to the current simplex multipliers. However, solving
the generalized linear programming relaxation JP [E, &', y] in this case does
not seem of much interest since the problem has already been shown to be
polynomially solvable by matroïdal techniques (see Nash-Williams 1966).

Note hère that an other equivalent représentation of the same problem
would be to consider the family !F' of bases (maximal independent subsets in
the matroïd) and to solve the set covering problem SC[E9 SF\ y] (again
assuming y(S) = l, VSe J^'). Indeed, an optimal solution to SP[E, #", y] can
be deduced from an optimal solution to SC[E, <F\ y] just by deleting in the
appropriate subsets the éléments which are covered more than once (because
if S is an independent subset, then S'a S is also independent).

4.4.2. Special case of graphie matroïds. Minimum covering of the edge set
of a connected graph with spanning trees

We only mention this problem hère which is a special case of the above
problem SC[E, SF\ y] where !F' is the family of all spanning trees in a given
graph G. The corresponding partitioning problem SP[E, J% y] was studied
and shown to be polynomially solvable by Nash-Wiliams (1964).

4.4.3. Minimum weighted partitioning or covering of a matroïd with bases
or independent subsets

Examples of sections 4.4.1 and 4.4.2 have been known for a long time
in matroïd theory. However, in connection with these, we would like to
suggest hère an interesting extension which nicely fits into our gênerai model,
and, as far as we know, is stated hère for the first time (together with a
readily available computational approach, see § 2).

Assume that every element i in E is given a weight Wt (no sign assumption
is necessary on the Wjs) and define the cost y (S) of any independent subset
S in ^ as in (16) by:

ieS

The problem SP[E, J% y] then consists in finding a minimum weight
partition of E into independent subsets (the weight of a partition being the
sum of the weights of the subsets which it contains).

Given simplex multipliers ni9 n2, . . ., np associated with the éléments of
E9 );hemC9jjpm génération subproblem is then to détermine an independent
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subset S* minimizing

y(S) = Max{Wj-5>, . (18)
i e S ieS

This is a combinatorial problem with combinée Min-Max-Min-Sum objec-
tive, analogous to the one discussed in section 4.3.2. Thus, according to
theorem 1, it can be solved in polynomial time provided that the standard
maximum weight (Max-Sum) independent subset problem can be solved in
polynomial time (by means of the greedy algorithm, see Edmonds 1971).

An interesting special case is of course the one involving graphie matroïds
in which E is the edge set and ̂  is the set of all forests of a given graph G.
In that case, minimizing (18) can be done by applying at most p times a
minimum weighted tree algorithm (such as Prim's algorithm 1957), leading
to a worst-case complexity 0 (pn2) where n is the number of nodes in G (see
also Minoux 1986 b).

Even in the case of graphie matroïds mentioned above, there does not
seem to exist any polynomial algorithm for the minimum weighted partitio-
ning problem when the weights are arbitrary. It is conjectured hère that this
problem is iVP-hard.

4 . 5 — Cases where éléments in 3F are common independent subsets of two
matroïds on the same ground set E

Considering such cases leads to problems much alike those studied in
section 4.4 above.

4 .5 .1 . Partitioning or covering into a minimum number of subsets, for
which the column génération subproblem requires the search for a maximum
weight intersection of two matroïds (efficient algorithms have been described
e. g. in Lawler 1976).

4.5.2. Weighted partitioning or covering with common independent sub-
sets of two matroïds [the weight of the subsets being defined as in (16)] for
which the column génération subproblem can be reduced to solving a séquence
of standard weighted matroïd intersection problems {see Minoux 1986 b).

The traffic matrix décomposition problem studied in section 4 .3 .2 can be
viewed as a special case of section 4 .5 .2 above since matchings in a bipartite
graph are nothing but the independent sets in the intersection of two partition
matroïds (see e. g. Lawler 1976 or Gondran and Minoux 1979, chapt. 9).
Since, as already mentioned in section 4.5.2, even in this partitular situation,
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the problem is NP-hard, it is apparent that problems such as in section 4 .5 .2
will in gênerai be difficult to solve for arbitrary matroïds. However, the
gênerai computational approach described earlier (§ 2) can be applied to such
problems.

Another interesting special case of sections 4 .5 .1 and 4 .5 .2 is the one
where the two matroïds define the set of all directed trees (also called
"branchings") of a given oriented graph G. As a matter of fact, it is well
known that the directed trees or partial subtrees in a graph are common
independent sets of a partition matroïd and the associated graphie matroïd.

Minimum cardinality partitioning or covering gives rise to a column généra-
tion subproblem consisting in the search for a maximum weight directed tree
in the graph. In the weighted version, the problem involves a combined
Min-Max-Min-Sum objective which can be solved by the gênerai technique
presented in section 4.5.2.

4.6. Cases where the éléments of !F are paths or circuits (or chains or cycles)
in a graph

Many combinatorial problems can be formulated as large scale set covering
or set partitioning problems such as SC[E, #", y] or SP[E, &, y] for which
E is either the node set or the arc set of some given directed graph G and 3F
is the family of all the paths or circuits in G. Similarly when E is the node
set or the edge set of some unoriented graph G and & the family of chains
or cycles.

We will thus describe hère only two very typical examples of such problems.

4 . 6 . 1 . The m-salesman vehicle routing problem

This corresponds to the case where each arc u of G is given a length lu

and 3F is the family of all the subsets of nodes corresponding to elementary
circuits containing a spécifie node i0 of G. Let \i be any elementary circuit
containing i0 and let S^ dénote the subset of nodes other than i0 on the
circuit. The cost y(SM) of S^3F is then defined as the sum of the lengths lu

of the arcs on the circuit \i.

In addition, let Xbe the subset of [0,1]* defined by an additional constraint
of type (4) (see § 3)

q

Ex,=m (19)

R.A.I.R.O. Recherche opérationnelle/Opérations Research



A CLASS OF COMBINATORIAL PROBLEMS 129

where m is a given positive integer (in accordance with section 3, q dénotes
the number of éléments in the family #", hère the number of elementary
circuits containing i0 in the graph). Then the problem SP [E, J% y, X\ can
be interpreted as finding a set of m circuits with minimum total length meeting
each node of the graph (other than i0) once and exactly once. In vehicle
routing, this is exactly what is referred to as the m-salesman problem. The
column génération subproblem, in this case is as follows. Given simplex
multipliers %l9 n2, . . ., np associated with the nodes of the graph other than
i0 (thus the graph has /?+1 vertices) and nio associated with constraint (19),
find an elementary circuit containing i0 with minimum reduced cost where
the reduced cost of any circuit \x containing i0 is

The above problem is a difficult one but it is well-known that, in order to
have the generalized linear programming approach work, it is enough to be
able to test for the existence of a négative reduced cost column. In our
problem, this exactly amounts to test for the existence of a négative reduced
cost circuit in the given graph with lengths lu on the arcs u and — nt on the
nodes i. This latter problem can be solved in polynomial time O (p3) (see e. g.
Gondran and Minoux 1979, Chapt. 2).

4.6.2. Path-constrained network flows

A typical example of such a problem is to find a maximum flow between
two specified vertices s and t in a capacitated network (i. e. a directed graph
G = (X, U) together with upper capacity bounds on the arcs), when additional
restrictions or constraints are imposed on the paths which can be used for
sending flow from 5 to t.

Examples of such additional constraints are:

— given numbers wu attached to the arcs of the graph (weights) and an
upper limit vv, consider only those paths of total weight not greater than w.
Of course the weights may have many possible interprétations, depending on
the spécifie application considered: time, variance of a probability distribution
etc. (for a survey of such applications, see Minoux 1975),

— cardinality constraint (this is a special case of the above in which ail
the weights are equal),

— time constraints with time Windows (see e. g. Halpern and Priess 1974,
Desrosiers et al. 1984),
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— more complicated constraints such as those imposed to crew pairings
(or crew schedules) in some crew scheduling problems arising e. g. in airline
companies (see Minoux 1984 b, Lavoie Minoux & Odier 1985).

Contrasting with the simple case of maximum flows without extra cons-
traints, path-constrained network flows with constraints of the above types
are usually JVP-hard (see Garey and Johnson 1979). By using an arc-path
formulation (see e. g. Gondran & Minoux 1979, chapt. 6) these problems can
be stated as large scale (generalized) set packing problems very similar to the
problems SP[E, &9 y]] or SC[E, &9 y] of section 2. Typically:

q

Maximize £ CjXj subject to:

SPK[E, &, y] «

j=i

Vj, Xj intégral

where b = (bl9 b2, . . ., bp)
T is a right handside vector whose components can

be viewed as capacities on the arcs of the graph (the ordinary set packing
problem corresponds to the special case b~ 1, i= 1, . . . , / ? ) .

The column génération subproblem, in such models, consists in finding a
minimum or maximum length s — t path subject to the extra constraints under
considération.

In the cases where the constrained shortest or longest paths obtained are
polynomially solvable, all the developments presented earlier in this paper
are applicable. An interesting special instance of such problems seems to be
when one imposes a cardinality constraint and the underlying graph is acyclic.

4 .7 . Cases where the éléments of 3F are cutsets in a graph

Let G = [X, U] be an oriented graph with node set X and arc set U. For
any subset of nodes A<^X, ÜÖ+ (A) dénotes the associated cutset, i. e. the
subset of arcs ha ving initial endpoint in A and terminal endpoint in X—A.
Now, we take E= (7 = the are set of G, and ^ = the family of cutsets of G of

4 .7 .1 . Maximum packing with cutsets

We first consider the case where the cost y (S) of any cutset Se^ is equal
to 1. Then the packing problem SPK [£, &9 y] introduced in section 4 .6 .2
can be interpreted as packing the arc set of G with a maximum number of
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cutsets. Solving the linear relaxation of this problem by generalized linear
programming leads to a column génération subproblem which is as follows.
At any current step, the simplex multipliers are nonnegative values nu associa-
ted with the arcs ueU of G, and we have to look for a cutset S* having
maximum reduced cost i. e.:

Y ( S * ) = 1 - X 7iu ]>
MeS* S e ^ ueS

The nu values being nonnegative, they can be interpreted as capacities
assigned to the arcs of G, and the above problem amounts to finding a cutset
with minimum capacity in G. Obviously, this problem can be solved in
polynomial time through maximum network flow computations.

We note here that, contrary to the set packing problem above, (PGA) does
not hold in gênerai for problems SP[E, 2F, y] (partitioning the arc set into a
minimum number of cutsets) or SC[E, $F, y] (covering the arc set into a
minimum number of cutsets): in the case of set covering, the column généra-
tion subproblem would be to find a maximum capacity cutset in G w. r. t.
the capacities nu9 a NP-hard problem for a gênerai graph G; similarly for
the case of set partitioning where one would have to find a minimum capacity
cutset with respect to capacities nu possibly taking négative values.

4.7.2. Relation to a linear programming formulation of the steiner tree problem
in a graph

We point out here the close connection between the set packing problem
SPK[E, 3F, y] in section 4 .7 .1 and the steiner tree problem in a directed
graph G.

Suppose that we partition the set X of vertices of G into two subsets:

Xc the set of "compulsory vertices";

Xs the set of "optional" vertices or "steiner vertices".

Moreover, we associate with each edge ueU a (nonnegative) number lu

called the length of arc u. The steiner tree problem in G is then to find a
directed tree covering each compulsory vertex exactly once, having some
specified vertex ioeXc as a root and such that total length be minimized. For
any node j in Xc — {i0}, dénote by <€ioj the set of ail cutsets of the form
(Ù+ (A) where AaX and ioeA9 j$A. If, to each arc u e U, we let correspond
a binary variable yu (yu=l iff arc u is selected in the optimal steiner tree
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looked for) the steiner tree problem above can be formulated as:

Minimize ]T luyu subjectto
ueU

(STP) I y^ e - { i 0
ueC

yu = 0 or 1 (ueU)

The above formulation is due to Aneja (1980). Also, when all the vertices
in G are compulsory, one finds again the integer linear programming formula-
tion of the directed spanning tree problem due to Edmonds (1967). A survey
on linear programming formulations of the steiner problem in graphs will be
found in Maculan 1987.

It is easy to see that the linear program dual to (STP) [the linear relaxation
of (STP)] is a problem very similar to thé set packing problem of section
4 .7 .1 , the only différences being that:

— the right handsides are arbitrary nonnegative numbers lu (instead of
being 1);

— the set of columns do not correspond to the whole set of cutsets in G
but is restricted to: U ^ioj'

jeXc-{i0}

4.7 .3 . Maximum weight packings with cutsets

The problem introduced in section 4 .7 .1 can be easily extended to some
more gênerai cost functions on $F. For instance, weights wu can be assigned
to the arcs UG U of G and the cost y (S) of a cutset S defined by:

y(S) = Min{w t t}.
ueS

In a way similar to what occured in sections 4.3.2, 4 .4 . 3, 4. 5.2, the column
génération subproblem in that case would give rise to a combinatorial problem
with combined Max Min-Max Sum objective, reducible to a séquence of
minimum eut problems, hence to a séquence of maximum network flow
computations. This extension of the cutset packing problem seems to be new.

5. CONCLUSIONS

Though far from being exhaustive, the list of examples given in section 4
above is enough to show the great number and variety of combinatorial
problems related to the new class studied hère. For a few problems in the
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class (e. g. the one presented in section 4. 3.2) the numerical results obtained
have already confirmée the relevance of the generalized linear programming
approach from a computational point of view.

From a theoretical point of view, it was shown in section 3 that the
common fundamental feature to all the problems dealt with hère was the
polynomial solvability of the large scale set covering/set partitioning linear
relaxations. It is our feeling that this could be a useful step towards getting
better insights into the class of NP-complete problems by providing a theoreti-
cally consistent distinction (or "hierarchy of difficulty") among problems
which, up to now, were ail considered in a sensé as "indistinguishably
difficulté

To be more spécifie, the distinction suggested by the above developments
between "easier iVP-complete or JVP-hard problems" and "harder iVP-com-
plete or ATP-hard problems" could be based on the fact that, once formulated
as large size set covering/set partitioning problems as in section 2, the (PGA)
assumption holds or does not hold.

According to this criterion, one could say, for instance, that the (one
dimensional) cutting stock problem belongs to the "harder class" in view of
the generalized linear programming approach proposed in their pioneering
work by Gilmore and Gomory (1963): this is because, in this case, the
génération subproblem involves the solution of an integer knapsack problem.

It should be noted, hère, that numerous examples of the "harder class"
could easily be deduced as variants of some of the examples stated in
section 4. For instance, in the weighted graph partitioning model of sec-
tion 4.2.2, if the weights Wtj are allowed to be négative, then a hard
quadratic 0-1 optimization problem is found.

Another instance of this is provided by the scheduling problems of section
4.3.2 if minimum weighted edge-coloring is replaced by minimum weighted
vertex-coloring (in which case, the génération subproblem involves stable sets
instead of matchings). Though such examples correspond to situations where
column génération may be computationally infeasible in bad cases, it seems
that the models and algorithms presented hère should not be hastily ruled
out, since practically efficient algorithms are known anyway for some NP-
hard problems (e. g. knapsack problems, travelling salesman, etc.).
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