RAIRO. RECHERCHE OPÉRATIONNELLE

Frank Werner

A locally optimal insertion heuristic for a onemachine scheduling problem

RAIRO. Recherche opérationnelle, tome 24, no 3 (1990), p. 255-262
http://www.numdam.org/item?id=RO_1990__24_3_255_0
© AFCET, 1990, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Recherche opérationnelle » implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

A LOCALLY OPTIMAL INSERTION HEURISTIC FOR A ONE-MACHINE SCHEDULING PROBLEM (*)

by Frank Werner (${ }^{1}$)

Abstract

In this paper we consider a one-machine scheduling problem with release dates and the minimization of the weighted number of late jobs. This problem is NP-hard. We develop a onepass algorithm (insertion heuristic) which yields a locally optimal solution in a special left shift neighbourhood graph. Finally we investigate in which of the known polynomially solvable special cases our heuristic yields an optimal solution.

Keywords : Combinatorial optimization; Scheduling ; One-machine Problems; Heuristics.
Résumé. - Nous considérons un problème d'ordonnancement pour une machine avec dates de mise à disposition et minimisation du nombre pondéré des travaux en retard. Ce problème est NPdur. Nous développons un algorithme à une passe (insertion heuristique) qui donne une solution localement optimale dans un graphe spécial de voisinage par translation à gauche. Finalement, nous examinons quels sont, parmi les cas spéciaux connus comme polynomialement résolubles, ceux pour lesquels notre heuristique donne une solution optimale.

1. INTRODUCTION

In this paper we consider a special one-machine scheduling problem: n jobs $J_{i}(i=1, \ldots, n)$ have to be processed on a machine. A release date r_{i}, a processing time t_{i}, a due date d_{i} and a weight w_{i} are connected with job J_{i}. Each solution can be described by a permutation of the job indices. If a permutation p is chosen we denote by $S_{i}(p)$ the starting time of J_{i} and by $C_{i}(p)=S_{i}(p)+t_{i}$ the completion time of J_{i}. Now we can introduce a value U_{i} with

$$
U_{i}=\left\{\begin{array}{cc}
1 & \text { if } C_{i}(p)>d_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

[^0]which indicates whether J_{i} is late or not. We look for a permutation which minimizes the objective $\sum_{i=1}^{n} w_{i} \mathrm{U}_{i}$. This problem is denoted as $n / 1 / r_{i} \geqq 0 / \Sigma w_{i} U_{i}$.

The mentioned problem is NP-hard. Therefore, enumeration methods have been developed for this problem. In the special case of $r_{i}=0$ for all jobs, Potts and van Wassenhove [8] developed a branch and bound algorithm. Further exact algorithms are summarized for this case in [2]. If we have release dates $r_{i} \geqq 0$ and $w_{i}=1$ for all jobs, the problem is already NP-hard. A dynamic programming algorithm is given by Vlach [11].

However, the development of heuristics for NP-hard problems is also going on. As regards permutation problems, insertion techniques are often applied. For instance, insertion methods for the traveling salesman problem can be found in [1] or [9], a variant for the permutation flow shop problem is contained in [7]. In Section 2 we give such an insertion algorithm for the mentioned scheduling problem and we show that the obtained solution is locally optimal in a special neighbourhood graph. This is remarkable because the complexity of finding local optima remains an open problem in general (cf. [5]). Further investigations about local optimality of construction methods can be found in [13]. As regards the worst case behaviour, we present an example that our heuristic solution can be arbitrarily bad. In Section 3 polynomially solvable cases are summarized and we investigate in which cases the stated heuristic yields an optimal solution.

2. THE HEURISTIC

Insertion methods start with a single job and complete step by step a subsequence by inserting a further job in the existing sequence. In this connection two questions are of interest:
(1) Which job will be inserted next into the subsequence?
(2) On which position will the chosen job be inserted?

In our algorithm we insert the jobs according to non-increasing weights. The position is determined in such a way that the maximum lateness $L_{\text {max }}=\max \left\{L_{i}\right\}=\max \left\{C_{i}-d_{i}\right\}$ of all inserted jobs is minimized. Then our
insertion algorithm is as follows:

Algorithm I:

S1: Determine $i \in H:=\{1, \ldots, n\}$ with maximal weight w_{i} (if there exist several jobs select that i with minimal d_{i}, if still more than one job exists choose i with minimal t_{i}) $h:=1 ; K:=\varnothing ; Z:=\varnothing ; H:=H \backslash\{i\}$;

If $r_{i}+t_{i}>d_{i} \Rightarrow Z:=Z \cup\{i\}, p:=\varnothing$ and go to $\mathrm{S} 2 ;$
$h:=h+1 ; K:=K \cup\{i\} ; p:=(i)$.
S2: Determine $i \in H$ with maximal w_{i} (if several i exist perform as in S 1).
Determine the minimal position g of an element in p such that the completion time of the corresponding job is greater than $r_{i}(g:=h$ if such an element does not exist).

Determine $L_{\text {max }}\left(p^{j}\right)$ for $j=g, \ldots, h$ where p^{j} is obtained by inserting i on position j in p.

Determine $u \in\{g, \ldots, h\}$ with minimal $L_{\text {max }}\left(p^{u}\right)$ (if u is not uniquely determined choose the largest u).

If $L_{\text {max }}\left(p^{u}\right)>0 \Rightarrow Z:=Z \cup\{i\}$ and go to S 3 ;
$h:=h+1 ; K:=K \cup\{i\} ; p:=p^{u}$;
$\mathrm{S} 3: H:=H \backslash\{i\}$; if $H \neq \varnothing \Rightarrow$ go to S 2 ;
Let p^{Z} be an arbitrary permutation of the elements of $Z ; p^{I}:=\left(p, p^{Z}\right)$ is the heuristic solution with $F\left(p^{I}\right)=\Sigma\left\{w_{j} \mid j \in Z\right\}$.
K and Z represent the sets of indices of early and late jobs. We only mention that in the case $g>1$ in S 2 it is not necessary to consider the insertion of i on a smaller position than g since the objective value is not lower than for p^{g}. The complexity of the above algorithm is $O\left(n^{2}\right)$. The following example serves as illustration of algorithm I.

Example 1: Let

i	1	2	3	4	5	6	7
w_{i}	10	8	7	5	3	2	1
r_{i}	15	8	6	18	3	5	10
t_{i}	4	8	7	8	6	5	7
d_{i}	33	35	25	42	18	20	28

The jobs are already numbered such that they are inserted in the above order. We obtain as heuristic solution $p^{I}=(5,6,3,2,1,4,7)$ with $Z=\{7\}$ and $F\left(p^{I}\right)=1$. It is noted that p^{I} is also the optimal solution.

As regards a worst case analysis, the following example shows that the quotient $F\left(p^{I}\right) / F\left(p^{\text {opt }}\right)$ can be arbitrarily large where $p^{\text {opt }}$ denotes an optimal permutation.

Example 2: Let

i	1	2	3	\ldots	$n-1$	n
w_{i}	2	1	1	\ldots	1	1
r_{i}	0	0	0	\ldots	0	0
t_{i}	n	1	1	\ldots	1	1
d_{i}	n	1	2	\ldots	$n-2$	$n-1$

Obviously we have the optimal solution $p^{\text {opt }}=(2,3, \ldots, n-1, n, 1)$ with $F\left(p^{\mathrm{opt}}\right)=2$. Algorithm I yields $p^{I}=(1,2, \ldots, n-1, n)$ with $F\left(p^{I}\right)=n-1$. Hence $F\left(p^{I}\right) / F\left(p^{\mathrm{opt}}\right)=(n-1) / 2$ unbounded increases with the number of jobs.

Now we prove that the heuristic solution is locally optimal in a special neighbourhood graph. We consider the directed graph $G(L S, n)$ of left shift transformations. A neighbour p^{\prime} of $p=\left(p_{1}, \ldots, p_{n}\right)$ (this means we have an arc from p to p^{\prime}) is obtained by shifting an arbitrary element to the left, i.e. this element is reinserted on a smaller position in p. Some properties of this graph are derived in [12] or [13]. Now we can formulate the following theorem.

Theorem 1: The heuristic solution $p^{I}=\left(p_{1}, \ldots, p_{n}\right)$ obtained by algorithm I is locally optimal in $G(L S, n)$.

Proof: Assume p^{I} is not locally optimal, i.e. there exists a neighbour p^{\prime} in $G(L S, n)$ with $F\left(p^{\prime}\right)<F\left(p^{I}\right)$ where the i-th element of p^{I} is shifted to the left. Let K and Z be the sets of job indices of early and late jobs according to p^{I} ($c f$. algorithm I). Moreover let U be the set of all elements which have been considered for insertion before $p_{i}, U^{*}=(U \cap K) \cup\left\{p_{i}\right\}$ as well as \bar{p} the obtained permutation if in p^{\prime} all elements have been deleted which do not belong to U^{*}.

Obviously, $L_{\text {max }}(\bar{p})>0$ holds since \bar{p} was also considered when inserting p_{i} but p_{i} was taken into Z. On the other hand we have $C_{h}\left(p^{\prime}\right) \geqq C_{h}(\bar{p})$ for all $h \in U^{*}$. Hence $\max \left\{L_{h}\left(p^{\prime}\right) \mid h \in U^{*}\right\}>0$ is obtained. Consequently, there exists a $u \in U^{*}$ with $C_{u}\left(p^{\prime}\right)>d_{u}$. Considering $w_{u} \geqq w_{i}$ we obtain $F\left(p^{\prime}\right) \geqq F\left(p^{I}\right)$ which contradicts the assumption.

3. POLYNOMIALLY SOLVABLE CASES AND THE HEURISTIC

In this section we summarize polynomially solvable cases and we investigate in which cases our heuristic yields an optimal solution. In the following it is assumed that there exists a numbering of the jobs that one of the following conditions is satisfied:
(1) $n / 1 / r_{i} \geqq 0 / \Sigma w_{i} U_{i}$
(a) $r_{1} \leqq r_{2} \leqq \ldots \leqq r_{n} ; d_{1} \leqq d_{2} \leqq \ldots \leqq d_{n}$;
$t_{1} \leqq t_{2} \leqq \ldots \leqq t_{n} ; w_{1} \geqq w_{2} \geqq \ldots \geqq w_{n}$;
(b) $r_{1} \leqq r_{2} \leqq \ldots \leqq r_{n} ; d_{1} \leqq d_{2} \leqq \ldots \leqq d_{n} ; w_{1} \geqq w_{2} \geqq \ldots \geqq w_{n}$;
for all $i=1, \ldots, n-1$ holds: $t_{i} \leqq r_{i+1}-r_{i}$;
(c) $d_{1} \leqq d_{2} \leqq \ldots \leqq d_{n} ; w_{1} \leqq w_{2} \leqq \ldots \leqq w_{n} ; r_{i}=(i-1) \cdot t, i=1, \ldots, n, t>0$;
for all $i=1, \ldots, n$ holds: $2 \cdot(n-i) \cdot t \leqq t_{i} \leqq 2 \cdot(n-i) \cdot t+t$;
(2) $n / 1 / r_{i} \geqq 0 / \Sigma U_{i}$
$r_{1} \leqq r_{2} \leqq \ldots \leqq r_{n} ; d_{1} \leqq d_{2} \leqq \ldots \leqq d_{n} ;$
(3) $n / 1 / / \Sigma w_{i} U_{i}$
$t_{1} \leqq t_{2} \leqq \ldots \leqq t_{n} ; w_{1} \geqq w_{2} \geqq \ldots \geqq w_{n} ;$
(4) $n / 1 / / \Sigma U_{i}$.

Case 4 was solved by Moore [6]. Lawler [4] stated an $O(n \log n)$ algorithm for case 3. Kise et al. [3] solved case 2 by an $O\left(n^{2}\right)$ algorithm. The remaining cases were solved by Tanaev et al. [10]. The following theorem by Tanaev et al. allows a unique consideration of all mentioned special cases.

Theorem 2: There exists a numbering of the jobs such that $r_{1} \leqq r_{2} \leqq \ldots \leqq r_{n}$ and $d_{1} \leqq d_{2} \leqq \ldots \leqq d_{n}$. Moreover, let $p=(1,2, \ldots, k)$ with $C_{h}(p) \leqq d_{h}$ for $1 \leqq h \leqq k-1$ and $C_{k}(p)>d_{k}$. If there exists an r with $1 \leqq r \leqq k$ such that

$$
\begin{equation*}
C_{u}(p \backslash r) \leqq C_{v}(p \backslash s) \quad \text { and } \quad w_{r} \leqq w_{s} \tag{1}
\end{equation*}
$$

where $p \backslash r$ denotes that permutation obtained by deleting r in p and u, v are the last elements in $p \backslash r$ and $p \backslash s(1 \leqq s \leqq k)$, then there exists an optimal permutation in which job J_{r} is late.

In all cases a job can be stated which statisfies (1). After selecting this job, we apply the above theorem to the remaining job set (we denote this procedure by algorithm T). Therefore, in cases $1 a$ and $1 b$ we select each time the last job and in case $1 c$ the first job. As regards the cases 3 and 4, the job with the largest processing time is selected according to Theorem 2. In case 2 the selected job is determined by comparison of all possibilities.

We now show that our insertion method yields an optimal solution in the cases $1 a-1 c$ whereas in cases 2-4 an optimum is not necessarily obtained.

Theorem 3: Algorithm I generates an optimal solution in the cases $1 a$ and $1 b$. Proof: In both cases, algorithms T and I insert the jobs in the same order. Firstly, we put the first job in both algorithms either into K or into Z (denotions according to algorithm I). We assume that both algorithms have $i-1$ jobs inserted in the same manner, and $p=\left(p_{1}, \ldots, p_{k}\right)$ is the permutation of the elements of K obtained by both algorithms. We consider the insertion of i according to I. Let p^{j} be the obtained permutation if element i is inserted on position j in p. It is sufficient to prove that in the case $k \geqq 1$

$$
L_{\max }\left(p^{k+1}\right) \leqq L_{\max }\left(p^{j}\right) \text { holds for } j=1, \ldots, k
$$

Case $1 a: p^{j}(1 \leqq j \leqq k)$ and p^{k+1} have the following form:

| p^{j} | A i B $u:=p_{k}$$p^{k+1}$ |

 | |
| :--- | :--- | :--- | :--- | :--- |

where $A=\left\{p_{1}, \ldots, p_{j-1}\right\}, B=\left\{p_{j}, \ldots, p_{k-1}\right\}$ and $D=B \cup\{i, u\}$. If we have no idle time within the processing of the jobs of the index set D according to p^{k+1} we obtain because of $r_{i} \geqq r_{v}$ for $v \in B$

$$
S_{i}\left(p^{j}\right) \geqq \min \left\{S_{v}\left(p^{k+1}\right) \mid v \in B\right\}
$$

and consequently $C_{u}\left(p^{j}\right) \geqq C_{i}\left(p^{k+1}\right)$.
In the other case let g be the element of D on the largest position in p^{k+1} such that we have an idle time before J_{g}. Then $S_{g}\left(p^{k+1}\right)=r_{g} \leqq r_{i}=S_{i}\left(p^{j}\right)$ holds and hence we have $C_{u}\left(p^{j}\right) \geqq C_{i}\left(p^{k+1}\right)$.

Furthermore we obtain

$$
L_{u}\left(p^{j}\right)=C_{u}\left(p^{j}\right)-d_{u} \geqq C_{u}\left(p^{j}\right)-d_{i} \geqq C_{i}\left(p^{k+1}\right)-d_{i}=L_{i}\left(p^{k+1}\right)
$$

Moreover we have $L_{v}\left(p^{j}\right) \geqq L_{v}\left(p^{k+1}\right)$ for all v except i. Hence both algorithms T and I add element i to p if $L_{\text {max }}\left(p^{k+1}\right)<0$ or put it into Z otherwise.

Case $1 b$: In this case $C_{u}\left(p^{j}\right) \geqq C_{i}\left(p^{k+1}\right)$ also holds. Therefore the proof is quite similar.

Theorem 4: In case $1 c$ algorithm I yields an optimal solution.
Proof: Let p^{T} be the optimal solution obtained by algorithm T. We only have to consider the case that in $p^{T} k \geqq 1$ jobs meet their due dates. Then p^{T} has the form $p^{T}=\left(n-k+1, \ldots, n, p^{*}\right)$ where p^{*} is an arbitrary permutation
of the integers $1, \ldots, n-k$. Algorithm I inserts the jobs in the order J_{n}, J_{n-1}, \ldots, J_{1}. Obviously n is taken into K by I. We assume that algorithm I has generated the permutation $p=(i+1, \ldots, n)$ and we prove that in the case $i \geqq n-k+1$ the element i is placed on position 1 by I. Let p^{j} be that permutation where i is inserted on position j in $p(1 \leqq j \leqq n-i+1)$. It is sufficient to show that for $j \geqq 2 L_{\max }\left(p^{j}\right)>L_{\max }\left(p^{1}\right)$ holds. p^{1} and p^{j} have the following form:

where $A=\{i+1, \ldots, i+j-1\}$ and $B=\{i+j, \ldots, n\}$. Because of the conditions of case $1 c$ we have no idle time in p^{1}. From this and $r_{i}<\min \left\{r_{h} \mid h \in A\right\}$ follows $C_{h}\left(p^{1}\right)<C_{i}\left(p^{j}\right)$ for all $h \in A$. Considering $d_{i} \leqq d_{h}$ for $h \in A$ we obtain $L_{i}\left(p^{j}\right)=C_{i}\left(p^{j}\right)-d_{i}>C_{h}\left(p^{1}\right)-d_{i} \geqq C_{h}\left(p^{1}\right)-d_{h}=L_{h}\left(p^{1}\right)$. Furthermore, we have $L_{i}\left(p^{j}\right)>L_{i}\left(p^{1}\right)$ and in the case $B \neq \varnothing L_{h}\left(p^{j}\right)>L_{h}\left(p^{1}\right)$ for all $h \in B$. Hence $L_{\max }\left(p^{j}\right)>L_{\max }\left(p^{1}\right)$ holds. Therefore we insert i on position 1 in p since J_{i} is not late in p^{T} and this means $L_{\text {max }}\left(p^{1}\right) \leqq 0$.

The first $n-k$ jobs are taken into Z by I because p^{T} is an optimal solution.

Example 3: Let

i	1	2	3
w_{i}	1	1	1
r_{i}	0	0	0.
t_{i}	25	10	15
d_{i}	30	32	35

Algorithm I yields $p=(1,2,3)$ with $F(p)=2$ and $Z=\{2,3\}$. On the other hand algorithm T generates the optimal solution $p^{\mathrm{opt}}=(2,3,1)$ with $F\left(p^{\mathrm{opt}}\right)=1$ and $Z=\{1\}$. Hence by algorithm I an optimal solution is not necessarily obtained in the cases 2-4.

4. CONCLUDING REMARKS

We stated an insertion heuristic for a special one-machine scheduling problem. For instance, such fast heuristics can be applied in enumeration methods for determining upper bounds. It was proved that the obtained solution is locally optimal in a left shift neighbourhood graph. The performed
structural analysis is possibly an alternative to the often pessimistic results of the worst case analysis for one-machine problems. Moreover, from such structural analysis we obtain recommendations which kind of iteration method can be added to a specific one-pass algorithm. It also could be a topic of further investigations whether local optimality can be used for deriving other enumeration strategies.

REFERENCES

1. B. Golden, L. Bodin, T. Doyle and W. Jr. Stewart, Approximate Traveling Salesman Algorithms, Oper. Res., 1980, 28, pp. 694-711.
2. S. K. Gupta and J. Kyparisis, Single Machine Scheduling Research, omega, 1987, 15, pp. 207-227.
3. H. Kise, T. Ibaraki, and H. Mine, A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times, Oper. Res., 1978, 26, pp. 121-126.
4. E. L. Lawler, Sequencing to Minimize the Weighted Number of Tardy Jobs, R.A.I.R.O. Rech. Oper. 1976, 10, pp. 27-33.
5. D. C. Llewellyn, C. Tovey and M. Trick, Local Optimization on Graphs, Discrete Appl. Math., 1989, 23, pp. 157-178.
6. J. M. Moore, An n Job, one Machine Sequencing Algorithm for Minimizing the Number of Late Jobs, Manage. Sci., 1968, 15, pp. 102-109.
7. M. Nawaz, E. E. Enscore and I. Ham, A Heuristic Algorithm for the m-Machine, n-Machine Flow-Shop Sequencing Problem, OMEGA, 1983, 11, pp. 91-95.
8. C. N. Potts and L. N. Wassenhove, Algorithms for Scheduling a Single Machine to Minimize the Weighted Number of Late Jobs, Manage. Sci., 1988, 34, pp. 843-858.
9. D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis, An Analysis of Several Heuristics for the Traveling Salesman Problem, SIAM J. Comput., 1977, 6, pp. 563-581.
10. V. S. Tanaev, V. S. Gordon and J. M. Shafranski, Theory of Scheduling: OneProcessing Systems (Russian), Moscow, 1984.
11. M. Vlach, One-Processor Scheduling with Non-Uniform Ready Times, M.O.S. Ser. Optimization, 1979, 10, pp. 93-96.
12. F. Werner, Zu einigen Nachbarschaftsgraphen für die Entwicklung geeigneter Iterationsverfahren zur näherungsweisen Lösung eines speziellen Permutationsproblems, Wiss. Zeitschrift TU Magdeburg, 1987, H. 4, 31, pp. 48-54.
13. F. Werner, Zur Struktur und näherungsweisen Lösung ausgewählter kombinatorischer Optimierungsprobleme, Dissertation B, TU Magdeburg, 1989.

[^0]: ${ }^{*}$) Received in February 1990.
 (${ }^{1}$) Technische Universität «Otto von Guericke » Magdeburg, Sektion Mathematik WOF, Postschließfach 124, Magdeburg, 3010 R.D.A.

 Recherche opérationnelle/Operations Research, 0399-0559/90/03 255 08/\$2.80
 © AFCET-Gauthier-Villars

