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OPTIMAL GRIDPOSITIOIMING OR SINGLE FACILITY LOCATION
ON THETORUS (*)

by F. PLASTRIA (*)

Abstract. — A finite set of points in the plane must be approximated by gridpoints of an
orthogonal grid offixed orientation and mesh. The problem is tofïnd the position of the grid which
minimises the total approximation error. We show how this problem may be viewed as a single
facility location problem on the two-dimensional torus, which can be solved by an adapted big
square small square method for gênerai errormeasures. Two particular errormeasures — the sum of
rectilinear errorlengths and the sum of squared euclidean errorlengths — give rise to very efficient
solution methods. In these cases the problem can be decomposed into two independent location
problems on a circular network, solvable in linear time after sorting.

Keywords : Approximation; continuous location problem; circular network.

Résumé. - Un ensemble fini de points du plan doit être approximé par des points d'un réseau
orthogonal d'orientation et maille fixés. Le problème consiste en la recherche de la position du
réseau qui minimise l'erreur globale de l'approximation. Nous montrons comment ce problème se
traduit en un problème de localisation d'une facilité sur le tore, résoluble pour des mesures d'erreur
générales par un algorithme «big square small square» adapté. Pour deux mesures d'erreur
particulières — la somme des distances rectilinéaires et la somme des carrés des distances euclidien-
nes — ce problème peut être résolu très efficacement. Dans ces deux cas le problème peut se
décomposer en deux problèmes indépendants de localisation sur un réseau circulaire, résolubles en
temps linéaire après un tri.

Mots clés : Approximation; problème de localisation continue; réseau circulaire.

1. INTRODUCTION

Consider a finite set A of points on the plane. An orthogonal grid G with
sides parallel to the axes and fïxed mesh must be used to approximate the
given set. Each point, a e A will be approximated by the nearest grid point
a (G) of G, yielding the approximation A (G) of A by the grid G. Since the
origin of the grid G is not fïxed, the different positions of the grid yield
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20 F. PLASTRIA

various approximations of A. It is required to position the grid so as to
obtain the best approximation of A.

The following three examples show that this problem arises in several
practical applications.

When a digitalised image is to be displayed on a low resolution screen or
is to be printed by a dot-matrix printer one wants to obtain the most
resembling représentation, although the pixel density will be much lower than
that of the original image. This calls for a good choice of the origin of the
coarser grid.

Compression of the numerical représentation of spatial data may be accom-
plished by reducing the coordinates to integer values representable by a small
but flxed number of bits, with minimal loss of information concerning relative
position of the data. When the absolute position must be stored, it will
suffice to add the constant translation and scaling factors to the dataset,
enabling the easy reconstruction of the (approximated) original data.

Many automated machines can move in only two directions to position
themselves, the movement being discrete with fixed step. The starting point
(usually a rest position) must be chosen so as to be able to reach given
service points as accurately as possible.

Several measures for the goodness of fit of the approximation A (G) to the
dataset A exist. We propose hère a large family of such errormeasures: any
continuous nondecreasing function of the /^-distances between a and a (G) (a
ranging over A) is allo wed. In section 3 it will be indicated how an adapted
version of the Big Square Small Square (BSSS) method of Hansen et ai
(1985) may be used to solve the gridpositioning problem for such gênerai
errormeasures. This method is however not very efficient. The two first
applications suggested above call for very efficient methods since the datasets
concerned are usually quite large and/or response is often needed quickly.
For two particular errormeasures, the sum of rectilinear distances and the
sum of squared euclidean distances, it is shown in sections 4 and 5 that the
gridpositioning problem can be efficiently solved in O (| A \ log | A |) time. These
two efficiently solvable cases are very important ones. The first corresponds to
the /j -estimation technique used in statistics to obtain more robust estimation
in which the influence of outliers and/or observation errors is less than in
the classical "sum of squares" estimation methods, which correspond to the
second case we consider. This latter errormeasure however may often be
preferred since it penalizes more the greater errors. This will often lead to a
subjectively better global approximation.
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SINGLE FÂCILITY LOCATION ON THE TORUS 21

2. GRIDPOSITIONING AS FACILITY LOCATION ON THE TORUS

A grid G in the plane M2 with origin OG = {gug2)eU2 and rnesh
(ml9m2)eUz is the set of gridpoints

N

{ G (ilt i2) = (gl + i, mug2 + i2 m2) 10\, i2) eZ2}.

Distances in IR2 w>ill be measured by some /p-norm with fixed p

M-\ Lbx'-y'1')'" for ia

\M<ix{\x1-y1\,\x2-y2\) for p=co,

where x = (x1, x2) and y = (yx, y2).

Clearly the gridpoint a (G) of grid G closest to a given point aeR2 is then
given by a (G) — G (i1, i2) with ij = round ((a;- — g^/mj) (j=li2), where round (r)
dénotes the integer closest to rsU [in the doubtful case where r=i +0.5 (i
integer) we take round (r) = /+ 1]. The error made by approximating a point
a by gridpoint a (G) is given by their distance lp(a,a(G)).

If A cz M2 is the set of fixed points to be approximated by gridpoints of a
grid G of fixed mesh, we will measure the global error made by way of a
function of the individual errors F: [R+ -> R, supposed to be nondecreasing
and continuous. Good candidates for F would be the sum, sum of squares
of Max operators.

The gridpositioning problem may then be formulated as

(GP) Min {F((lp (a, a (G)\ 6 A) | OG e M2 }

When a grid G' has origin at a gridpoint of grid G, both consist of the same
gridpoints, since we consider the mesh fixed, Therefore both are equivalent for
the gridpositioning problem and should be identified. Thus we may restrict
our attention to grids with origin OG="(gug2) with Q^gj^mj (j=l,2) and
the space of these grids is a torus 7*= S1 x S1, where S1 dénotes the topological
circle. By rescaling both axes of M2 so that the mesh is 1 x 13 we may view
this gridspace as the topological quotient group T=U2/Z2 (the torus) with
addition modulo 1 as operator. The quotient map M2 -> U2/Z2 is the "mod
1" operator, mapping each point of U2 to the point obtained by replacing
each coordinate by its nonnegative fractional part (also denoted by mod 1);
e.g. (1.7,-3.4) mod 1= (1.7 mod 1,-3.4 mod 1) = (0.7,0.6).
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22 F. PLASTRIA

In this way each grid G is defined by its origin (xux2)eT, where

Xj = (gjlntj) mod 1 (ƒ = 1,2), hence 0 ̂  x} < 1.

By the same rescaling and quotient map, each point a e U2 is mapped to
the point aT s T, where aj = (aj/mj) mod 1 (ƒ= 1,2).

We dénote by d the "shortest path" distance on the circle S1 (viewed as
the interval [0,1] with endpoints identified), i. e. for s, te S1 (O^s,t<\)

-\t-sl if \t-i

or

7 p

2

The '7p—distance with mesh (rnum2)" on the torus T defined by

Y(mjd(xpyj)y\ for (l^p<cx^)

Max Wj d(xp yj) for /? = oo
j

is easily seen to be a metric on T, which is invariant for translation modulo
1, Le. /J(x,y) = lp (x + xz,3; + xz) for any zeT, where + 1 dénotes the coordi-
natewise addition modulo 1 and also the addition modulo 1 onS1 :

Since for any real value r we have | r-round (r) \ — d (0,r mod 1) we find
that, for any point aeU2 and grid G defined by origin x = (x1,x2)eT,

It follows that the gridpositioning problem (GP) may be reformulated as
the following single facility location problem on the torus T, with destination
set AT = {aT\asA}:

(GPT) Min {F((Ç (x, aT))ar eAr\xeT}.

By continuity of F and the distance measure, and by the compactness of
T, an optimal solution is guaranteed to exist. The sequel consists of the
description of solution methods for this location problem on the torus. We
will further drop the superscript T and consider A as a finite set of points
on the torus.
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SINGLE FACILITY LOCATION ON THE TORUS 23

In some particular cases the problem on the torus may be reduced to a
problem on the plane; this is possible whenever the set A is suffïciently
concentrated, as will be presently shown.

Let us consider a finite set B on the circle S1 and suppose that its éléments
b{(i= 1, . . .,n) are sorted: 0<zb1^b2é . . . ^b„<l. For circularity we dénote
bn also b0. For s, te S1 the interval [s,ï]l on S1 and its length I(s, i) are the
set of points of S1 on the positively ordered path from s to t and the length
of it, L e.

ïfs^t then [s,t]1 = [s,t] and l(s9t) = t~s;

Iïs>t then [s,t]x = [s,\[ U [0,t] and I(s9t) = t-s+l.
We also have d(s, t) = Min{!(s, t), /(/,s)}g 1/2.

LEMMA 1: 7/ybr .yome / /(fe i Jè i_1)<l/2 f//ew no point of[bi^1,bl]l is efficient
with respect to the distances d(.,b^) (k=\, . . . ,«), i.e.for every ss^^^b^^
there exists a te S1 such that d(s,bk)>d(t,bk)for all k= 1, . . . ,« .

Proof: Let m = bi + 1(l/2)l(bi,bi-1) be the "midpoint" of [b^b^^ and
m' = m + x 1/2 be its antipode. Dénote also by h the midpoint of [m',m]x, then
its antipode h' = h+11/2 is the midpoint of [m^m']^ Since /(èi3Z>1-_1)< 1/2 we
have that 5 c [A, A'JjXf A, /1'}.

For any jetA'^AJiXjAjA'} we defne its "mirrorpoint" by t = h+ 1l{s,h)
(secfig. 1). We claim that d(s,bk)>d(t9bk) for all £ = ! , . . . , « .

-2

Figure 1. - Illustration of notations in lemma 1.
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24 F. PLASTRIA

Clearly te [h, h']u and since B a [h,h\ we have either bke[bu t]u and then
d(t,bk)="l(bk,t), or ^ e f ^ è ^ J i , and then <i(/,èfc) = /(*AX since the other
path between bk and t includes both h and h1 and thus has length greater
than 1/2. By symmetry it is sufficient to consider only the first case, where
we have

= l(h,t) + I (h, bk) by définition of t

= 21 (h, bk) + / (bk, t) since bk e [h, t] 1

>d(t, bk) since bk ̂  h

l(bk, s) = /(ôk, 0 + l(t, s) since r e [bk, s]x

>d(t,bk)

and

hence d(s, bk) > d(t, bk).

It remains to show the same for the points se[hih']1\[bi,bi_1]1. However
the interval [h,h']1 being half the circle S1 is isometric to an interval on the
real line, on which the convex huil property holds [see Wendell and Hurter
(1973)]. •

COROLLARY: If A ei T is contained within a "quarter" of T, i. e. if there
exist hlt) h2eSi such that ajelhph'^ (j—1,2) for each aeA, then the single
facility location problem on the torus is equivalent to a planar one.

Proof: By the preceeding lemma applied to each coordinate and since F is
nondecreasing we may restrict search of an optimal solution to the "square'
[*i> A'ili x [*2> fQi which is isometric to the planar square [0,1/2] x [0,1/2]. •

Hence in this special case one may use any algorithm for planar single
facility location. However in most cases A is not sufficiently concentrated
and one needs to take the special topology of the torus into account, which
is the subject of the following sections.

3. THE GENERAL CASE

For genera! /p-distances and arbitrary nondecreasing and continuous
functions F we need a global optimisation method for solving problem (GPT).
An excellent candidate is the Big Square Small Square method of Hansen et
al. (1985). This branch and bound method relies on subdivision of squares
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SINGLE FACILITY LOCATION ON THE TORUS 25

into four congruent subsquares for branching, and the calculation of a lower
bound for the objective values within each square. As shown below both
subdivision and lower bounds carry over in a natural way to the torus,
leading to an algorithm for the gridpositioning problem with a large class of
errormeasures.

Initially the torus T= Sx x S1 will be covered by four "squares" by choosing
any (huh2)eT and considering the four set-theoretic products
[mum

t
1]x x [m2im'7\l, where mx (resp. m2) is either hx or h\ (resp. h2 or h2);

e. g. choosing h1=h2 = l/2 leads to cutting the half open unit square into
four squares.

Any generated "square" [sl9 tx]x x [s2, t2]x will be eut into four sub "squa-
res" in the standard way: let Uj = Sj+ ! (1/2) l(sj9 tj) be the midpoint of [sp r j j
(ƒ= 1,2), then the subsquares are found as product of either [sj9 Uj\x or [ujyt^[x

0=1.2).
In order to calculate a lower bound on the objective values within the

"square" S=[sut1]1 x [s2,t2]x it is sufficient to calculate for each aeA the
distance to S and apply F to these. The distance to S of some aeA is easily
calculated as foliows. Dénote again by Uj the midpoint of [spt^. Extending
the sides of S into full circles, and cutting these at u'j(J= 1,2), T is divided
into nine régions. For points in each of these régions the closest point of 5,

U2

k V
s

>

T

\

S1

Figure 2. - Projection of the torus T on the "square" S.

and thus the distance up to S is easily found as shown on figure 2, where
opposite sides should be identified.
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2 6 F. PLASTRIA

The corresponding calculation of lp {a, S) may be carried out as follows:

Fory=l,2:
If üje [u'p Sj\x then wj = sy

If üj e [sp tjit then ws=ay

If cij e [tj, Uj^ then wj — tj.

Then Ip (a, S) = lp (a, w) where w = (w1, w2).

4. THE RECTILINEAR MINISUM PROBLEM

When the errormeasure is chosen to be the sum of rectilinear (/2) distances,
the gridpositioning problem is much easier. The objective is now

aeA

= m1 X! d(xua1) + m2 ^ d(x2,a2).
aeA aeA

Hence (GPT) décomposes into two independent location problems on the
circle S1 of type

(LPC) Min ƒ(*)= X wbd{z,b),
zeS1 beB

where B — {aj : a e A } and wb = | {̂  : a5 = b } | is the "covering number" of b e 5
(ƒ= 1 or 2 respectively). The mesh rrij is ignored, being a constant factor not
affecting the minimisation.

(LPC) is a minisum single facility location problem on the circular network
S1 with node set B, By Hakimi's node optimality theorem (1964) there exists
an optimal solution at some node beB, This trivially leads to an algorithm
of O (| B |2) by evaluating each node in turn, each évaluation requiring O (| B |)
time. Goldman (1971) showed that on circular networks the problem is
solvable in linear time. Applying this algorithm on both coordinates of the
original problem leads to a linear time solution of the rectilinear minisum
gridpositioning problem, after sorting along both coordinates in order to
obtain an adequate description of the circular networks on which (LPC) is
to be solved. Taking this sorting into account we have an O (| A \ log | A |)
method, since projection of the original planar point set onto the torus
requires O (| A |) time.

Recherche opérationnelle/Opérations Research



SINGLE FACILITY LOCATION ON THE TORUS 27

5. THE SUM OF SQUARED EUCLIDEAN DISTANCES PROBLEM

Consider now as errormeasure the sum of squares of the euclidean (/2)
distances. The objective is then

F((I2(x,a))aeA)

a e A

£ d2(x2,a2)
2

a e A

The problem décomposes again into two independent location problems on
the circle S1 of type

(SSE) M i n s ( z ) = £ wbd(z,b)\
Z G S 2 beB

where B and wb are defined as in section 4.

We proceed by deriving a linear time algorithm for solving (SSE) when B
is sorted increasingly as 0^bx^b2< . . . <bn<\. We suppose that lemma 1
does not apply, since otherwise the well-known center of gravity resuit on
the line applies.

In order to avoid calculations modulo 1, we work on [0,2[ considered as
two consécutive copies of S1, in which JC and x+ 1 should be seen as identified.
For ze[l/2,3/2[ (which also is a copy of S1, translatée modulo 1 by 1/2) we
then have for any b e S1 :

d(z,b)2 = ^
\{b+\-z)2 whenz^è+1/2

We define now the intervals Jk for k = 0, . . ., n — 1 as Jk = [èk + 1/2, bk+1 + 1/2],
N N

where £n+ 1 = fe1H-1 and bo = bn—l, and the functions fk : R -> R by

Then/fc and ƒ coïncide on Jk, showing that ƒ is a piecewise quadratic function
with pièces Jk.
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28 F. PLASTRJA

The absolute minimum of fk lies at the "mean" value

k n

where w = £ wm, and one easily dérives
m = l

For the constrained minimum of fk on Jk three cases arise:

case Ik\ ck<bk+ 1/2; fk reaches its minimum on Jk at bk+ 1/2.

case IL: bk+\/2<ck<bk+i + 1/2; fk reaches its minimum on Jk at ck.

case 7//fe: bk+1 + l/2<ck; fk reaches its minimum on Jk at bk+1 + lf2.

Since ƒ and /k coincide on /k, the same rules apply to the constrained
minimum o f / o n Jk. Therefore the minimum o f / o n [1/2,3/2[, is reached
either at some antipode bk+ 1/2, or at some mean value ckeJk.

LEMMA 2: No antipode bk+ 1/2 is a global minimum off

Proof: For bk+l/2 to be a global minimum of/ it should be the minimum
°f fk-i o n *4-i anc* of fk on Jk. Thus cases ƒƒƒ* _x and Ik should arise
simultaneously, i.e. bk+\j2<ck^1 and ck<bk+ 1/2, hence ck<ck_1, which is
impossible, since from (1) one easily dérives ck = ck_x -\-wJw. •

It follows that we may restrict our search for the minimum of ƒ to the
mean values ck, the only candidates among which being those satisfying
ckeJk. In passing this also proves that there exists at least one k for which
ckeJk\

This search is easily accomplished by an itération on fc = 0, . . . , « — 1, using

the following recursion formulae:

Â (ck) =fk- Ack-i)+wk

This last formula is derived as follows:

= A - i W - wk(bk-x)2+Wk(bk+i -x?
x)+l)
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By (2) and (3):

=/*-i(c*-i)+—•
W

The claimed formula is then obtained from (4) for x = ck. •
Hence we obtain the following linear time algorithm:

Initialisation step: k — 0

n n

Calculâtes-(l/w) £ >^mèmand/= £ wm(bm-c)2.
m=1 m = 1

If è„ - 1/2 ̂  c ̂  *i + 1/2 then set Min =ƒ and Opt = c else set Min = + oo.

I t é r a t i o n s t e p s f o r k = 1 , . . . , « — 1

Set c = c + (wk/w) and ƒ=ƒ + wfc (1 + (wk/w) + 2 (bk - c)).
If Z?fc+l/2^c^èfc+1 + l/2 then if/<Min set Min = ƒ and Opt = c.
After these n steps the optimal solution is given by Opt mod 1.
Except for the flrst step, which is O (/?), all itération steps are of constant

time, hence the global complexity is 0{n), once B is sorted, leading to an
overall O(n\ogn) complexity. Since the gridpositioning problem with sum of
squares of euclidean distances calls for solving (SSE) twice, we have shown
it to be solvable in O (| A | log | A |) time.
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