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DISCRETE FACILITY LOCATION WITH WOIMLINEAR FACILITY
COSTS (*)

by Manfred KÖRKEL (X)

Abstract. — We treat a discrete uncapacitated facility location problem where the installation
cost per facility is a gênerai nonlinear function of the number of established facilities. Assuming a
convexity proper ty, Mirchandani and Jagannathan developed a heur is tic solution procedure for this
problem. Hère, we show how to modify their algorithm in order to get and prove exact solutions
and, at the same time, to improve the computational efficiency.

Keywords : Location; integer programming; Lagrange relaxation.

Résumé. — On traite d'un problème discret lié au choix d'emplacements d'installations sans
restriction de capacité où le coût d'établissement par installation est une fonction non linéaire
générale du nombre total des installations existantes. En admettant une propriété de convexité,
Mirchandani et Jagannathan ont trouvé une solution heuristique à ce problème. Ici, il est montré
comment leur algorithme peut être modifié pour obtenir et prouver des solutions exactes et comment
l'efficacité de calcul peut être améliorée.

1. INTRODUCTION

Solving the discrete "uncapacitated facility" (or "simple plant") location
problem (UFLP), it is our intention to reach the minimum total cost by
balancing two different cost types. The first of these types is caused by the
individual supply of demands, while the second of them concerns the fîxed
charges of establishing facilities. In the usual case (see [13] for a survey), each
fîxed cost part dépends only on the location of the corresponding facility.
Mirchandani and Jagannathan [16] introduced to the standard problem a
"fïxed" cost component which is a convex function of the.number of estab-
lished facilities. To give an example, the authors referred to the situation
where each "facility" coincides with a copy of a data file in a computer
network. There, the cost of updating the data in the copies generally increases
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32 M. KÖRKEL

nonlinearly and rapidly as the number of copies grows, We hère hint at an
application with respect to the field of télécommunications. In a so-called
Intelligent Network, each user must have access to a Service Control Point
which contains customer data. The necessary administration of the customer
data within the Service Control Points then créâtes the above-mentioned
nonlinear cost component.

Mirchandani and Jagannathan attempted to tackle the case with convex
and non-decreasing nonlinear facility costs by developing a bisection heuristic
called DATALOC which décomposes the problem into a series of UFLPs.
We agrée to their main idea that it is useful to take advantage of the progress
which, as far as the solution of the UFLP is concerned, has led to a significant
increase of efficiency. A view on the literature [2, 7, 12] shows that the
computer times necessary for determining exact UFLP solutions have been
reduced by at least two orders of magnitude when large data sets with several
hundred potential locations are treated. Indeed, we will show that, without
changing this subproblem structure, we may construct an improved and exact
algorithm which solves a gênerai version of the nonlinear problem.

2. PROBLEM FORMULATION

We introducé the indices jsJ and iel for the demands and the potential
facility sites, respectively. In the following, we will always omit the index sets
to get a shorther notation. The décision variable yt indicates whether a facility
at site i exists (yt — 1) or not (^ = 0) while xLj désignâtes the point /s demand
being satisfied by facility i (xij=\) or not (^^ = 0). Furthermore, we define
the feasible régions

,e{0, I}}, (1)

{ p } (2)
î

where X and Y are equivalent to the matrix (xi3) and the vector (yt)9

respectively- c^eU dénotes a transportation cost coefficient, ft e M corresponds

to fixed charges for establishing a facility at site i and pe{l, . . . , w = | / | }

désignâtes the number of installed facilities. With these définitions, we formu-

late the "generalized" [5, p. 111] or "fixed cost" ^-médian problem

©(ƒ>)= min X Z cijxij + Z f>:J>Î- (3)
X, Y,sQ(p) i j i
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DISCRETE FACILITY LOCATION WITH NONLINEAR FACILITY COSTS 33

Finally, a nonlinear cost component for opening a facility is introduced by a
given function g depending on1 the number p of facilities opened. Setting
<3(p)=pg(p) enables us to state the location problem with nonlinear facility
costs (NFCLP) in a concise way:

zopt = min {z(/?) = co(/0 + a (/?)}. (4)

3. LOWER AND UPPER BOUNDS TO THE OBJECTIVE

What we need for determining the true optimum of NFCLP are converging
lower and upper bounds to the objective. Since o(p) is given, we only have
to develop bounds for a> (p).

To construct the lower bound to co(/?), we dualize the restriction on the
number of facilities ^yi—p and introducé the corresponding Lagrange multi-

plier y e U. With

X|/(Y)= min X I
X, YeR i j

we then get

(6)

To calculate \|/(y)s we have to solve an UFLP with the added "artificial"
fixed cost component y. The best lower bound to (4) which may be generated
from \]i (y) is then given by

max min \|/ (y) -p y + a (p) S zopV (7)
y p

Let # (y) dénote the number of opened facilities which corresponds to one
member of the possibly non-unique set of optimal solutions of \|/(y). From

which immediately yields

zopt S min \j/ (y) - q (y) y + a (q (y)) (9)
Y
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34 M. KÖRKEL

as the —from the viewpoint of our UFLP approach - best available upper
bound to the objective (4).

4. SOLUTION APPROACH

In the following, it is our task to create a procedure that repeatedly solves
v|/(y) with the aim of optimizing (7) and (9) sirnultaneously. The technique
of determining a solution with a prespecified number of established facilities
(i. e. solving a "/?-median" problem) by varying the fixed costs of UFLPs
has been proposed several times in literature [3, 6, 11, 15, 17]. To obtain a
certain p value, two papers [11, 17] independently suggested a scheme for
updating y. As it will be shown below, this scheme, which the publications
[4, 10] already had treated in a more gênerai context, also proves to be useful
for NFCLP.

For solving NFCLP, we subsequently divide the closed interval [1, m] into
subintervals and treat the latter separately. As subinterval bounds, we evaluate
integer numbers a and b^.a + 2. Assume that (ù(a) and (a(b) have been
generated by (8) with y = a and y = P < a , respectively. Then (6) provides a
convex underestimation of œ which consists of two line segments with slopes
— a and — p (see fig. 1).

The aim is now to improve the lower bounding function within the
subinterval [a, b] as well as to create a new solution (o(p) with a<p<b. With
respect to this intention, the previously mentioned update scheme for y
proposes to solve \|/ (y) with

Y = (Ö (û)-©(*))/(*-a) (10)

Two situations may occur:

• If function values of œ lie within the région limited by the lower bounding
line segments and the line Connecting co (d) and œ (b) but excluding the latter
(hatched région of figure 1), a new ü)(#(y)), a<q(y)<b, will be determined,
By correspondingly applying (10) to the two newly generated subintervals,
further function values (ö may principally be detected if q(y)-a^2 and/or
b — q(y)^2. We may characterize this case also as having maximized the
lower bound at p = q (y).

• If this région does not contain values of co, we will fmd œ(#(y)),
a?^q(y)èb, cm t^e line Connecting œ(a) and G)(6). Such a resuit proves that
no further co(/>), a<p<b, can be determined by solving an UFLP. (Note that
we always assume a deterministic behaviour of the used UFLP algorithm.) On
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DISCRETE FACILITY LOCATION WITH NONLINEAR FACILITY COSTS 3 5

— lower bound for U)(p)

• 0)(p)

U){bJ-

slope-

stope-Y

Figure 1.

the other hand, this situation implies that the maximum possible lower bound
for the whole interval [a, b] has been calculated (the dotted line of figure 1).

Thus, we may state that, for determining the maximum piece-wise linear
underestimation of œ, at most (m — 2) UFLPs have to be solved if we start
with the (trivial) solutions (o(l) and (o(m) and apply the above y update
scheme subsequently. We define for subséquent use:

A scheme for calculating yx needed to generate a lower bounding function
for co in the interal [a, b] by solving \|/(Yi) n a s t n e maximum lower bound
property if there exists a/?, a<p<b, with \|/(Yi)~/?YI^maxY\J/(y) — py or if,
for each p, a<p<b, it is \|/r(y\)— py\^œ(p) where a>(j?) is a given upper
limit to (ù(p).

5. BASIC SOLUTION PROCEDURE

Using the considered method for generating the subproblems \|/ (y), we are
now able to construct the algorithm which solves NFCLP. In order to
formulate this procedure, hère called NFCLOC, we define:

l, p,p+, variables for the number of opened facilities;
z(p), lower bound to z (p);

vol. 25, n° 1, 1991



36 M. KÖRKEL

z, upper bound to zopt;
r, s, t, subinterval indices;
as, bs, subinterval bounds;

zs9 min z(p);

S, index set of subintervals to be treated.
We, thus, state:

Procedure NFCLOC
(al) S: = {1}; t: = l; zt:= - ao; at: = l; bt: = m
(a2) for p = 1 to m do : z(p) = — oo
(a3) calculate © (1); z (1 ) : = (Û(1) + a (1)
(a4) calculate © (m); z (ni) : — m (m) + a (m)
(a5) z: = min(z(l), z{m))
(bl) while S/~0 dö:
(b2) get s w_ithz5 { | } {
(b3) if z5^z then: leave "while. . .do" loop
(b4) Y - (co(ûs ) -û>(ym-tf5 )
(b5) calculate \ | / ( Y ) ; P + : - ^ ( Y ) ; œO + ) : = \|>(y)-/>+ y
(b6) for /> = «s to bs do : z (» : = max (z(/>), \j/ (y) ~ ^ T + cr (p))
(b7) z: = min(z, zQ>+))
(b8) if as<p+<t?s then:
(b9) / : 25
(blO) zï { }
(bil) z(: = min{z(p)|/ï=jp+ to ès}
(bi2) fl*-i:=as;Vi•*=/'+; ^•'==

Jp+; ^.*=*,
(cl) get /> with z(p) = min {z(/) | /= 1 to m}
(c2) while zQ?) < z" do:
(c3) calculate co (p); z(p) : = co 0?) + a (/?); z": = min (z~, z{p))
(c4) get p with z(p) = min { z (/) | /= 1 to m }

In the initialization phase (a), we set up the interval within which a> is defined, compute the
trivial solutions a>(l) and ©(m) and calculate the initial lower and upper bounds. In the main
loop (b), the intervals stored in S are treated subsequently. As interval sélection rule, we suggest
the minimum lower bound strategy (b2) with the intention of accelerating the convergence of
the lower and the upper bound to the objective. For each interval, the procedure computes a
new Lagrangian multiplier y (b4) and solves the corresponding UFLP (b5) using any exact
algorithm, e.g. [7, 12]. Steps (b6)-(b7) update the bounds. If the UFLP algorithm has determined
a solution with a new p value, the generated subintervals are stored for further treatment in
(b8)-(bl2). [Note: If we prove for any y andp with p^g(y) that a>(/>) = \|/(y) — py, it is not
necessary to store the subinterval with the bounds p and g (y) within S. To simplify the procedure,
this collinearity test has been omitted.] NFCLOC terminâtes loop (b) if either S is empty (bl)
or ail lower bounds which correspond to the intervals contained in S exceed or equal the current
upper bound z (b3). The latter step also avoids that subintervals of length 1 are processed
unnecessarily.

It is easy to show that, if © can be embedded within a stricly convex function, phase (b) ends
up with the exact optimum, the function value of which is gjven by z. If, on the other hand,
this property does not hold, it dépends on cr whether, in line (cl), there remain unresolved
subproblems z(p) with z(p)^z. In the latter case, we have to solve ©(/?) directly in (c2)-(c4).
For this problem, severâl branch-and-bound algorithms have been proposed in literature: [9] is
explicitly addressed to a fixed cost /j-median problem, while the solution methods [1, 6, 8, 11]
have to be modified slightly by introducing the facility costs ft. However, the reported expérience
[11, 15, 17] shows that the non-convex case occurs rather seldom when practical data is processed.
So we can expect that, in the most situations, NFCLP will already be solved during phase (b).

Recherche opérationnelle/Opérations Research



DISCRETE FACILITY LOCATION WITH NONLINEAR FACILITY COSTS 37

6. MODIFICATIONS OF THE BASIC PROCEDURE

For partitioning the search intervals, the basic version of NFCLOC uses
only information on co(a) and (ù(b). Especially at the fïrst itération, this may
lead to poor bounds on the objective while, at subséquent itérations, the
algorithm may unnecessarily fail to compute better bounds. To improve
NFCLOC with respect to these shortcomings, we hère propose

• to calculate a more "intelligent" y at the first itération by using additional
information on co and a and

• to apply a modifïed y update scheme at subséquent itérations, which is
able to exploit previously computed small gaps betwwen the lower and the
upper bounds.

6 .1. Calculating the initial y

We first state two useful properties. Note that here we refer to a discrete
function as being ''convex" if, for each point within the domain of définition,
there exists a global subgradient [17, p. 129].

PROPERTY 1: If y = ming(p) and g(q(y)) = y, we get z(j?)^\|/(y) = zopi for
p

/?=1, . . ., m.
PROPERTY 2: If co is strictly convex, gmin = ming(p) and gmax = maxg(/?),

p p

there exists always an e > 0 such that, for ail functions g with gmax — gmin :g e,
the optimum of NFCLP may be proved by solving at most \|i(y) with
Y = £min>£min + ̂ £andgm i n-m£. For convex functions a with o{p)=pg(p)
at most one of the two latter problems has to be solved.

Property 1 follows directly from (6) and (8). To prove property 2, we have
to show that values of co which may improve the resulting upper bound
z(q(gmin)) lie within the région between two Unes of the slope — gmin and
that the distance between these lines is bounded by me. If we set k = q(gmin),
this can be done by using the conditions (ù(p)^i(ù(k) + kgmin~ pgmin and
(ù(p)i^(ù(k) + kg(k)—pg(p) which are derived from (6) and (8), respectively.

The properties illustrate that initializing y with gmin may be efficient in the
sensé that only few itérations may be necessary to prove the optimum. If
g(p) is constant, property 1 clearly applies and we have to solve only one
UFLP (the problem then simply reduces to an UFLP).

To décide whether or not starting with gmin is useful if g {p) varies with p,
we have to know more about co. Estimated values of co may quickly be gained
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38 M. KÖRKEL

from upper bounds cö (/?) ̂  © (/>) which may e.g. be calculated by the well-
known ADD heuristic ([14], see [18] for a fast variant), œ(/?) immediately
yields an upper bound z~{p) — G)(p) + o{p) to z(p). Let z{p') = mmz{p) and

assume for a moment \<p'<m. We then dénote a = (ô(pf) — (ù(p'+ 1) and
P = G>(//— l) — œ (/?'). Note that co is convex if it is derived from the ADD
heuristic, i.e. a ^ p . We propose to initialize y with gmin if

2 / f e m a x - g m i n ) ^ P - a or gmine[a, ffl. (11)

The first test attempts to detect whether or not g influences significantly the
position of the optimum, while the latter test estimâtes whether gmin is likely
toyield tf(gmin)=/?\

Let us demonstrate the usefulness of the above test by an example with
o(p) = 0, l^p^p, and o(p) = L, p<p^m, where L is suffîciently high to
exclude the région p<p^m. If q(0)^p, we are very likely to get g(pr)~O
which means that (11) will be satisfied. We, then, will immediately prove the
optimum by solving \|/(0). If, however, q(0)^>p, it is almost sure that (11)
will be violated. In this case solving \|/(0), in fact, is not a good choice
because the resulting upper bound \(/ (0) + L is very poor.

In the case where (11) is violated, we suggest to initialize y with an
estimation of the value which computes oo at the point p' of the minimum
upper bound (see figure 2):

y' = (oc+p)/2 (12)

Finally, we compute the closed interval [ymin, ymax] where

ymin= min (â(p)-â(m))/(m-p), (13)

Ymax= max (œ(l)-â(/>))/(/>-1). (14)

If we project the chosen value of y (either gmin or y') into this interval
[L e. Y := max (min (y, ymax), ymin)], the maximum lower bound property is
guaranteed for this initial itération (see fig. 2). If p' = 1 or p' = m, we set y to
Ymax or ymin, respectively.

Recherche opérationnelle/Opérations Research
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— lower bound for U)(p)
• U)(p)
o öj(p)

\
\\

slope-Y,

,Aslope-Ymin

slope-Y

m p

Figure 2.

6 .2. Updating y in subséquent itérations

The rule (10) does not always lead to an improved lower bound to the
objective whenever this would be possible. Figure 3 gives an illustrative
example of such a situation, CÛ (p) = min (œ (/?), z — a (p)) dénotes the upper
bound to values of co which are able to improve F. We see that the minimum
lower bound is located at p*. The multiplier value y derived from (10) yields
©(/?* + l)>œ(/?* -f-1) which improves neither the lower nor the upper bound.
However, choosing y* immediately générâtes the improved objective value
z(p*) since (ö(p*)<o)(p*).

In the modified procedure, we start each itération by calculating the interval
[ymin, ymax] within which y may vary without violating the maximum lower
bound property. Define ©(/?) = z(p) — G (p). Let P = {p e N \ a<p <b, G>
(p) > (o (/?)} be the domain of the search interval [a, b] where improved
function values of z may still be discovered. We then compute

(15)

(16)

in = max (S (p) - o) (b))/(b -p),
peP

ax = min (© (a) - 5 (p))tfj> ~ a).
peP

If Ymin = Ymax P-e- t n e interval is empty since no value of œ remains under
the line Connecting (o(a) and (o(b)], we set y to the standard value (10).
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— lower bound for U)(p)

• ü)(p)

x G3(p)

slope-p

slope-

'slope-Y^-

a p *

Figure 3.

If Ymin<Ymax5 w e compute the négative slope (©(/?*— 1 ) — ©(/?* +1))/2 of
the current lower bounding function CD at />* where z(j>*) is the minimum
lower bound to the objective. Projecting this slope into the interval [ymin,
Ymaxl yields the modified multiplier y* and ensures the maximum lower bound
property (see figure 3 where Y* = ymax)-

With these measures, we try to reduce the size of the search région and,
thus, to avoid unnecessary itérations. An accélération of the convergence
may especially be expected if the search interval is large while the reached
gap between the lower and the upper bounds to the objective is small. We,
finally, remark that, for the objective of the subproblems \|/ (y), it is possible
to compute an a priori upper bound \j/ (y) above which an improvement of z
is impossible (see also figure 3):

\)/ (y) = max min (o) (p) +/? y, (o (a) + a y, G) (b) H- by)
peP

(17)

The called UFLP algorithm may internally use this upper bound to reduce
the computational effort of determining the UFLP solution by facilitating
variable fixations or diminishing the size of the branch-and-bound tree.
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7. COMPARISON OF NFCLOC WITH DATALOC

Mirchandani and Jagannathan assumed that g is convex and GO is strictly
convex. The authors, moreover, required that g is non-decreasing and g (0) = 0.

If we analyze the influence of the convexity assumptions on NFCLOC's
behaviour, we find that NFCLOC always provides as<p+<bs in step (b8)
and z t _ ^ z o r zt}>z in lines (blO)-(bll). We see that, in this case, NFCLOC
opérâtes like an interval réduction method where, at each itération, exactly
one UFLP is solved which always leads to a new candidate solution z(p).
For ensuring this behaviour, it is even suffïcient that a instead of g is convex.

To discuss some aspects of the behaviour of DATALOC, we state the
procedure, using our notation ([u] = max {n e N | n ̂  u}):
Procedure DATALOC
(a) a : = 1 ; calculate ij/ (0); b: = q(O)
(b) if b = a then: z = \|/ (0); stop
(cl) while b-a=£l do:
(c2) Po : = [(fl + «/2tT:=J?(Po)
(c3) calculate \|/ (y); p_+: = q (y)
(c4) if p+ =p0 then: z=\|/(y); stop
(c5) else if/?+ <pQ then: b:=p0

(c6) else:
(c7) calculate © (p0) and © (p0 + 1)
(c8) \f (ù(po) +o(po)^<ù(pQ+\) +o(po+l) then: a:=p0

(c9) else: b:=pQ + l_
(d) calculate © (a) and © (b); z : = min (ta (à) + a (a), <Û (è) + a (b))

We have to note hère that DATALOC applies the previously mentioned technique [11, 17] of
Computing co (p) by decomposing (3) into a séries of UFLPs. Contrary to this, NFCLOC deals
directly with problem (3) only if a duality gap occurs which implies that, in this case, the
DATALOC approach to Computing © (p) would fail.

The underlying principle of DATALOC is a bisection method. At each itération within the
main loop, the considered interval [a, b] is halved. Exploiting the convexity assumption, DATA-
LOC then détermines the half interval containing the optimum number of facilities. Additionally,
two termination tests (b), (c4) attempt to stop the program during the search process.

A comparison of DATALOC with NFCLOC immediately reveals some drawbacks of the
first procedure:

• It cannot be excluded that, in step (c3), DATALOC computes the same value of p + several
times because different values of y may produce the same number of facilities. Also it seems to
be possible that p+<a or p+>b which, in a certain sensé, provides "irrelevant" information.
The case g(p) = 0, 1 ̂ P<P and g{p) = {p-p)L, p<p^m, yields such an example where DATA-
LOC always computes either p+ = g(0) or p+ = 1 if L is sufficiently high. Note that, for this
example, the enhanced version of NFCLOC may prove the exact optimum by solving only one
U F L P i f ( ( 0 ) ) 0

• The calculated function values \|/ (y) are not used explicitly, neither for creating bounds to
the optimal objective value of NFCLP nor for directly reducing the size of the interval [a, b]. If
e.g. a<p+<b, always either the lower bound a or the upper bound b to the optimal number
of facilities could immediately be set to p+.

• If p+ >p0, DATALOC has to solve several UFLPs for just one interval réduction when it
calculâtes function values of © in step (c7). For weakening to some extent the négative consé-
quences of this method for the algorithmic efficiency, the authors only mentioned a possible
reuse of previously calculated function values of © if DATALOC again has to evaluate © at
prespecified points. On the other hand, the approach which DATALOC uses for calculating
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42 M. KÖRKEL

co(/>o) and coCp0
+1) i s a Ppl i e d bY NFCLOC in step (b4) to solve the complete problem.

Therefore, NFCLOC, in total, needs roughly the Computing time which DATALOC spends on
only one itération passing step (c7).

• The fact that the condition foi the termination test in (c4) is saüsfied does not guatantee
that the optimal solution has been found. This may be proved by the following counterexample:

P
1
2
3
4
5

35
20
10
4
2

(YiGO.YaGO)

(15, oo)
(10, 15)
(6, 10)
(2,6)

(-00,2)

g(p)

0
2
7

13
20

z(p)

35
24
31
56

102

The open interval (y1 (p), y2 (/?)) represents the domain for y which yields exactly p installed
fadlitics. In the above table, we obtain thç optimal objective value for NFCLP at p = 2, while
g (g (3)) = 3 iThe stopping rule (c4) can be regarded as an infeasible generalization of property 1.

8. CONCLUSIONS

We have developed an improved exact algorithm, calied NFCLOC, for
solving NFCLP. Like the procedure DATALOC published in [16], NFCLOC
décomposes the problem into a series of UFLPs. Compared to the first
algorithm, NFCLOC posesses the following merits:

• The restriction on the facility costs to be a convex and non-decreasing
fonction is dropped. NFCLOC is able to process any facility cost fonction.

• In the convex case (to which DATALOC is restricted), NFCLOC opér-
âtes more effïciently than DATALOC.

• The new procedure détermines the true optimum as far as the subpro-
blems are exactly solved. Even when the program terminâtes prematurely, a
lower and an upper bound to the objective is always provided if, at least,
one UFLP has been solved.

Furthermore, we made several suggestions how to improve the basic version
of NFCLOC in order to get a better initialization and a quicker convergence
of the lower and the upper bounds to the objective.
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