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AN IMPROVED METHOD FOR THE SOLUTION OF THE
PROBLEM OF LOCATION ON AN INCLINED PLANE (*)

by Reuven CHEN (*)

Abstract. — A method for solving the problem of minimizing the work expended in sliding
blocks along an inclined plane to a central location is considered. Significant improvement in the
itérative procedure is offered in cases where the centroid does not coïncide with a demand point.
Also, an alternative to the itérative procedure is suggested for cases of such coïncidence. This
approach adds an insight to the model and also helps solving the one dimensional centroid problem,

Keywords : Location; inclined plane; centroid; log harvesting.

Résumé. — Nous considérons une méthode visant à supprimer le travail nécessaire pour faire
glisser des blocs le long d'un plan incliné jusqu 'à un lieu centrai Nous offrons une amélioration
significative de la procédure itérative dans les cas où le centroïde ne coïncide pas avec un point de
demande. Nous suggérons en outre une seconde procédure itérative pour les cas où une telle
coïncidence se présente. Cette attaque permet de mieux approfondir le modèle, et apporte une aide
à la résolution du problème du centroïde à une dimension.

1. INTRODUCTION

An interesting problem of log harvesting which has to do with the skidding
of logs on an inclined plane, has been formulated by Hodgson et al. [1], as
follows. Given an inclined plane with an angle 0. The x axis is taken in the
cross-slope direction and the y axis in the upslope direction. N blocks of
masses mi are located at demand points (ah b^ for i= 1, . . ., N and are to
be slid to an unknown centroid (x, y). Given a friction coefficient \i, the total
work expended to collect the logs at (x, y) is[l],

JV

W(x, y) = \ig £ mi{[(x-ai)
2cos2Q+ ( ƒ - W + (;/-*,)tan0/n}. (1)

(*) Received in 1990.
(*) School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact
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46 R. CHEN

In order to minimize the total work, one solves

min W(x, y). (2)

For a horizontal plane (9 = 0), this reduces to the well known Weber-Fermat
problem

min £ wt R, (x, y), where i?£ (x, y) = [(x - af + ( y - btf]1/2 (3)
x , y i = l

and where wt are weights associated with the i-th demand point which are
replaced in the present case by the masses mt, This has been solved by
Weiszfeld [2] and further investigated by Kuhn and Kuenne [3], Kuhn [4], and
Ostresh[5, 6]. The itérative procedure for the solution consisted of steps such
as

r " ir 1
Xr+1 = \ Z Wiail Ri(Xr> yr) \/\ Z WilRi(Xr>yr)

xr, yr)

(4)

This is well defined, as long as (xr, yr) is not a demand point. The process
can be initialized at different points, a popular one being the "center of
gravity" (see e. g. équation 5 in référence [7]). When (xr, yr) = (ak, bk) for some
k, one de fines the two dimensional vector

(5)

If | Fk | < wk, the point (ak, bk), is the solution.

If Î Ffcl̂ Wfc, the incumbent solution should be pulled out of the "trap" at
(ak, bk), and the itérative procedure continued as before, until a desired
termination criterion is attained[3, 4].
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PROBLEM OF LOCATION ON AN INCLINED PLANE 47

For the present location problem on an inclined plane, Hodgson et al. [1]
suggested the following variation of the Weiszfeld itérative process

r+i = \ Y "hajRiÇx,, yn 0)]//(r, 0)

I "MM** y» e)l-(tane/n)

(6)

r, e)

where

•. 9) = f E mjRt (xr, yr, 0) 1 and Rt (xr, yr, 0)ƒ (r, 6) =

stands for

[(xr-ad2cos2Q+(yt-b02\112.

For the case where (jcr, yr) = (ak, bk), they defîne

e) + (tan9/n) I m,
£ = 1

(7)

and claim to have proven that the solution is at (xr, yr) = (ak, bk) if mk > \ Gk |.

In the present work a variation of this method is proposed. In cases where
the solution does not coincide with a demand point, the number of steps
needed to reach a given termination criterion is reduced substantially with
no additional complication in the performance of each step. A correction
seems to be needed to the expression (7) for identification of the cases where
the solution coincides with one of the demand points. A method is offered
for identifying such a coincidence prior to the beginning of the itérative
process. In addition, the insight achieved by the present approach can be
used for a better understanding of the one dimensional problem. Also, the
solution of the location-allocation-problem pan be accelerated since it consists
of a repeated application of the single facility problem.
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48 R. CHEN

2. IMPROVING THE ITERATIVE PROCEDURE

It has been pointed out [3 — 6] that the original Weiszfeld method (4) is, in
fact, a steepest descent method with a stepsize determined by the denominator

N

of (4), namely £ wf/i^(xr, yr). In fact, équations (4) can be written as
É = l

xr +1 = xr - £ K (xr - at) Rt (x„ yr)]/\ 2, W £, (x,, JV)
L " J (4)

,?,
which indeed gives (xr + u yr+1) by going from (xr, yr) along the steepest
descent direction with a stepsize defmed by the mentioned denominator.
Ostresh [5, 6] showed that a substantially faster convergence is reached by
doubling the stepsize given in (4'). Chen[7, 8] gave a proof based on a work
by Cohen[9] who had shown that the best step to be taken in a steepest
descent method without search is

x =x —% V W (8Ï
P + 1 p P P \ s

where x is an n dimensional co-ordinate vector, V Wp is the gradient in the
/7-th itérative step and

9p = 2/(^max+A,min) (9)

where X,min and X,max are the smallest and largest eigenvalues of the Hessian,
respectively. Chen [7, 8] has pointed out that in the two dimensional problems,
one always has

^min + \nax = ̂  WjÖX2 + Ô2 W/Ôy2 (10)

which yields in the Weber problern the itérative step

N N

xr+1=xr~2 X [WiiXr-aJlRiix,, yr)]/\ £ w^R^x^y,)
£ = 1 l _ i = l J
N N

^rr2ZK-(rW!^(^Jr)] EW*i(*r,Jv) •
i=l L x - 1 J

(4")
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PROBLEM OF LOCATION ON AN INCLÏNED PLANE 4 9

In the Weber problem, this has been found to be, on the average, twice as
fast as the original Weiszfeld method for solution points which do not
coïncide with a dernand point.

This improvement of the Weiszfeld method may be extended to the case
of the single facility location on an inclined plane in the following way. We
shall consider the objective function W1(x, y)—W(x, y)/\ig. Repeating the
procedure of fînding the gradient and the sum of the diagonal terms in the
Hessian, one gets the itérative step as

f "
U = l

N

+ \t*nQYârnj
L i=i

where

5>,cos2e[ ]-3l2Rf(xr,yr),
1 = 1

and where [ ] stands for

As shown in the table given below, the solutions of problems on the inclined
plane were reached on the average in less than half the number of steps as
by the method given by Hodgson et ai. [1], for solutions not coinciding with
demand points. It has also been found that the Hodgson method was superior
for the convergence of the process when such coincidence occurs. However,
as shown below, such solutions can be separately identifïed rather easily.

3. IDENTIFICATION OF OPTIMA COINCIDING WITH VERTICES

It is quite obvious that all the versions of the itérative équations have a
basic difficulty when the minimum point (x, y) coincides with one of the
demand points (ak, bk). In f act, it is quite surprising that the Weiszfeld method
and its extension by Hodgson et al, perform so well in the vicinity of the
solution at (ak, bk). It seems, however, by far superior, to identifiy at the
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outset this situation rather than to resort to the itérative procedure. To do
so, instead of providing a formai rigorous proof, we follow an approach
mentioned by Kuhn[3]. Let us consider "pseudo-forces" which are in fact
the components of the gradient related to the different given points (ah bt).
Intuitively, in the Weber problem on the horizontal plane these represent the
"pulling effect" that each demand point exerts on the location (x, y). A
demand point (ak, bk) would be the optimum location if in a circular 5 vicinity
of the point, its pulling force is larger than the résultant of the pulling forces
of the other points. As mentioned above, in the case of the radial functions
in the original Weber problem, the condition is mk>\Fk\ where Fk is the
gradient vector (5). In the present case of the inclined plane, the déviation
from this situation of radial cost functions is seen both in the cos29 term
multiplying (x — at)

2 and the tanG term in équation (1). Due to this déviation
from radial behaviour, it seems incorrect to compare mk to | Gk | as defined
by Hodgson et al, and in fact, it is rather easy to show an example where
mk < | Gk | whereas (aky bk) is still the solution. In order to replace this condi-
tion by a correct one, we resort to a transformation used by Hodgson et al.
in their proof of convergence, Le.

x = xcos9, ^ = ̂ cos9 (12)

which changes the objective function to

min W& ^ - I m a ^ - ^ + ̂ - W Y ^ + Ctane/tóX^^-oi). (13)

This transformed expression is radial only as far as the fïrst term is concerned.
At the k-Xh point, the gradient of the other N- 1 points is

i*k (14)

where

Due to the radial nature of the transformed problem, Kuhn's condition
can be applied, namely, mk should be compared to the absolute value of the
résultant of the pulling pseudo-forces of the other demand points.

It is to be noted, however, that these pseudo-forces consist of the radial
components of the N—l other demand points (denoted in the sum of i
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PROBLEM OF LOCATION ON AN INCLINED PLANE 51

N

as well as (tan 0/jj.) £ ml which includes the k-th point. The external pseudo-

force includes in this case the gravitation related components of all the
demand points. The condition for the solution to coincide with the A:-th
demand point is therefore

mk>\Gk\. (15)

Gk can be written more explicitly as

m, 0 > A -
(14')

where Rlk = [{ak-af cos20 + (bk~b^2]112.

Apart from the trivial division by the constant g\i, the expression (14'),
the absolute value of which has to be compared with mk, differs from the
expression by Hodgson et al only by cos 0 appearing in the x component
rather than cos20 as given by them. Numerical results confirm that the
condition (15) is indeed the correct one.

The resuit given hère is obviously in variance with that given by HWH. It
appears that the incorrect element is in the proof of their theorem 2 where
g\x.mk is to be replaced by g\imk(z\cos2O + z2,)1'2. This term is, obviously,
direction dependent, and therefore, it seems very difficult to dérive from it a
simple condition for the coïncidence of the solution and a demand point.

4. NUMERICAL RESULTS

Similarly to Hodgson et al, a problem with 20 demand points randomly
distributed on a 100 x 100 square has been solved with the same friction
coefficient and the same angles as reported by them. The demand points
were not the same as in their example. Simiiarly to their case, in the instances
with relatively high 9, the solution occurred outside the 100 x 100 square, at
points with négative y values. The problems were solved both by the method
given by Hodgson et al, (HWH column in the table) and by the present
method. It can readily be seen that the number of steps is better than halved,
on the average, by using the present method whereas the computational
effort per step is unchanged. Concerning the time factor, it is reduced on the
average by about 25% only since each itération is preceded by a check
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TABLE

0.1

0.3

0.5

0.7

0.9

e°

0.
1.085
2.170
3.255
4.340
5.425
3.173
6.346
9.519
12.691
15.864
5.047
10.095
15.142
20.189
25.237
6.648
13.297
19.945
26.594
33.242
7.978
15.955
23.933
31.910
39.880

Location

X

41.00
40.66
39.65
43.15
46.27
48.78
40.70
39.65
42.75
46.61
48.74
40.76
39.66
42.09
47.00
48.67
40.83
39.66
41.33
47.00
48.57
40.90
39.83
40.64
47.00
48.46

y

50.00
38.93
28.55
17.34
7.29

- 50.39
39.22
28.98
18.32
8.34

-45.15
39.73
29.75
19.95
9.00

-36.63
40.37
29.75
21.79
9.00

-27.24
41.06
31.79
23.52
9.00

-18.54

HWH

Time
(ms)
17
16
17
19
18
38
16
17
19
26
38
16
17
18
17
36
16
16
16
17
33
16
17
17
34
32

Steps

19
18
21
28
26
89
18
21
27
50
86
18
21
24
20
80
18
20
18
20
73
17
20
21
72
67

Present

Time
(ms)
1
13
15
15
17
27
13
14
15
20
24
13
13
15
2
22
13
14
15
2
19
12
13
15
2
17

Steps

0
7
11
15
20
46
7
11
15
28
41
7
10
14
0
34
7
10
14
0
26
7
10
14
0
19

whether each of the 20 demand points happens to be the optimum. In cases
of such coïncidence, however, denoted by 0 steps in the table, the gain in
time is very significant. Thus, in this example, all cases included, the gain in
time is about 30% as compared to HWH. This gain in the number of steps,
as well as computation time should be significant when the location-allocation
probiem is to be solved. The obvious reason is that in most cases, this
problem is solved by a repeated solution of the single facility one.

5. THE ONE DIMENSIONAL PROBLEM

Hodgson et al. have also treated the location problem where all the logs
are located along the jy-axis. They gave an example of nine logs thus located
and the angles (with u = 0.5) for having a multiple solution, namely, the
angles at which any intermediate location between two given adjacent logs is
the solution. Using the present ideas, this can be generalized as follows. It is

Recherche opérationnelle/Opérations Research



PROBLEM OF LOCATION ON AN INCLINED PLANE 53

obvious that in the gradient [équation (7) with correction], the x component
is nil whereas the y component reduces to

G ^ I / M g n ^ - ^ + CtaneAOJX (16)
i i

This is so since Rt (xr, yri 0) reduces hère to | yr - bt | . | Gy | has to be compared
with the value of mk and the location of mk is the solution if

mk>\ E m,sign(èfc-^) + (tane/u)X^|. (17)

In cases where mk equals the right hand side, then if the résultant pseudo-
force involved is positive, the whole range between the point k and its nearest
neighbour upwards is a solution. If equality holds and the résultant is
négative, the range between the A>th point and its down-slope neighbour is
the solution. The reason is that we have a whole range in which the total
gradient is zero. The cases given by HWH are seen to be included in the
special case of |i=0.5, and mi being ail equal. Note that in this one dimen-
sional case, changing the position of any log without varying sign(jr — bt)
[or sign(bk — bi)]i does not change the resuit since it does not alter expressions
(16) and (17).
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