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THE WEIGHTED MIIMIMAX LOCATION PROBLEM WITH SET-
UP COSTS AND EXTENSIONS (*)

by Zvi DREZNER (*)

Abstract — We consider the problem of locating several facihties in an n-dimensional space
For each demand point we calculate the sum of weighted distances of the new facihties plus possibly
a set-up cost The maximal value of this sum for all demand points is to be mimmized This is a
generalization of the single facihty minimax problem (also called the l-center problem) The
problem reduces to the weighted minimax problem wit h a set-up cost if only one facihty need to be
located We present theorems and algonthms for the gênerai problem but mainly deal with the
single facihty case

Keywords Facihty location, minimax, l-center

Résumé - Nous considérons le problème consistant a localiser plusieurs services dans un espace
a n dimensions Pour chaque point de demande^ nous calculons la somme des distances pondérées
des nouveaux services plus, peut-être, un coût (fixe) de mise en route On doit minimiser la valeur
maximale de cette somme étendue à tous les points de demande Ceci est la généralisation du
problème d'un seul service au sens du minimax (appelé aussi le problème du l-centre) Le problème
se réduit a un problème de minimax pondéré avec coût de mise en route si un seul service doit être
localisé Nous présentons des théorèmes et des algorithmes pour le problème général, mais traitons
principalement le cas d'un seul service

INTRODUCTION

The formulation is based on m points given in Rn. Find the locations of k
new facilities that minimize the maximum, over all demand points, of the
sum of weighted distances from the demand point to ail new facilities, plus a
set-up cost.

Let
Pt for i= 1, . . ., m be the location of demand point i ;
Xj for j = 1, . . ., k be the site of new facility y;
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56 Z. DREZNER

X=(Xl9 . . ., Xk) be the unknown vector;

w^ for z=l, . . ., m; y=l , . . ., & be a positive weight associated with
demand point i and new facility j;

g f f o r z = l , . . . , m b e a set-up cost associated with demand point z;

dtj be the Euclidean distance between demand point i and new facility j ,
k

7 = 1

The problem is to select X to minimize F{X), where

F(*)=max {i?,(!)} (1)

The special case where fc=l, rc = 2, and all g£ = 0 is the single-facility
minimax location problem on the plane [11, 14, 19, 21, 22] (also known as
the 1-center problem). The simpler case where all the weights are equal is
discussed in [15] and [26]. In [15] set-up costs are considered. The case k=\
and genera! n is discussed in [10] and [16]. Other generalizations of the single-
facility minimax location problem that don't fit into our extension are the
multi-facility minimax location problem [13, 17, 18, 20, 25], and the p-center
[5, 6, 8, 27] problems. See [3] and [24] for a survey of location papers.

Consider the following application to the problem. Emergency hospital
services usually involve dispatching an ambulance (or emergency helicopter
service) and bringing the patient to the hospital. The total time from the
emergency call until the patient arrives at the hospital consists of the travel
time of the ambulance, some set-up time, and travelling back to the hospital.
In most cases the ambulance station is located on the hospital premises so
that the total traval time is twice the travel time from the hospital plus a
set-up time. Organizing the facility this way may not be optimal. If we select
different sites for the hospital and the ambulance station we may be able to
shorten the response time for the farthest customer. We cannot lose by such
a proposition because if the best strategy is to locate both the ambulance
station and the hospital at the same site, then the procedure will select such
an option. When one station (hospital or ambulance station) is already in
place, the problem is defined with fc= 1 (locating the other station) and the
set-up time is the driving time to the existing facility plus possibly and
additional set-up time. The model may include different weights for the new
facilities. The time needed for the ambulance to get to the patient is more
crucial than the time it takes to get to the hospital because some médical
care may be provided once the ambulance reached the patient.
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LOCATION PROBLEM W1TH SET-UP COSTS AND EXTENSIONS 57

The set-up costs can help to model demand coming from areas in the
plane when fc=l. We can approximate each area by a union of dises (not
necessarily disjoint) thus converting the areas problem into a dises problem.
The weights and set-ups are assumed to be the same for all the points inside
each dise. A demand point is assigned to the center of each dise, and it can
be easily verified that we need to add to the set-up time the product of the
weight and the radius of the dise in order to accommodate the farthest point
of the dise. Many applications assume a demand point rather than a demand
area for the sake of simplifïed analysis. This generalization allows us to better
model practical applications. Discussion of area demand is given in [1], [7],
[12], [23] and [29].

A THEOREM

The following theorem can be used in many proofs involved with the
analysis of the single facility minimax location problem and is necessary for
some proofs given here.

THEOREM 1: Consider problem (1) with k= 1, and X* as the optimal solution.
Given a bounded set B, there exists a constant K>0 such that for all X in B,

Proof : Consider any Xin B. We can assume X^X*. Deflne

U=(X-X*)/\\X-X*\\, 7=

and dFi(r) = Fi(X* + rU)-Fi(X*) for r^O. There must exist vel such that
dFv(r)^0 for a small r, for otherwise F could be decreased by moving from
X* in direction U, contradicting the optimality of X*. If dv(X*)^Q, we can
define U1 = (X* - Pv)/dv(X*). Note that || £/1| = || ̂  || = 1. This yields

dFv(r) = wv{[d1
v (X*) + r2 + 2rdv(X*) < U9 U, > ] 1 / 2 - d v ( X * ) } ,

where < U, U^} is the scalar product between U and U1. Since dFv (r) ̂  0 for
a small r, < U, U^y^Q, and thus

forallr^O,

a resuit which also holds when dv(X*) = 0. Therefore,
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58 Z. DREZNER

(2)

Since B is bounded, there exists M>0 independent of the choice of X in B,
such that || Jr-JSf* | |^ Af and dt(X*)^M for all i (hence, in particular, for
i=v), The preceeding inequality (2) yields

Q.E.D.

THE EXCHANGE ALGORITHM

Since Euclidean distances are convex functions, so is F{(X). Therefore, a
local minimum to problem (1) is the global minimum. The following theorem
is a corollary of Theorem 1.

THEOREM 2: For k=l, the solution point is unique.
The following is an example with k = 2 (it can be easily generalized to

k^2) for which the solution point is not unique. The problem is defined
with k = 2, n= 1, m = 2, wij=l7 and gt = O. The two demand points are located
on a line at 0 and 1. When two new facilities are located at / and 1 — t for
O r g ^ l , the value of the objective function is equal to 1. These points
are all the optimal solutions. To show this observe that for any point x,
di(x) + d2(x)^l, and therefore for any two points x and y:
dx (x) + dx (y) + d2 (x) + d2 (y) ̂  2. Thus

The following exchange algorithm is a spécifie case of the exchange algo-
rithm presented in [9].

The exchange algorithm

1. Select starting points Xi0)=[Xi^\ . . ., Xf}]. A possible sélection is to
locate all of them at the center of gravity of points Pt with weights w{. Set
the itération number r=\. Find the set £<1) of nk+\ demand points [4]
corresponding to the nk^-1 largest values of Fi(X

i0)). Solve problem (1) based
on the demand points in Ë^ getting a solution vector X{1) with value of
objective function (for the sub-problem) of i*1*.

2. Let j be an index / for which Ft (X^r)) is maximal.
3. If F(Xir)) = Fir) then X^r) is optimal.

Recherche opérationnelle/Opérations Research
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4. Otherwise, for each ieËr) a problem based on &r)—{i} U {j} is solved
until a value of the objective function greater than i*r) is found. Set £< r + 1 ) to
&r)-{i} U {/} for that i, Xir+1) to the solution vector to this problem with
value of objective function i*r+1). Set r = r+ 1 and go to step 2.

Such an exchange algorithm is especially efficient when m > nk + 1 and
instead of solving a problem with m demand points several problems based
on nk+ 1 demand points must be solved. In [4] it is shown that if there is only
one solution point to the problems in step 4, then the algorithm converges to
the optimal solution.

In the next section we give an itérative algorithm for solving the problem
of nk+ 1 demand points for k = 1 and w = 2. Such an algorithm can be used
in the exchange algorithm.

THE TWO AND THREE POINTS PROBLEMS

When there are only two points in the problem, the solution must be either
at one of the points or on the line between them where Fx (X)^F2(X) [28].
Let the two points be P1 and P2 on the x-axis with weights w^ and w2

respectively. The point P* where F1 (X) = F2 (X) is by straightforward calcula-
tions (assuming Px < P2):

(3)

with a cost of:

F* = (w1 w21 Pt - P2 | + w, g2 + w2 gl)/(w1 + w2) (4)

The optimal value is the maximum among gl9 g2, F* with the solution point
at Pu P2 , or P* respectively.

Now consider a problem with three demand points in the plane located at
Pi = (xb yt) for i = l , 2, 3. Three weights wf>0 and three set-up cost gi for
i = l , 2, 3 are associated with the demand points. The optimal solution must
lie in the closed triangle defmed by the three demand points [28]. The solution
is on vertex P( if and only if gi ^ Fj (Pt) for allj^i. The solution is on the
side Connecting Pt and P, if for the third vertex k Fk (X*) ^ Ft (X*) where X' is
the solution point for the two point problem based on Pt and Pj by (3).

If the optimum is not on the boundary of the triangle, it must be in its
interior. In such a case, X* must fulfîll [4]:

(5)
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60 Z. DREZNER

In the following we assume that the solution is not on the boundary of the
triangle and therefore (5) is fulfilled. Also, this entails that for every X,
F(X)>giîori=l, 2, 3.

A transformation H from R2 to R2 is defïned as follows.

= Wi/[F(X)-gl] for i=
X) — min {max {w[ (X) dt(U)

U i

H(X)=U*

1,2,3

}}
(6)

(7)

(8)

where U* is the solution point of (7). An explicit formula for U* is given in
Appendix A of [11]. Z7* is unique by Theorem 2 and thus well defmed. The
algorithm is to iteratively replace A^with H(X) until convergence.

Algorithm for the three point problem

1. Check if a vertex is optimal or if the optimum lies on a side of the
triangle. If the optimum has been found, stop.

2. If the optimum lies in the interior of the triangle, select a starting point
^ 0 ) (for example the center of gravity), a tolérance e>0, and set the itération
counter r to 0.

3. Set J^r + 1) = i / (^ r ) )by (8).
4. If || Xir +1}- Xir) || <e stop and accept X{r + 1) as the solution.
5. Otherwise, set r = r+ 1 and go to step 3.
We now prove that lim (X(r)) exists, and that it is the optimal solution to

r -*• a o

the three point problem.

LEMMA 1: F(X*)=l and H(X*) = X*.

Proof: By (5) widi(X^) + gi-F(X*) for i= 1, 2, 3. By (6)w[(X*)dt(X*) = 1
for i= 1, 2, 3, which means that A"* is weighted-equidistant from the vertices,
and therefore F (X*) = 1. Since the solution to (7) is unique by Theorem 2,

QJE.D.

LEMMA 2: F(X)<1 for X^X*.
Proof: Since F{X)>F(X*) by Theorem 1, then w[(X)<w'i(X*) for

/=1 , 2, 3 and therefore F{X)<F{X*)=\ Lemma 1.
Q.E.D.

LEMMA 3: For X^X* : F[H(X)]<F(X).
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Proof: By (8) and Lemma 2: dt[H(X)\^F (X)lw\(X)< l/w('(X) for all i.
By (6): F[H(X)]<max{wjw[{X) + gi}=F(X).

i

Q.E.D.

Clearly F(X) is a continuous function of X, and w[ (X) is a continuous
function of F{X). Also, by Theorem 1, the solution point U* is a continuous
function of the weights, and therefore H(X) is a continuous function of F(X).

THEOREM 3: lim {X<r) } = X*.
r -*• oo

Proo/ ; By Lernma 3 F(X^r)) is monotonically decreasing and bounded
below by zero, therefore lim {F(Xir)}=F exists. Since H(X) is a continuous

r -> oo

function of F(X) lim {77(^r))}= lim {X{r+1)} = r exists. Since if(J50 is a
r - • oo r -> oo

continuous function of X, H(X) = X and thus F[H(X')] = F(Xf). By
Lemma 3 r = JT*.

Q.E.D.

We tested the algorithm on 10,000 randomly generated problems. The data
xh yi9 wi9 gt were uniformly generated in (0,1). For these particular data, the
optimal solution was on a vertex in 17.16% of the cases, and was on a side
of the triangle (and not on a vertex) in 80.49% of the cases. Only 235 problems
required the itérative procedure. An s=10~5 was used. The number of
itérations was between 4 and 64, with an average of 12 and a médian of 10.
Ail 10,000 problems were solved in a total time of 1.66 seconds on the
Amdahl 470/V7 computer at the University of Michigan.

A DISCUSSION ON THE GENERAL PROBLEM

We first present a heuristic approach, show that it always terminâtes, but
give an example where a limit point is not optimal. Then we briefly discuss
the construction of a rigorous approach.

Since the single facility case is relatively simple (especially for w = 2) it is
tempting to apply a univariate search to the multi-facility problem. This
means: select a starting point; go over all k new facilities in turn; for each
new facility obtain the new optimum of the single facility location problem,
holding the other facilities rooted to their place; repeat until convergence is
identified. The single facility location problem simply consists of a set-up
cost for demand point i which is the sum of gt added to all the weighted
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62 Z. DREZNER

distances to the rooted facilities. If facility r is the only one not rooted, then:

where the term in the braces is the set-up cost.

We develop évidence that the univariate search will usually converge, and
give an example where the limit point is not optimal.

Let the transformation TS(X) be the resulting location vector when we
optimize facility s while holding the rest rooted to their sites. Let the
transformation T(X) be the convolution of all transformations TS(X) for
s=l, . . ., k in order. In other words, T(X) is the resulting vector when we
optimize once all new facilities one at a time. Note that F[TS(X)]SF(X),
and consequently F[T(X)]^F(X). Consider the séquence defined by a given
A*0), and ]P + »=TÇfi% Also, i*r) =

THEOREM 4: lim
r -*• oo

Proof: Since i*r+1>rgi*r> and the séquence is bounded from below by zero,
lim { i*0 } exists. Since J^r) are in the convex huil of demand points, then

r ~* ao

by Theorem 1 there exist K> O independent of the gh such that
|| J$+1}-Xt] \\2^\Ft+1)-F? \/K where i f > is the value of the objective func-
tion for the single facility problem when all demand points except Xt are
rooted to their place. Since if+1)-/*r) are going to zero, so do J^r + 1)-A^r).

Q.E.D.

Although Theorem 4 does not necessarily imply convergence of the
séquence J^r), it rules out the "usual" cases of non-convergence. An example
of nonconvergence satisfying Theorem 4 suggested by a référée is the séquence

r

sinoer with ocr= £ n/i for r= 1, 2, . . . Since ^ r ) is in the convex huil of all

Ph it cannot diverge to infinity. A "loop" where we can identify two cyclical
sub-sequences that converge to two different points of accumulation, is also
impossible. The distance between two different points of accumulation is finite
so the distance between successive points cannot go to zero. In conclusion, I
believe it is very diffïcult to construct an example, should one exist, for which
the univariate search does not converge.

Note that if we stop the univariate search when the distance between two
consécutive solution points is less than a given tolérance, then by Theorem 4
the procedure will always terminate. Since a limit point, as is shown below,
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LOCATION PROBLEM WITH SETUP COSTS AND EXTENSIONS 63

is not necessarily optimal, the question of convergence (in the rigorous sensé)

is much less important.

An example for which a limit point to ]&] is not optimal: fc = 2, n = 2,

m = 4, Wij=\, and gt = 0. Demand points are located at the vertices of a

rectangle. Assume that ^ 0 ) consists of two points located at the midpoints

of two opposite sides of the rectangle. It is easy to verify that T(X{0)) = Xi0)

but the objective function is lower at the center of the rectangle.

A gênerai approach for solving convex minimax problems was presented

by Demjanov [2]. In [13] and [20] this gênerai approach was adapted to

solving spécifie minimax location problems. Essentially it is a complicated

itérative steepest descent method. When the gênerai approach is implemented

hère, it is very similar to the formulation in [13]. We believe that repeating

the details hère is redundant. Please consult the analysis in [13] if such a

rigorous approach is desired.
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