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FROM THE MEDIAN TO THE GEWERALIZED CENTER (*)

by Pierre HANSEN (*), Martine LABBÉ (2) and Jacques-François THISSE (3)

Abstract. - The purpose of this paper is twofold. First, we revisit the cent-dian location problem
developed by Halpern, considering both the average and maximum distances. We provide a complete
characterization of the cent-dians in the case of a tree and present a new algorithm to détermine
this set in the case of a gênerai network. Second, to deal with distributional justice considérations
in the access to the facility, we introducé the concept of generalized center defined as the point
which minimizes the différence between maximum and average distances. We show that this point
coïncides with the center in a tree. An algorithm tofînd the generalized center in a gênerai network
is proposed.

Résumé. — Cet article a deux objectifs. Tout d'abord, on reconsidère le problème centre-médiane
étudié par Halpern, dans le cas où l'on retient les distances moyenne et maximale. On donne une
caractérisation complète des centre-médianes dans le cas d'un arbre, tandis qu'on présente un nouvel
algorithme permettant de déterminer l'ensemble de ces points dans le cas d'un réseau quelconque.
En second lieu, afin d'appréhender les inégalités dans l'accessibilité à l'équipement que l'on cherche
à implanter, nous introduisons le concept de centre généralisé défini comme le point minimisant la
différence entre les distances maximale et moyenne. Dans le cas d'un arbre, nous montrons que ce
point coïncide avec le centre. Pour le cas plus général d'un réseau quelconque, nous présentons un
algorithme qui permet de trouver le point recherché.

INTRODUCTION

In an effort to improve the performance of facility Systems, planners have
developed a host of operational models to deal with the location of a (public)
facility on a network (see Hansen et. al. [5] for a recent survey). A large
number of these models focus on the minimization of the total distance
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7 4 P. HANSEN, M. LABUÈ, J.-F. THISSE

between clients situated at vertices of the network and the facility to be
located; the solution is called the médian. Ever since the pioneering contribu-
tion of Hakimi [4], this problem and its various extensions have been central
to location theory.

However, the pertinence of this objective for placing a facility may appear
to be questionable in the sensé that total distance minimization favors,
sometimes to a considérable degree, clients who are gathered in large popula-
tion centers to the expense of clients who are spatially dispersed. One possible
solution is to make the worst-off client as well-off as possible, that is, the
facility is placed in order to minimize the maximum distance to a client (see
Hakimi [4]); this solution is called the center.

In somes cases, locating a facility at the center may generate a substantial
loss in efficiency through a large increase in total distance. This has led
Halpern [1, 2, 3] to model the corresponding trade-off by mmimizing a
convex combination of total distance and maximum distance; this solution is
called a cent-dian.

The primary purpose of this paper is to revisit a slightly modified version
of Halpern's problem in which the total distance is replaced by the average
distance. This is because we feel that average and maximum distances are
directly comparable in tenus of magnitude. Specifically, after recalling défini-
tions and notations in Section 2, we dérive in Section 3 a complete character-
ization of the X-cent-dians in the case of a tree which extends Halpern's
results (k is defined as the weight of the maximum distance in the convex
combination Hx). We also détermine an upper bound on the increase of the
function Hx when the médian is chosen instead of a A,-cent-dian. In the case
of a gênerai network, the characterization of the À-cent-dians turns out to
be a very diffîcult task. Hence, in Section 4, we present a new algorithm to
flnd the set of >.-cent-dians which is much simpler than that developed by
Halpern [2].

The above solution concepts may be associated with a large range in the
distribution of the distances separating the clients and the facility, thus
contradicting any intuitive notion of distributional equity in the access to the
facility. The secondary purpose of this paper is to consider a new solution
concept, called the generalized center. This point minimizes the différence
between the maximum distance and the average distance (when there exists
a point equidistant to ail clients, the différence is equal to zero). It corresponds
to a À,-cent-dian for X ~* oo. In a tree, we show that the center is a generalized
center (Section 3), while an algorithm is presented to détermine the general-
ized center in the case of a gênerai network (Section 4).
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FROM THE MEDIAN TO THE GENERALIZED CENTER 75

When all the clients are in a bounded area, then the distances from a very
far point to all clients are practically the same so that such a point might be
a generalized center. To avoid such nonsensical situations, we restrict the
generalized center to be an efficient point with respect to the distances to all
clients (L e. a point such that no other point is simultaneously closer to all
clients).

II. THE MODEL

The following définitions allow to describe networks: a topological edge is
the image of [0, 1] by a continuous mapping ƒ from [0, 1] to U3 such that
f(Q)z£f(Q') for any 9 ^ 6 ' in [0, 1]; a rectifiable edge is a topological edge of a
well-defined length. A network is then defmed as a subset N of U3 which
satisfies the following conditions: (i) N is the union of a fînite number of
rectifiable edges; (ii) any two edges intersect at most at their extremities;
(iii) N is connected.

The set of vertices of the network is made of the extremities of the edges
defming N; it is denoted by V= [vu . . ., vn}. The set of edges defïning the
network is denoted by E and the length of an edge [vt, vj\ e E is given and
denoted by l[vi9 Vj], Each point seN belongs to some edge of E but s may
or may not be a vertex. For any two points su s2 e [vh Vj\ the subset of points
of N bet ween and including sx and s2 is a subedge [su s2] and its length is
denoted by l[su s2]. A path P(su s2) joining sxeN and s2eN is a minimal
connected subset of N containing sx and s2. The length of a path on the
network is equal to the sum of the lengths of all its constituent edges and
subedges. The distance d(su s2) between s1eN and s2eN is equal to the
length of a shortest path joining sx and .s2.

We now consider the demand: with each vertex vt e V is associated a non-
negative integer weight wt representing the total number of times that the
users, located at vt, visit the facility. For a given subset (7ü V of vertices, let
w(U) — l, {w(Vi): vte U}. In particular, w(V) represents the sum of the
weights of all the vertices of N.

Finally, we consider our different solution concepts. The average weighted
distance between a point xeN and the vertices vte V is given by
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76 P. HANSEN, M. LABBÉ, J.-F. THISSE

A point minimizing F(.) in N is called a médian. Since the function F( . ) is
known to be concave aîong each edge (see e. g., Hakimi [4]), a médian can
always be found in V.

The maximum distance between a point xeN and the vertices v{eV with
users is denoted by G (x) = max { d (x, vt) : uE- G V and W; > 0}. A point minimiz-
ing G(.) in TV is called a center. The function < J ( . ) is piecewise linear with
slope + 1 or - 1 on each edge so that a center can be found among the local
minima of G{.) on ail edges.

In this paper, we consider the problem of fïnding a point xeN minimizing
a linear combination of F(x) and G(x), given by

Hx(x) = XG(x)+(\-X)F(x) with X^Q.

Such a solution is called a X-cent-dian and the set of all X-cent-dians is noted
X-CD. In particular, if X = 0 the À,-cent-dian is a center and if X= 1 it is a
médian. For O<À,<1, the À,-cent-dian minimizes a convex combination of
the average and maximum distances to the vertices. Hence it is an optimal
solution to a location problem where both efficiency and equity criteria are
important. The value of X reflects the weight attributed to the maximum
distance with respect to the average.

Assume now that the planner wishes to locate a facility in order to reduce
as much as possible discrepancies in accessibility among users. More precisely,
the selected point of the network, called a generalized center, has to minimize
the différence between the largest and the average distances to the vertices.
This may however lead to an "unreasonable" location. As an example,
consider the network of Figure 1 with wx = w3= 1, w2 = n — 2, and w4 = 0, and
k = 1 so that a4 is the only generalized center. Hence if the planner wants to
reduce as much as possible the discrepancies between the distances the users
have to cover, he/she would locate the facility at a point (v4) which is very
far from ail users. Furthermore, it is easy to see that in such a case ail users
would prefer to have the facility at v2 since this vertex is closer to ail of
them than u4.

This suggests that if the planner is concerned with the discrepancies between
the distances the users have to cover, he/she should restrict the set of feasible
locations to the set PO of points which are Parelo-optimal (or efficient) with
respect to the distances. A point xeN is Pareto-optimal with respect to the
distances if there does not exist another point y e N for which

(i) d(vi9 y)^d(vi9 x), for all v^e Vsuch that wt>0
and
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(ii) d(vi9 y)<d(vt, x) for at least one vte V such that w->0.

77

Figure 1. — Locating a facility at the generalized center.

Hence, formally, a point xePO is a generalized center iff for any point

Consider now the function H(x) for X^l. On one hand,
Hx(x) = F(x) + X(G(x)-F(x)). On the other hand, when X -> oo the limit of
Hx(x)/X equals G(x) — F(x). Consequently, a X-cent-dian for A,>1 can be
viewed as the solution to a location problem where both efficiency and
egalitarism are important. The value chosen for X reflects the weight given
to the average distance with respect to the différence between the maximum
and average distances. Since the same type of "unreasonable" décision may
émerge for the X-center-dian with X > 1 as for the generalized center (see
again the network of Figure 1) we also restrict the set of feasible locations
for the À,-cent-dian with X> 1 to PO.

III. THE À-CENT-DIAN ON A TREE FOR \>0

In this section, we consider the special case of trees, /. e., networks without
cycles. In a first part, we will present, several localization theorems. No proof
will be given since most of these results (Theorems 1 to 3) are due to Halpern
[1], The second part of this section is devoted to the comparison of the X-
cent-dian with the médian in terms of their values for the objective function
H\(')' ^ e f"irst recall some classical results concerning the distance and the
functions F(.) and G(.) (cf. e.g. Hansen et. al. [5]).

For any vertex vt of a tree T, the distance d{vb x), when point x moves
along a path, say P(y, 2), is a convex and piecewise linear function with
slope — 1 or + 1.

vol. 25, n° 1, 1991



78 P. HANSEN, M. LABBÉ, J.-F. THISSE

The center c of a tree T is unique. Moreover, for any point xeT :

x), (1)

L e., G(x) strictly increases with slope 4-1 along any path starting from c.
The set of médians of a tree T is composed either of a single vertex or of

a path P(vi3 Vj), such that vt and v}sV and \d(vi9 vk) — d(vj9 vk)\ =d(vh vj)
for every vke F with wk>0. Moreover, F(.) increases along any path starting
from a médian and if m is the médian closest to a point xeT, then

^ . (2)
w

Finally, for a given value of X, O^X^gl, the function Hx(.) is convex and
piecewise linear along any path of a tree.

Let c be the center of a tree T and m be the médian closest to c. Halpern
[1] proved that U {X-CD: OgÀ,gl } = P{m, c). The following theorem
shows that these two sets also coincide with that of efficient points for F(.)
and G(.)- A point xeTis said to be efficient with respect to F(.) and G(.)
iff there does not exist a point yeT such that F(y)^F(x) and G(y)^G(x)
with at least one strict inequality. The set of all efficient points is denoted
by EF.

THEOREM 1: EF=P(m, c)= \j{\-CD\ O^À^l} .
Note that Theorem 1 is the network-couterpart of a well-known property

in multiple objective optimization. Theorems 2 and 3 give values of X for
which a given point of P (m, c) is a À,-cent-dian.

THEOREM 2: On a tree, if O^X^ l/(w(V)+ 1), then m is a X-cent-dian. If
(w(V)-2)/2(w(V)-l)<LX<Ll, then c is a X-cent-dian.

Since (w(V)-2)/2(w(V)-\)<\/2, Theorem 2 implies that the center is a
X-cent-dian for more than half of ail values of X corresponding to the
bicriterion problems taking into account the maximum and average distances.
Furthermore, the bounds lfw(V)+l) and (w(V)-2)/2(w(V)-l) are tight.
As shown by the network of Figure 2 with wx = k and w2 = k— 1 and
Wj = k— 1 and w2 = 1 respectively.

h c
o . 1 o

»1 V2

Figure 2. — Ex ample for the bounds of Theorem 2
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FROM THE MEDIAN TO THE GENERALIZED CENTER 79

A vertex vieP{m, c) is said to be active if either wt>0 or there exists
some vertex VjE V such that Wj>0 and both d(vp m) = d(vp v?) + d(vh ni) and
d(vj9 c) = d(vp v^ + d(vi9 c).

THEOREM 3: Let vt andvj be two distinct active vertices of P(rn, c) such that
P(vt, vj) does not contain any other active vertex in its interior. Then, any
interior point of P(vitvj) is a X-cent-dian iff X=\ — w(K)/2w(Kf), where
Vt= {vke V: d(vk9 vj) = d(vk, vù + d(vi9 vj)}.

THEOREM 4: On a tree T, the center is the unique 1-cent-dian for all À,^ 1.

Proof: First, note that ce PO. Then, let x be a point of T. It is easy to see
that F(x)^F(c) + d(c, x). Hence,

= X G (c) + kd(c9 x) + (1 - X) F(x), from Lemma 2
^XG(c)+ (l-k)F(c) + Xd(c9 x)+ (\-X)d(c, x\

from the above inequality together with X ̂  1

D

The following theorem provides an upper bound on the increase in the value
of the objective function when the médian is chosen instead of the X-cent-
dian, for 0:gÀ^L It would be natural to investigate the similar question
when the médian is replaced by the center. However, we have not been able
to find out a good upper bound.

THEOREM 5: On a tree T, let h be a X-cent-dian for O^X^ 1, then

î if o<; - 1

î

2X(w(V)-l) + 2 1

X(w(V)-3) + 3 w(V)+l

vol. 25, n° 1, 1991



80 P. HANSEN, M. LABBÉ, J.-F. THISSE

Proof: We have:

= XG(m)+(l-X)F(m)
~ XG(h)+(\-X)F(h)
_ X(G(c)

X(G(c) + d(c, *)) + (l-X)F(h)
, by (1)

= X(G(c) + d(c, h))+ (l-k)(F(m)+ {d{m, A)/w(F))'
Tkd{m, c)+ (2(l-?t)/w(F))û?(m, c)

by subtracting up and down XG(c)-d(m, c))+ (1-^)1 F (m)-
w(V)

which is nonnegative since G(c)^d(m, c) and

F (m) ̂  - L - (dim, c) + G (c)) ̂  2d^A
(V)

2X. rf(m, c) + ( 2 ( 1 - X)/w (F)) af(m, c)

Xrf(»i, c)-

ï if o^;
if i/(w(n+n<x.<i. D

Notice, that the bounds of Theorem 5 are best possible for w(F)^3. The
network of Figure 2 with wx = 2 and w2= 1 illustrâtes such a situation when
w(F) = 3. For w(V) — 2, since a médian always coincides with the center and
is, therefore, a À,-cent-dian for all O^X^l, the bound is also tight. For
w(V)>3, the question whether or not the bounds are best possible remains
open.

Recherche opérationnelle/Opérations Research



FROM THE MEDIAN TO THE GENERALIZED CENTER 81

IV. THE ^-CENT-DIAN ON A GENERAL NETWORK FOR

In this section, we present two algorithms to détermine the sets
i

U X — CD and X — CD for any X,>1, respectively. In the former case, an

algorithm has already been proposed by Halpern [2]. The one we present
here is much simpler, although it has same computational complexity. We
first need some additional notation and définitions.

A point x on an edge [vi9 Vj\ is a bottleneck point if there exist some vertex
vh with wk>0 such that

d(vkJ x) = d(vk, vù + l[vi9 x] = d(vk, Vj) + I[vj9 x].

Let Btj dénote the set of bottleneck points on (vis vj). Along a subedge limited
by two successive vertices or bottleneck points (i. e. such that the subedge
does not contain other points of Bi} in its interior), the distance from a vertex
vk is either linearly increasing or linearly decreasing {cf., e.g. Hansen et. al.
[5]).

Consider now the fonction G(jt) = max{rf(u£, x): vte V and wt>0) on
[vi9 vj\. Since it is the upper envelope of a finite family of piecewise linear
and continuous fonctions, it is itself piecewise linear and continuous. Further-
more, its breakpoints are either bottleneck points or local minima. We dénote
by LMi} the set containing the points of [vt, vj\ which are local minima of
G (. ) and the two vertices vt and Vj.

The following proposition, due to Halpern [2] identifies a finite set of
points containing ail X-CD for OS^ti 1-

PROPOSITION 1 : For x e [vt, vj\ and a given value for X, Hx (x) is a piecewise
linear function

(i) with a finite number of breakpoints, ail belonging to LM(j U Bip and

(ii) with a finite number of locally minimum values, all attained at points
belonging to LMi}.

If for a given value of X and for two consécutive points x and y of LMtp
we have Hx(x) = Hx(y), then ail points of [JC, y] are local minima of Hx()-

i

Our algorithm for fmding U X — CD is based on the following geometrie
x = o

i

interprétation of U X-CD (see also Halpern [3]).
3̂  = 0

vol. 25, n° 1, 1991



82 P. HANSEN, M. LABBÉ, J.-F. THISSE

Let g : N -> 1R2 be a mapping from the network N into the plane U2

defmed as: g(x) = (G(x), F(x)). Since N is connectée! and G( . ) and F(.) are
continuous and pieeewise linear functions, the image G (N) is a connected set
composed of linear segments of IR2. The extremities of these linear segments
are the images of points of U (LM^ U BtJ).

[Vi, vj] e E

Given the définition of Hx(.)9 all the >t-cent-dians (O^X^ 1) are the points
xeN having an image g(x) which belongs to the lower boundary of the
convex huil of g(N). Moreover, this convex huil coincides with the convex
huil of g ( U (LMtjUBjy

[vt, VJ] e E

We first describe the algorithm IMA yielding the image g {LMi} \J Btj) for
an edge [vi9 u j .

Algorithm IMA

The image g(LMu U BtJ) for edge [vu Vj\.

Step (a). The set LMtj of local minima

Using the algorithm of Kariv and Hakimi [7], détermine (i) the list
m!, . . ., mq, mq+1 = Vjy, sorted in such a way that

w j < • • • <l[vt, mq]<l[vi9 mq+x] = l[vh vj[ and (ii) the cor-
responding values of G(.)-

Step (b). The set Btj of bottleneck points

Compute F(vt) and F(vj). Then, partition the set V of vertices into the
following three subsets:

Vi= {VE V: d{Vi Vj) = d(v,

V2= {veV: d(v, vt) = d(v, vj) + l[vi9 v}]}9 and F 3 = r\(V, U V2).

For all vkeV3 compute l[vh bk]= [d(vk, vj) + l[vi9 Vj\-d(vk, vt)]/2 and set
w (bk) = wk.

P u t t h e è k ' s in a s o r t e d list 2?0-= (bo = vh bx, . . ., Z>(K3,, b\V^\ +i=vj such

t h a t l[vi9 bo] = 0£l[vi9 b,U. . . £l[vi9 b]V3l]SI[vi, b{V3l +l] = l[vi9 ü j . Se t
also w(èo) = w(F 1

Explore the list Btj in séquence from k = 1 to | V31 as follows.

Recherche opérationnelle/Opérations Research



FROM THE MEDIAN TO THE GENERALIZED CENTER 83

If bk^bk+1, then set

F(bk) = F(bk + 1) + ^ ^ ^Xll^l[bk_u bk] (3)
w(V)

and add w (bk) to w (b\ K 3 ( +1).

If bk~bk+1, then add w(bk) to w(bk + 1) and delete bk from Btj.

Step (c). F(mr)for mreLMi} and G(bk)for bkeBi}

Merge the two lists LMtj and Btj into a single sorted list LM^KJB^
At the same time, for each bk found, détermine mr and mr + 1 such that

^l[vt, mr+1] andcompute:

G (bk) = / il / [vt, bk\ ̂  / [vh mr\ + - (G (mr +1) — G (mr) + / [mr, mr H

\ G(mr+1) + /[Z)fc, wr + i]), otherwise.

For each mr found, détermine bk and bk + u such that

l[vt, bk]^l[vi, mr]^l[vt, bk+l]

and compute

When all points of LMtj{J Btj have been considered, set

PROPOSITION 2: Algorithm IMA détermines the set LMtj U Btj in at most
O ( | V\ log | V\ ) opérations.

Proof: Step (a) détermines the sorted list LM^ and the corresponding
values of G{.). Step (Z?) détermines the sorted list Btj of bottleneck points as
well as the corresponding values of F(.). To this end, the set V of vertices is
partitioned into three sets Vu V2 and V3. The subset Vx (resp. V2) contains
the vertices vk for which d(vk, .) is increasing (resp. decreasing) along [vi3 Vj\.
The subset V3 contains the vertices vk for which [vti Vj] contains a bottleneck
point bk. Further, the bks are sorted by order of increasing values of l[vh bk].
At each bk of this list is associated a number w(bk) which represents the
weight of the vertex vk. Next, the value of F(.) is computed for each bk by
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84 P. HANSEN, M. LABBÉ, J.-F. THISSE

exploring the sorted list in séquence. Each time that a bk is found,
w(b\ K3 | +1) [resp. W(V) — b\ K3 i +J represents the sum of the weights of the
vertices vt for which d(vh .) is decreasing (resp. increasing) along the subedge
[bu-i> **]• Hence F(bk) is computed by using (3).

Finally, at Step (c) the values of G(.) [resp, F(.)] are computed for the
éléments of the list Btj (resp. LM^. To this end, the following properties of
functions G(.) and F(.) are used.

— Let [mr, mr + 1] be a subedge of [vh Vj\ limited by two consécutive éléments
of LMiy When x moves along this subedge, G (x) is a piecewise linear function
which flrst increases with slope + 1 and then decreases with slope — 1.

— Along [vh Vj], F(.) is piecewise linear with breakpoints belonging to Btj.

Regarding computational complexity, step (a) requires 0 ( | K | l o g | K | )
opérations (see Kariv and Hakimi [7]). Step (b) requires 0 ( | F | l o g | F | )
opérations (the number of bottleneck points is bounded by | V\, the ranking
of them is in O(| K|log| V\) and the computation of F(.) is performed by
exploring the sorted list once which is in O(\ V\)). Finally, the merging of
the sorted lists LMtj and Bi} can be performed in O(\ V\) and the missing
values of G( . ) and F ( . ) are computed by exploring the new list LMtj\JBtj

which also requires O(\ V\) opérations. Thus, Step (d) is in O(\ V\). D
î

We now present the algorithm for fînding the set U ^ ~ CD.

ALGORITHM 1: The cent-dian set U 'k—

Step (a). For ail edges [vt, v-[eE, apply Algorithm IMA to détermine the
set g(LMtj UBJ). Set g(LM\JB)= U {g(LMtjU BJ).

[vi, VJ] e E

Step (b). Détermine the convex huil of g (LM UB). The lower boundary

of this set is g( U X- CD\ D

PROPOSITION 3: Algorithm 1 détermines U X-CD in O (\E\ \V\ log |£*|| V\)
x=b

opérations.

Proof: Step (d) requires O(Ĵ E711 F | log | V\) opérations as it applies Algo-
rithm IMA to each edge [vi9 Vj\eE. Step (b) requires O(\E\ \ V\log 1̂ 11 V\)
opérations since g (LM U B) contains O ( | E \ \ V\ ) points and the convex huil
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of a set of n points can be determined in O{n\ogn) opérations {see e.g.
Preparata and Shamos [9]). D

We now turn to the problem of finding the set X — CD for X > 1. The
following proposition allows us to limit the search to the set of local minima
of the function G (. ).

PROPOSITION 4: A point xeN is a local minimum of Hx{.) for X>\ iff x is
a local minimum ofG{.).

Proof: The function Hx{.) is piecewise linear and at a given point xeN,
its slope s is given by s = Xs1+ {l—X)s2, where sx and s2 are the slopes of
G(.) and i r(.) respectively. Furthermore, sx is equal to either +1 or — 1
and — I ^ s 2 ^ + 1 (remember that F(x) is the average weighted distance).
Consequently, as X> 1, the sign of s is equal to that of sl9 which implies that
x is a local minimum of Hx (. ) iff it is a local minimum of G (. ). D

On the other hand, remember that for À- > 1 we restrict the set of feasible
solutions to the set PO of Pareto-optimal points with respect to the distances.
This set can be determined in <9(|is|2| K|2log| V\) opérations {see Hansen
et. al. [7]). Furthermore, it is constituted of several connected subnetworks
which may contain some subedges. Let / be the set of all interior points
limiting such subedges. It is easy to see that a point x e PO minimizes Hx{.)
if x G {LM H PO) U /. Hence the following algorithm can be easily adapted
tofmd X-CD for X>\.

ALGORITHM 2: Argmin {Hx{x): xeLM}, X>\.

Step (a). Apply Algorithm IMA to détermine LM and the corresponding
values of G(.) and F(.). [Note that as the points of B= U Btj cannot

[vt, VJ] e E

be local minima of Hx(.), it is not necessary to compute G(x) for xeB.
Nevertheless, we need this set and the corresponding values of F(.) to
compute F(x) for ail xeLM].

Step (b). Explore LM to détermine the point(s) minimizing Hx(.). D

PROPOSITION 5: Algorithm 2 détermines all xeLM minimizing Hx(.) (X>1)
in O(\E\\V\\og\E\\V\) opérations.

Proof: It follows directly from Proposition 4 that Algorithm X—CD
for X > 1. Regarding computational complexity, Step (à) requires
O ( | V\ | E| log I V\ ) opérations. As LM has O ( | V\ \ E\ ) points {see Kariv and
Hakimi [7]) and Hx{.) is computed in constant time (using updating as
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explained above) for each point o f LM, Step (b) requires O ( | V \ | E | ) opéra-
tions. In conclusion, the overall complexity is O( | V\ \ E|log| V\). D
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