
RAIRO. RECHERCHE OPÉRATIONNELLE

M. AKGÜL

O. EKIN
A dual feasible forest algorithm for the
linear assignment problem
RAIRO. Recherche opérationnelle, tome 25, no 4 (1991),
p. 403-411
<http://www.numdam.org/item?id=RO_1991__25_4_403_0>

© AFCET, 1991, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1991__25_4_403_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Opérations Research
(vol 25, n° 4, 1991, p. 403 à 411)

A DUAL FEASIBLE FOREST ALGORITHM
FOR THE LINEAR ASSIGNMENT PROBLEM (*)

by M. AKGÜL O and O. EKIN (*)

Abstract. — We present a dual feasible forest algorithm for the assignment problem. The
algorithm is guided by the signature of a strongly feasible tree and terminâtes wit h such a tree. It
has the time complexity O (w3) for dense problems and O {n2 log n + nm) for sparse graphs.

Keywords : Assignment; dual simplex method; signatures; pivoting; strongly feasible trees;
average behavior.

Resumé. — Nous présentons un algorithme dual pour le problème d'affectation. L'algorithme
est guidé par la signature d'un arbre fortement réalisable et se termine avec un tel arbre. Il a une
complexité temporelle O (n3) pour les problèmes denses et O (n2 \ogn + nm) pour les graphes creux.

Mots clés : Affectation; méthode duale du simplex; signatures; pivotage; arbres fortement
réalisables; comportement moyen.

Balinski [3] introduced the signature method for the linear assignment
problem which requires O(n2) pivots and O(n3) time. He later [4] gave a
purely dual-simplex algorithm having the same complexity as the signature
method. Goldfarb [8] and Akgül [1] gave sequential versions of the above
algorithms. Paparrizos [9] introduced a non-dual signature method which
solves the n by n assignment problem in at most O(n2) pivots and O(n4)
time.

Hère, we present a dual-feasible signature-guided forest algorithm which
terminâtes with a strongly feasible tree. It is a modification of Paparrizos'
algorithm. The algorithm has O(n3) complexity for dense problems using
elementary data structures. For sparse graphs, it has O(n2\ogn + nm) com-
plexity using Fibonacci-heaps of Fredman and Tarjan [7],

(*) Received August 1990.
(*) Department of Industrial Engineering, Bilkent University, 06533, Bilkent, Ankara, Turkey.

Recherche opérationnelle/Opérations Research, 0399-0559/91/04 403 09/$ 2.90
© AFCET-Gauthier-Villars

404 M. AKGÜL, O. EKIN

1. PRELIMINAIRES

We will view the assignment problem (AP) as a transshipment problem
over a directed bipartite graph G= (U, V, E) with node set N= UU F, and
edge set E. Each edge es E is directed from its tail t(e)eU (source or row
node) to its head h(é)eV (sink or column node), has flow xe and cost ce.

For a graph G= (N, E), and disjoint sets X, YczN, we let

y(X)={eeE:t(e)eX,h(e)sX)

b(X, Y) = {eeE:t(e)eX,h(e)eY}

We can cast AP as

min (ex: Ax = b, xTzO)

where A is the node-edge incidence matrix, and

bu=-l, ueU,

*„=+!, veV.

The dual LP is

m&x{yb: yh(e)-yt(e)^ce, esE}.

Reduced cost of edge e = (i, j) is

Given a tree rooted at node r,fs Tis reverse (feR) if ƒ is directed towards
r. Otherwise, it is forward^ei7)- VveN, v^r, there is a unique node called
the parent of v9 p (v) and parent pointers define the tree uniquely. Strongly
Feasible Trees (SFT) are introduced by Barr et al [5] and independently by
Cunningham [6] to speed up the primai simplex method for AP and to
prevent cycling in the network simplex method respectively. SFTs have been
used by Akgül [2] and many others, in polynomial primai algorithms. Rele-
vant properties of SFTs can be summarized as follows:

LEMMA 1: Let T be a spanning tree for the AP rooted at a sink node, r.

Then the following are equivalent.

(i) T is a SFT,

(ii) Every reverse tree edge has flow 1, and ever y forward tree edge has
JlowO,

Recherche opérationnelle/Opérations Research

LINEAR ASSIGNMENT PROBLEM 4 0 5

(iii) d e g (r) = 1, deg(t>) = 2, Vt?^r , vsV where d e g (.) dénotes the degree of

the spécifie node. •

Clearly (ii) implies that T is primai feasible and (iii) implies that the
column signature of T, i. e., the degree séquence of the column (sink) nodes
is (2, 2, 2, . . ., 2, 1). Moreover, if any T has column signature as such, then
rooted at the node of degree 1, such a Tis SFT.

Clearly, a dual-feasible tree which is also SFT is an optimal tree. A
signature-guided method changes the tree by linking and cutting edges to
obtain a tree having the desired signature, i.e., (2, 2, 2, . . ., 2, 1).

2. THE ALGORITHM

First, we will describe Paparrizos' [9] algorithm in our notation. His
algorithm works with, what we call, layers.

Initial tree is dual-feasible and is rooted at a source node and all sink
nodes of degree 1 are attached to this source node, i.e., Balinski tree. A layer
consists of two parts: décompose and link. To décompose a tree, a sink node
of degree ^ 3 which is minimal in distance to the root is identified. If there
is no such node, then T is SFT and hence it is optimal. Let v e V be such a
node. Then the edge (p (v), v) is deleted and the cutoff subtree rooted at v is
identified as a "candidate tree", and is denoted as say, Tv. The process is
continued until the tree rooted at r contains no sink nodes of degree ^ 3 .
The tree rooted at r is called T+ and T_ is the collection of candidate trees.
The link part of the algorithm is as follows.

while T_ #
begin

IZ
Let

0 do

t(e)GTk

7V ̂ T.\Tk

end {while}

The main invariant during link is that the subtree T+ is dual-feasible, i.e.,
edges in y(T+) are dual-feasible. Consequently, when a layer is fïnished, the
new tree is dual-feasible. Since layer algorithm is continued until T is SFT,
the algorithm stops with an optimal tree. The pivot bound is O (n2) but the

vol. 25, n° 4, 1991

40Ó M. AKGÜL, O. HKIN

number of layers also has the same bound. This results in an O (n4) algorithm.
Moreover, during a layer, dual-feasibility may be violated.

In the new algorithm, we abandon the layer concept altogether. After
linking a subtree to T+ via sink node v, instead of linking other trees in T_
to T+, we apply décompose if possible. So our algorithm perforais a simpler
form of link and décompose alternatively (some décompose could be
vacuous). We divide the whole process into stages which will facilitate an
efficient implementation of the algorithm.

We also make dual variable changes on the whole T_ rather than on a
subtree of it. Consequently, we obtain a dual feasible algorithm with the
state of the art complexity.

Now, we describe the new algorithm.
For a tree (forest) T, let a± = GX (T), a2, a3 be the number of sink nodes

of degree 1, degree 2 and degree at least 3 respectively. Hence, T is SFT if
and only if a ^ l , a2 = «—1, a3 = 0. The level of a tree is <yx(T). Our
algorithm works with stages through each of which <JX is reduced by 1. The
computational cost of a stage will be O(n2) for the dense case and
O(n\ogn + m) for the spar se case.

We start with the well-known "Balinski-tree" rooted at a source node r.
i

We then apply décompose. Thus, we obtain T+i and T. = U Tt and / ^ a 3 .
i=l

Our link routine (at say &-th itération) is as follows:

begin
e= (w9 D) = argmin{ we: ee
Let £ = we and t(e) = ueTq

TL <- T_\Tq

end

where r = r_ U T+ is the forest at the fc-th itération and T' = TL U Tf+ is
the forest obtained after the &-th link.

A link followed by a, possibly vacuous, décompose is called a pivot. Let
d(v) be the degree of v in 7"+. Depending on d(v) where v = h(e) (e is the
link-edge at fe-th link), we identify 3 types of pivots.

d(v) = 3: In this case, we eut the edge (p(v), v) from 7"+î and add the
cutoff subtree rooted at v to T'_. This is called a type 1 pivot.

d(v)~2\ In this case, a stage is over. Hère, we check whether the subtree
of T'+ rooted at v, which is Tq + e contains any sink node(s) of degree g: 3.

Recherche opérationnelle/Opérations Research

LINEAR ASSIGNMENT PROBLEM 4 0 7

If so, we apply décompose and add the resulting subtrees to the collection
TL. Otherwise, we just continue. The former case is called type 2 pivot and
the latter type 3 pivot. In type 2 pivots, the number of subtrees in T'_ may
increase by more than one. In type 1 pivots, the number of subtrees in T'_ is
the same as that of T_, and in type 3 pivots the number of subtrees in TL is
one less than that of T_.

The aigorithm continues until T_=0 and terminâtes with a strongly
feasible and hence an optimal tree T+.

LEMMA 2: The new forest T = (T'+9 TL) is dual-feasible.
Proof: It suffices to show that with respect to dual variables / , forest T is

dual-feasible and the reduced cost of the link-edge e is zero.
Clearly, the reduced costs of the edges in y(T_) and y(T+) do not change.

The reduced costs of the edges in d(T_, T+) decrease by s and those in
5(r +) TJ) increase by e. Since e^O, edges in S(7\ , T_) remain dual-feasible.
Edges in 5(JI_> T+) are also dual-feasible simply because of the way link-
edge e is chosen. With respect to y\ edge e has zero reduced cost. Therefore,
T+e is dual feasible. Clearly, décompose routine does not affect dual-
feasibility. As a resuit, T' is dual-feasible. D

Since the aigorithm maintains dual-feasibility and stops with a SFT, it is
valid.

Now, we bound the total number of pivots.

THEOREM 1: The aigorithm requires at most («— 1) (« — 2)/2 pivots.

Proof: Let a| = a £(r+) , /= 1, 2, 3 at the beginning of a stage. A stage ends
with a pivot of type 2 or 3. A pivot of type 1 will decrease a'2 by 1. Hence,
the number of pivots during a stage is böunded by

since a3 j£ 1. (Here we assume that root of a tree in T_ contributes 1 to a3.)
Because a 1 is at most n— 1 and at least 2 at the beginning of a stage, the
maximum number of pivots is

•.

Now, we give the time complexity of the aigorithm.

THEOREM 2: The aigorithm can be implemented so that it kas O(n*) time
complexity for dense graphs and O (n1 log n + nm) for spar se graphs.

vol. 25, iï° 4, 1991

4 0 8 M. AKGÜL, O. EKIN

Proof: It suffices to show that a stage can be implemented at O(n2) and
O(n\ogn + m) time for dense and sparse graphs respectively. First we consider
the dense case. Clearly, other than the sélection of link-edge, everything else
in a pivot can be performed in O (n) time per stage. To achieve O (n2) bound
per stage, we need to analyze the cost of sélection of link-edges altogether in
a stage. Since, each such edge has its head in T+, we store enough information
attached to these nodes. Specifïcally, let

nb(v)=j if wjv = s(v).

In other words, s(v) is the smallet reduced cost among the edges in 6(T_, v)
and nb (v) is the tail of such an edge. After a pivot, we have

and we update s (£)'s accordingly.
For a type 1 pivot, at least one source node, say node v, is transferred

from r + to r_. Let T" be the subtree obtained by deleting edge (p(v), v). In
other words, T" is the subtree rooted at v before the link. We visit the source
nodes in 7"', for each edge e in 8(J"5 T+\T") compute reduced cost of e,
compare with s(h(e)) and update s(h(e)) and nb(h(e)) if necessary. Thus,
during a stage, each edge is examined at most once for the computation of
s(v) and nb(v). We maintain a list representing T+ O V. Sink nodes in T"
are deleted from the list.

For a type 2 or type 3 pivot, a stage is over. After updating dual variables
and s(v)Js as above, we compute afresh s(vy$ for sink nodes added to T+

during the last pivot.
In order to détermine pivot or link edge, we compute

min{s(v): veT+ H V}

and the pivot edge is (nb (u), v) for a minimizing v. This complètes the dense
case.

For the sparse case, we store s(v)'s in Fibonacci heaps [7]. Thus, the cost
of updating s(vYs and sélection of pivot edges wiîl be O(n\ogn). Since we
may have to examine every edge at least once during a stage, total cost of
these opérations will be O(nlogn + rri) per stage. Since, in any stage, we can
perforai O (n) pivots, updating dual variables after each pivot is not accept-
able. As is shown in Akgül [1], and Goldfarb [8], the total cost of dual
updates and tree/forest opérations in a stage can be bounded in O (n) time.

Recherche opérationnelle/Opérations Research

LINEAR ASSIGNMENT PROBLEM 4 0 9

The basic idea is to maintain an offset between actual reduced costs and
those stored in s(v)'s and compute e with respect to min {s(v) : ve T+ O V}
and offset. Dual variables can be updated when a stage is over.

3 . AVERAGE BEHAVÏOR

Using the "equally likely signature model" of Balinski [4] which supposes
that at every pivot step, each possible succeeding column signature is equally
likely, i.e., every column node that is eligible to increase in degree is equally
likely to increase, we can now give a bound on the expected number of
pivots required in each stage. Let g(k,j) be the expected number of pivots
remaining on a stage of level k at the y-th pivot. Then,

G'2~J

a)
where at' — # of sink nodes of degree i in T+ at the beginning of level k
stage for i= 1, 2. Clearly a ^ O for all stages.

Then, it is easy to deduce by induction that

LEMMA 3:

Proof(by induction):
base case. We known that, at the c^-th pivot, the expected number of

pivots remaining on this stage is 1.

so base case holds.
inductive case. Assume that the argument holds for (ƒ+ l)-st pivot. We will

show that it also holds fory-th pivot as well. By induction hypothesis:

vol. 25, n°4, 1991

4 1 0 M. AKGÜL; O. EKTN

By (1), we known that

So the argument holds for the j-th pivot as well. Hence the proof is
complete. D

Since functions *i->(a+f)/* for fixed a, and a\-^(a +t)/t for fixed t are
monotonie, it foliows that g(k,j)^f(k,j) where f{kj) is defmed for
Balinski's aigorithm [4], Thus the expected number of pivots is O(wlog«) in
our aigorithm similar to Balinski's aigorithm.

4. VARIATIONS

It is not necessary to start "Balinski tree"; the aigorithm works as long
as sink nodes of degree 1 are incident with the root. We can work with
trees and dual variables obtained by familiar row-minimum, column-mini-
mum method. For each i e U9 let ctj {i) = min {cu : j e V}. The edges
Ëö— {(i,j(i)), iel/} form a part of the initial forest Let gc= V be the set of
isolated sink nodes in (U, V, Eö).

Setting j . = — cij{i}, V/eC/, and j ^ —0, V Ï G K we obtain a dual-feasible
solution for which edges in Eo have zero reduced costs. Let r be a new
(artifïeial) source node. By adding artificial edges (r,j) \fje F we obtain an
initial tree. We set yr= — K^ and assign cost K to all artificial edges. One can
add a new source node, say i0, and edge (i0, r) with cost 0 to the initial tree
formed. (This last step is not necessary, it is only introduced so that the new
graph has a matching provided that the old graph has one.) One may also
apply column-minimum opération to nodes in Q to obtain better dual variab-
les, but one does not need to add any edges to Eo.

The value of K is not important, e. g., one can set J ^ 0. During the course
of the aigorithm r (and i0) will not have any dual-variable changes, and none
of the artificial edges will be a link-edge. So, once the initial subtrees T_
and T+ are constructed, the artificial edges may be deleted. In this version,
T+ will be a forest of SFTs as opposed to being a single SFT.

REFERENCES

1. M. AKGÜL, A Sequential Dual Simplex Aigorithm for the Linear Assignment
Problem, Oper. Res. Lett., 1988, 7, pp, 155458; 1989, 8, p. 117.

Recherche opérationnelle/Opérations Research

LINEAR ASSIGNMENT PROBLEM 4 1 1

2. M. AKGÜL, A Genuinely Polynomial Primai Simplex Algorithm for the Assignment
Problem, SERC Report IEOR 87-07, Bilkent University, 1987 (To appear in
Discrete Appl, Math.).

3. M. L. BALINSKI, Signature Method for the Assignment Problem, Oper. Res., 1985,
33, pp. 527-536.

4. M. L. BALINSKI, A Compétitive (Dual) Simplex Method for the Assignment Prob-
lem, Math. Programming, 1986, 34, pp. 125-141.

5. R. BARR, F. GLOVER and D. KLINGMAN, The Alternating Basis Algorithm for
Assignment Problems, Math, Programming, 1977, 13, pp. 143.

6. W. H. CüNNiNGBAM, A Network Simplex Method, Math. Programming, 1976, 11,
pp. 105416.

7. M. FREDMAN and R. TARJAN, Fibonacci Heaps and Their Uses in Improved Net-
work Optimization Algorithms, / . A.C.M., 1987, 34, pp. 596-615.

8. D, GOLDFARB, Efficient Dual Simplex Algorithms for the Assignment Problem,
Math. Programming, 1985, 33, pp. 187-203.

9. K. PAPARRIZOS, A Non-Dual Signature Method for the Assignment Problem and
a Generalization of the Dual Simplex Method for the Transportation Problem,
R.A.LR.O. Rech. Opêr., 1988, 22, pp. 269-289.

vol. 25, n° 4, 1991

